/usr/include/trilinos/BelosSolverFactory.hpp is in libtrilinos-belos-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 | //@HEADER
// ************************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __Belos_SolverFactory_hpp
#define __Belos_SolverFactory_hpp
#include <BelosConfigDefs.hpp>
#include <BelosOutputManager.hpp>
#include <BelosSolverManager.hpp>
#include <BelosBlockCGSolMgr.hpp>
#include <BelosBlockGmresSolMgr.hpp>
#include <BelosGCRODRSolMgr.hpp>
#include <BelosPseudoBlockCGSolMgr.hpp>
#include <BelosPseudoBlockGmresSolMgr.hpp>
#include <BelosPseudoBlockStochasticCGSolMgr.hpp>
#include <BelosLSQRSolMgr.hpp>
#include <BelosMinresSolMgr.hpp>
#include <BelosGmresPolySolMgr.hpp>
#include <BelosPCPGSolMgr.hpp>
#include <BelosRCGSolMgr.hpp>
#include <BelosTFQMRSolMgr.hpp>
#include <BelosPseudoBlockTFQMRSolMgr.hpp>
#include <BelosFixedPointSolMgr.hpp>
#include <BelosBiCGStabSolMgr.hpp>
#include <Teuchos_Array.hpp>
#include <Teuchos_Describable.hpp>
#include <Teuchos_StandardCatchMacros.hpp>
#include <Teuchos_TypeNameTraits.hpp>
#include <algorithm>
#include <locale>
#include <map>
#include <sstream>
#include <stdexcept>
#include <vector>
namespace Belos {
namespace details {
/// \enum EBelosSolverType
/// \brief 1-to-1 enumeration of all supported SolverManager subclasses.
/// \author Mark Hoemmen
///
/// This enum is an implementation detail of \c SolverFactory.
/// Users of \c SolverFactory should not refer to this enum or
/// rely on the symbols or integer values therein. We declare
/// it here for later use by \c SolverFactory.
///
/// Belos developers who have implemented a new solver (i.e., a new
/// subclass of \c SolverManager) and who want to make the solver
/// available through the \c SolverFactory should first add a new enum
/// symbol corresponding to their solver to the end of the list. They
/// should then follow the instructions provided in the \c
/// SolverFactory documentation.
///
/// \c SolverFactory was written to be independent of the actual enum
/// values, so Belos developers are allowed to rearrange the symbols.
enum EBelosSolverType {
SOLVER_TYPE_BLOCK_GMRES,
SOLVER_TYPE_PSEUDO_BLOCK_GMRES,
SOLVER_TYPE_BLOCK_CG,
SOLVER_TYPE_PSEUDO_BLOCK_CG,
SOLVER_TYPE_GCRODR,
SOLVER_TYPE_RCG,
SOLVER_TYPE_MINRES,
SOLVER_TYPE_LSQR,
SOLVER_TYPE_STOCHASTIC_CG,
SOLVER_TYPE_TFQMR,
SOLVER_TYPE_PSEUDO_BLOCK_TFQMR,
SOLVER_TYPE_GMRES_POLY,
SOLVER_TYPE_PCPG,
SOLVER_TYPE_FIXED_POINT,
SOLVER_TYPE_BICGSTAB
};
} // namespace details
/// \class SolverFactory
/// \brief Factory for all solvers which Belos supports.
/// \author Mark Hoemmen
///
/// New Belos users should start by creating an instance of this
/// class, and using it to create the solver they want.
///
/// Belos implements several different iterative solvers. The usual
/// way in which users interact with these solvers is through
/// appropriately named subclasses of \c SolverManager. This factory
/// class tells users which solvers are supported. It can initialize
/// and return any supported subclass of \c SolverManager, given a
/// short name of the subclass (such as "GMRES" or "CG").
///
/// Users ask for the solver they want by a string name, and supply an
/// optional (but recommended) list of parameters
/// (Teuchos::ParameterList) for the solver. The solver may fill in
/// the parameter list with all the valid parameters and their default
/// values, which users may later inspect and modify. Valid solver
/// names include both "canonical names" (each maps one-to-one to a
/// specific SolverManager subclass) and "aliases." Some aliases are
/// short nicknames for canonical names, like "GMRES" for "Pseudoblock
/// GMRES". Other aliases refer to a canonical solver name, but also
/// modify the user's parameter list. For example, "Flexible GMRES"
/// is an alias for "Block GMRES", and also sets the "Flexible Gmres"
/// parameter to true in the input parameter list.
///
/// Solver name | Aliases | Solver Manager Class
/// ----------- | ------- | ----------
/// Pseudoblock GMRES | GMRES, Pseudo Block GMRES, PseudoBlockGMRES, PseudoBlockGmres | \c PseudoBlockGmresSolMgr
/// Block GMRES | Flexible GMRES | \c BlockGmresSolMgr
/// Block CG | | \c BlockCGSolMgr
/// Pseudoblock CG | PseudoBlockCG, Pseudo Block CG | \c PseudoBlockCGSolMgr
/// Pseudoblock Stochastic CG | Stochastic CG | \c PseudoBlockStochasticCGSolMgr
/// GCRODR | Recycling GMRES | \c GCRODRSolMgr
/// RCG | Recycling CG | \c RCGSolMgr
/// MINRES | | \c MinresSolMgr
/// LSQR | | \c LSQRSolMgr
/// TFQMR | Transpose-Free QMR | \c TFQMRSolMgr
/// Pseudoblock TFQMR | Pseudo Block Transpose-Free QMR | \c PseudoBlockTFQMRSolMgr
/// Hybrid Block GMRES | GmresPoly, Seed GMRES | \c GmresPolySolMgr
/// PCPG | CGPoly, Seed CG | \c PCPGSolMgr
///
/// This class' template parameters are the same as those of
/// Belos::SolverManager. Scalar is the scalar type (of entries in
/// the multivector), MV is the multivector type, and OP is the
/// operator type. For example: Scalar=double, MV=Epetra_MultiVector,
/// and OP=Epetra_Operator will access the Epetra specialization of
/// the Belos solvers.
///
/// Here is a simple example of how to use SolverFactory to create a
/// GMRES solver for your linear system. Your code needs to include
/// BelosSolverFactory.hpp and whatever linear algebra library header
/// files you would normally use. Suppose that Scalar, MV, and OP
/// have been previously typedef'd to the scalar resp. multivector
/// resp. operator type in your application.
/// \code
/// using Teuchos::ParameterList;
/// using Teuchos::parameterList;
/// using Teuchos::RCP;
/// using Teuchos::rcp; // Save some typing
///
/// // The ellipses represent the code you would normally use to create
/// // the sparse matrix, preconditioner, right-hand side, and initial
/// // guess for the linear system AX=B you want to solve.
/// RCP<OP> A = ...; // The sparse matrix / operator A
/// RCP<OP> M = ...; // The (right) preconditioner M
/// RCP<MV> B = ...; // Right-hand side of AX=B
/// RCP<MV> X = ...; // Initial guess for the solution
///
/// Belos::SolverFactory<Scalar, MV, OP> factory;
/// // Make an empty new parameter list.
/// RCP<ParameterList> solverParams = parameterList();
///
/// // Set some GMRES parameters.
/// //
/// // "Num Blocks" = Maximum number of Krylov vectors to store. This
/// // is also the restart length. "Block" here refers to the ability
/// // of this particular solver (and many other Belos solvers) to solve
/// // multiple linear systems at a time, even though we are only solving
/// // one linear system in this example.
/// solverParams->set ("Num Blocks", 40);
/// solverParams->set ("Maximum Iterations", 400);
/// solverParams->set ("Convergence Tolerance", 1.0e-8);
///
/// // Create the GMRES solver.
/// RCP<Belos::SolverManager<Scalar, MV, OP> > solver =
/// factory.create ("GMRES", solverParams);
///
/// // Create a LinearProblem struct with the problem to solve.
/// // A, X, B, and M are passed by (smart) pointer, not copied.
/// RCP<Belos::LinearProblem<Scalar, MV, OP> > problem =
/// rcp (new Belos::LinearProblem<Scalar, MV, OP> (A, X, B));
/// problem->setRightPrec (M);
///
/// // Tell the solver what problem you want to solve.
/// solver->setProblem (problem);
///
/// // Attempt to solve the linear system. result == Belos::Converged
/// // means that it was solved to the desired tolerance. This call
/// // overwrites X with the computed approximate solution.
/// Belos::ReturnType result = solver->solve();
///
/// // Ask the solver how many iterations the last solve() took.
/// const int numIters = solver->getNumIters();
/// \endcode
///
/// Belos developers who have implemented a new solver (i.e., a new
/// subclass of SolverManager) and who want to make the solver
/// available through the factory should do the following:
///
/// <ol>
/// <li> Add a new symbol corresponding to their solver to the
/// details::EBelosSolverType enum. </li>
/// <li> If necessary, specialize details::makeSolverManagerTmpl for
/// their SolverManager subclass. In most cases, the default
/// implementation suffices. </li>
/// <li> Add a case for their enum symbol that instantiates their
/// solver to the long switch-case statement in
/// details::makeSolverManagerFromEnum. </li>
/// <li> In the SolverFactory constructor, define a canonical string
/// name for their solver and its mapping to the corresponding
/// enum value, following the examples and comments there. (This
/// takes one line of code.) </li>
/// </ol>
///
template<class Scalar, class MV, class OP>
class SolverFactory : public Teuchos::Describable {
public:
/// \brief The type of the solver returned by create().
///
/// This is a specialization of SolverManager for the same scalar,
/// multivector, and operator types as the template parameters of
/// this factory.
typedef SolverManager<Scalar, MV, OP> solver_base_type;
//! Default constructor.
SolverFactory ();
/// \brief Create, configure, and return the specified solver.
///
/// \param solverName [in] Name of the solver.
///
/// \param solverParams [in/out] List of parameters with which to
/// configure the solver. If null, we configure the solver with
/// default parameters. If nonnull, the solver may modify the
/// list by filling in missing parameters with default values.
/// You can then inspect the resulting list to learn what
/// parameters the solver accepts.
///
/// Some solvers may be accessed by multiple names ("aliases").
/// Each solver has a canonical name, and zero or more aliases.
/// Using some aliases (such as those that access Flexible GMRES
/// capability in GMRES-type solvers) may make this method set
/// certain parameters in your parameter list.
///
/// The input parameter list is passed in as a Teuchos::RCP because
/// the factory passes it to the solver, and Belos solvers want
/// their input parameter list as a
/// Teuchos::RCP<Teuchos::ParameterList>. We allow a null parameter
/// list only for convenience, and will use default parameter values
/// in that case.
Teuchos::RCP<solver_base_type>
create (const std::string& solverName,
const Teuchos::RCP<Teuchos::ParameterList>& solverParams);
/// \brief Number of supported solvers.
///
/// This may differ from the number of supported solver
/// <i>names</i>, since we may accept multiple names ("aliases") for
/// some solvers.
int numSupportedSolvers () const;
/// \brief List of supported solver names.
///
/// The length of this list may differ from the number of supported
/// solvers, since we may accept multiple names ("aliases") for some
/// solvers.
Teuchos::Array<std::string> supportedSolverNames () const;
//! Whether the given solver name names a supported solver.
bool isSupported (const std::string& solverName) const;
//! @name Implementation of Teuchos::Describable interface
//@{
//! A string description of this object.
std::string description() const;
/// \brief Describe this object.
///
/// At higher verbosity levels, this method will print out the list
/// of names of supported solvers. You can also get this list
/// directly by using the supportedSolverNames() method.
void describe (Teuchos::FancyOStream& out,
const Teuchos::EVerbosityLevel verbLevel = Teuchos::Describable::verbLevel_default) const;
//@}
private:
/// \brief Map from solver name alias to canonical solver name.
///
/// The keys of this map do not necessarily include canonical solver
/// names. If a candidate name isn't a key in this map, then it
/// must be a canonical name in order to be valid. There doesn't
/// need to be an alias for each solver.
///
/// \note To Belos developers: If you want to add a new alias, first
/// add the mapping from alias to canonical solver name in the
/// SolverFactory constructor. Then, edit
/// reviseParameterListForAlias() to do any modifications of the
/// input ParameterList associated with that alias.
std::map<std::string, std::string> aliasToCanonicalName_;
/// \brief Map from canonical solver name to solver enum value.
///
/// Access the keys to get the list of canonical solver names.
///
/// \note To Belos developers: If you add a new solver, start with
/// the documentation of details::EBelosSolverType for
/// instructions. Each new solver needs a canonical name (a
/// string), which is a key into this map. The map from canonical
/// name to enum value is set up in the \c SolverFactory
/// constructor. The details::makeSolverManagerFromEnum()
/// function in turn takes the enum value and parameter list, and
/// returns an instance of the appropriate subclass of
/// SolverManager.
std::map<std::string, details::EBelosSolverType> canonicalNameToEnum_;
/// \brief Modify the input ParameterList appropriately for the given alias.
///
/// Some aliases include modifications or special checking of the
/// input ParameterList. All alias-related ParameterList revision
/// happens in this method.
void
reviseParameterListForAlias (const std::string& aliasName,
Teuchos::ParameterList& solverParams);
//! List of canonical solver names.
Teuchos::Array<std::string> canonicalSolverNames () const;
//! List of supported aliases (to canonical solver names).
Teuchos::Array<std::string> solverNameAliases () const;
//! Print the given array of strings, in YAML format, to \c out.
static void
printStringArray (std::ostream& out,
const Teuchos::ArrayView<const std::string>& array)
{
typedef Teuchos::ArrayView<std::string>::const_iterator iter_type;
out << "[";
for (iter_type iter = array.begin(); iter != array.end(); ++iter) {
out << "\"" << *iter << "\"";
if (iter + 1 != array.end()) {
out << ", ";
}
}
out << "]";
}
};
namespace details {
/// \fn makeSolverManagerTmpl
/// \brief Return a new instance of the desired SolverManager subclass.
///
/// This template function is meant to be used only by \c
/// makeSolverManagerFromEnum. We separate it out from \c
/// makeSolverManagerFromEnum in order to avoid duplicated code for
/// instantiating different \c SolverManager subclasses with the same
/// syntax (but different template parameters).
///
/// \tparam SolverManagerBaseType A specialization of SolverManager.
///
/// \tparam SolverManagerType The specific SolverManager subclass to
/// create. It should take the same three template parameters
/// (Scalar, MV, OP) as SolverManagerBaseType.
///
/// \param params [in/out] List of parameters with which to configure
/// the solver. If null, we configure the solver with default
/// parameters.
template<class SolverManagerBaseType, class SolverManagerType>
Teuchos::RCP<SolverManagerBaseType>
makeSolverManagerTmpl (const Teuchos::RCP<Teuchos::ParameterList>& params);
/// \fn makeSolverManagerFromEnum
/// \brief Return a new instance of the desired SolverManager subclass.
/// \author Mark Hoemmen
///
/// The \c SolverFactory class may use this template function
/// in order to instantiate an instance of the desired subclass of \c
/// SolverManager.
///
/// \tparam Scalar The first template parameter of \c SolverManager.
/// \tparam MV The second template parameter of \c SolverManager.
/// \tparam OP The third template parameter of \c SolverManager.
///
/// \param solverType [in] Enum value representing the specific
/// SolverManager subclass to instantiate.
///
/// \param params [in/out] List of parameters with which to configure
/// the solver. If null, we configure the solver with default
/// parameters.
template<class Scalar, class MV, class OP>
Teuchos::RCP<SolverManager<Scalar, MV, OP> >
makeSolverManagerFromEnum (const EBelosSolverType solverType,
const Teuchos::RCP<Teuchos::ParameterList>& params)
{
typedef SolverManager<Scalar, MV, OP> base_type;
switch (solverType) {
case SOLVER_TYPE_BLOCK_GMRES: {
typedef BlockGmresSolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
case SOLVER_TYPE_PSEUDO_BLOCK_GMRES: {
typedef PseudoBlockGmresSolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
case SOLVER_TYPE_BLOCK_CG: {
typedef BlockCGSolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
case SOLVER_TYPE_PSEUDO_BLOCK_CG: {
typedef PseudoBlockCGSolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
case SOLVER_TYPE_GCRODR: {
typedef GCRODRSolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
case SOLVER_TYPE_RCG: {
typedef RCGSolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
case SOLVER_TYPE_MINRES: {
typedef MinresSolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
case SOLVER_TYPE_LSQR: {
typedef LSQRSolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
case SOLVER_TYPE_STOCHASTIC_CG: {
typedef PseudoBlockStochasticCGSolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
case SOLVER_TYPE_TFQMR: {
typedef TFQMRSolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
case SOLVER_TYPE_PSEUDO_BLOCK_TFQMR: {
typedef PseudoBlockTFQMRSolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
case SOLVER_TYPE_GMRES_POLY: {
typedef GmresPolySolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
case SOLVER_TYPE_PCPG: {
typedef PCPGSolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
case SOLVER_TYPE_FIXED_POINT: {
typedef FixedPointSolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
case SOLVER_TYPE_BICGSTAB: {
typedef BiCGStabSolMgr<Scalar, MV, OP> impl_type;
return makeSolverManagerTmpl<base_type, impl_type> (params);
}
default: // Fall through; let the code below handle it.
TEUCHOS_TEST_FOR_EXCEPTION(
true, std::logic_error, "Belos::SolverFactory: Invalid EBelosSolverType "
"enum value " << solverType << ". Please report this bug to the Belos "
"developers.");
}
// Compiler guard. This may result in a warning on some compilers
// for an unreachable statement, but it will prevent a warning on
// other compilers for a "missing return statement at end of
// non-void function."
return Teuchos::null;
}
template<class SolverManagerBaseType, class SolverManagerType>
Teuchos::RCP<SolverManagerBaseType>
makeSolverManagerTmpl (const Teuchos::RCP<Teuchos::ParameterList>& params)
{
using Teuchos::ParameterList;
using Teuchos::parameterList;
using Teuchos::RCP;
RCP<SolverManagerType> solver = rcp (new SolverManagerType);
// Some solvers may not like to get a null ParameterList. If params
// is null, replace it with an empty parameter list. The solver
// will fill in default parameters for that case. Use the name of
// the solver's default parameters to name the new empty list.
RCP<ParameterList> pl;
if (params.is_null()) {
pl = parameterList (solver->getValidParameters ()->name ());
} else {
pl = params;
}
TEUCHOS_TEST_FOR_EXCEPTION(
pl.is_null(), std::logic_error,
"Belos::SolverFactory: ParameterList to pass to solver is null. This "
"should never happen. Please report this bug to the Belos developers.");
solver->setParameters (pl);
return solver;
}
} // namespace details
template<class Scalar, class MV, class OP>
SolverFactory<Scalar, MV, OP>::SolverFactory()
{
aliasToCanonicalName_["GMRES"] = "PSEUDOBLOCK GMRES";
// NOTE (mfh 29 Nov 2011) Accessing the flexible capability requires
// setting a parameter in the solver's parameter list. This affects
// the SolverFactory's interface, since using the "Flexible GMRES"
// alias requires modifying the user's parameter list if necessary.
// This is a good idea because users may not know about the
// parameter, or may have forgotten.
//
// NOTE (mfh 12 Aug 2015) The keys and values need to be all uppercase.
aliasToCanonicalName_["BLOCK GMRES"] = "BLOCK GMRES";
aliasToCanonicalName_["FLEXIBLE GMRES"] = "BLOCK GMRES";
aliasToCanonicalName_["CG"] = "PSEUDOBLOCK CG";
aliasToCanonicalName_["PSEUDOBLOCKCG"] = "PSEUDOBLOCK CG";
aliasToCanonicalName_["STOCHASTIC CG"] = "PSEUDOBLOCK STOCHASTIC CG";
aliasToCanonicalName_["RECYCLING CG"] = "RCG";
aliasToCanonicalName_["RECYCLING GMRES"] = "GCRODR";
// For compatibility with Stratimikos' Belos adapter.
aliasToCanonicalName_["PSEUDO BLOCK GMRES"] = "PSEUDOBLOCK GMRES";
aliasToCanonicalName_["PSEUDOBLOCKGMRES"] = "PSEUDOBLOCK GMRES";
aliasToCanonicalName_["PSEUDO BLOCK CG"] = "PSEUDOBLOCK CG";
aliasToCanonicalName_["PSEUDOBLOCKCG"] = "PSEUDOBLOCK CG";
aliasToCanonicalName_["TRANSPOSE-FREE QMR"] = "TFQMR";
aliasToCanonicalName_["PSEUDO BLOCK TFQMR"] = "PSEUDOBLOCK TFQMR";
aliasToCanonicalName_["PSEUDO BLOCK TRANSPOSE-FREE QMR"] = "PSEUDOBLOCK TFQMR";
aliasToCanonicalName_["GMRESPOLY"] = "HYBRID BLOCK GMRES";
aliasToCanonicalName_["SEED GMRES"] = "HYBRID BLOCK GMRES";
aliasToCanonicalName_["CGPOLY"] = "PCPG";
aliasToCanonicalName_["SEED CG"] = "PCPG";
aliasToCanonicalName_["FIXED POINT"] = "FIXED POINT";
aliasToCanonicalName_["BICGSTAB"] = "BICGSTAB";
// Mapping from canonical solver name (a string) to its
// corresponding enum value. This mapping is one-to-one.
//
// NOTE (mfh 12 Aug 2015) The keys need to be all uppercase.
canonicalNameToEnum_["BLOCK GMRES"] = details::SOLVER_TYPE_BLOCK_GMRES;
canonicalNameToEnum_["PSEUDOBLOCK GMRES"] = details::SOLVER_TYPE_PSEUDO_BLOCK_GMRES;
canonicalNameToEnum_["BLOCK CG"] = details::SOLVER_TYPE_BLOCK_CG;
canonicalNameToEnum_["PSEUDOBLOCK CG"] = details::SOLVER_TYPE_PSEUDO_BLOCK_CG;
canonicalNameToEnum_["PSEUDOBLOCK STOCHASTIC CG"] = details::SOLVER_TYPE_STOCHASTIC_CG;
canonicalNameToEnum_["GCRODR"] = details::SOLVER_TYPE_GCRODR;
canonicalNameToEnum_["RCG"] = details::SOLVER_TYPE_RCG;
canonicalNameToEnum_["MINRES"] = details::SOLVER_TYPE_MINRES;
canonicalNameToEnum_["LSQR"] = details::SOLVER_TYPE_LSQR;
canonicalNameToEnum_["TFQMR"] = details::SOLVER_TYPE_TFQMR;
canonicalNameToEnum_["PSEUDOBLOCK TFQMR"] = details::SOLVER_TYPE_PSEUDO_BLOCK_TFQMR;
canonicalNameToEnum_["HYBRID BLOCK GMRES"] = details::SOLVER_TYPE_GMRES_POLY;
canonicalNameToEnum_["PCPG"] = details::SOLVER_TYPE_PCPG;
canonicalNameToEnum_["FIXED POINT"] = details::SOLVER_TYPE_FIXED_POINT;
canonicalNameToEnum_["BICGSTAB"] = details::SOLVER_TYPE_BICGSTAB;
}
template<class Scalar, class MV, class OP>
void
SolverFactory<Scalar, MV, OP>::
reviseParameterListForAlias (const std::string& aliasName,
Teuchos::ParameterList& solverParams)
{
if (aliasName == "FLEXIBLE GMRES") {
// "Gmres" uses title case in this solver's parameter list. For
// our alias, we prefer the all-capitals "GMRES" that the
// algorithm's authors (Saad and Schultz) used.
solverParams.set ("Flexible Gmres", true);
}
}
template<class Scalar, class MV, class OP>
Teuchos::RCP<typename SolverFactory<Scalar, MV, OP>::solver_base_type>
SolverFactory<Scalar, MV, OP>::
create (const std::string& solverName,
const Teuchos::RCP<Teuchos::ParameterList>& solverParams)
{
const char prefix[] = "Belos::SolverFactory: ";
// Upper-case version of the input solver name.
std::string solverNameUC (solverName);
{
typedef std::string::value_type char_t;
typedef std::ctype<char_t> facet_type;
const facet_type& facet = std::use_facet<facet_type> (std::locale ());
const std::string::size_type len = solverName.size ();
for (std::string::size_type k = 0; k < len; ++k) {
solverNameUC[k] = facet.toupper (solverName[k]);
}
}
// Check whether the given name is an alias.
std::map<std::string, std::string>::const_iterator aliasIter =
aliasToCanonicalName_.find (solverNameUC);
const bool isAnAlias = (aliasIter != aliasToCanonicalName_.end());
const std::string candidateCanonicalName =
isAnAlias ? aliasIter->second : solverNameUC;
// Get the canonical name.
std::map<std::string, details::EBelosSolverType>::const_iterator canonicalIter =
canonicalNameToEnum_.find (candidateCanonicalName);
const bool validCanonicalName = (canonicalIter != canonicalNameToEnum_.end());
// Check whether we found a canonical name. If we didn't and the
// input name is a valid alias, that's a bug. Otherwise, the input
// name is invalid.
TEUCHOS_TEST_FOR_EXCEPTION
(! validCanonicalName && isAnAlias, std::logic_error,
prefix << "Valid alias \"" << solverName << "\" has candidate canonical "
"name \"" << candidateCanonicalName << "\", which is not a canonical "
"solver name. Please report this bug to the Belos developers.");
TEUCHOS_TEST_FOR_EXCEPTION
(! validCanonicalName && ! isAnAlias, std::invalid_argument,
prefix << "Invalid solver name \"" << solverName << "\".");
// If the input list is null, we create a new list and use that.
// This is OK because the effect of a null parameter list input is
// to use default parameter values. Thus, we can always replace a
// null list with an empty list.
Teuchos::RCP<Teuchos::ParameterList> pl =
solverParams.is_null() ? Teuchos::parameterList() : solverParams;
// Possibly modify the input parameter list as needed.
if (isAnAlias) {
reviseParameterListForAlias (solverNameUC, *pl);
}
return details::makeSolverManagerFromEnum<Scalar, MV, OP> (canonicalIter->second, pl);
}
template<class Scalar, class MV, class OP>
std::string
SolverFactory<Scalar, MV, OP>::description() const
{
using Teuchos::TypeNameTraits;
std::ostringstream out;
out << "\"Belos::SolverFactory\": {";
if (this->getObjectLabel () != "") {
out << "Label: " << this->getObjectLabel () << ", ";
}
out << "Scalar: " << TypeNameTraits<Scalar>::name ()
<< ", MV: " << TypeNameTraits<MV>::name ()
<< ", OP: " << TypeNameTraits<OP>::name ()
<< "}";
return out.str ();
}
template<class Scalar, class MV, class OP>
void
SolverFactory<Scalar, MV, OP>::
describe (Teuchos::FancyOStream& out,
const Teuchos::EVerbosityLevel verbLevel) const
{
using Teuchos::TypeNameTraits;
using std::endl;
const Teuchos::EVerbosityLevel vl =
(verbLevel == Teuchos::VERB_DEFAULT) ? Teuchos::VERB_LOW : verbLevel;
if (vl == Teuchos::VERB_NONE) {
return;
}
// By convention, describe() always begins with a tab.
Teuchos::OSTab tab0 (out);
// The description prints in YAML format. The class name needs to
// be protected with quotes, so that YAML doesn't get confused
// between the colons in the class name and the colon separating
// (key,value) pairs.
out << "\"Belos::SolverFactory\":" << endl;
if (this->getObjectLabel () != "") {
out << "Label: " << this->getObjectLabel () << endl;
}
{
out << "Template parameters:" << endl;
Teuchos::OSTab tab1 (out);
out << "Scalar: " << TypeNameTraits<Scalar>::name () << endl
<< "MV: " << TypeNameTraits<MV>::name () << endl
<< "OP: " << TypeNameTraits<OP>::name () << endl;
}
// At higher verbosity levels, print out the list of supported solvers.
if (vl > Teuchos::VERB_LOW) {
Teuchos::OSTab tab1 (out);
out << "Number of solvers: " << numSupportedSolvers ()
<< endl;
out << "Canonical solver names: ";
printStringArray (out, canonicalSolverNames ());
out << endl;
out << "Aliases to canonical names: ";
printStringArray (out, solverNameAliases ());
out << endl;
}
}
template<class Scalar, class MV, class OP>
int
SolverFactory<Scalar, MV, OP>::numSupportedSolvers () const
{
return static_cast<int> (canonicalNameToEnum_.size());
}
template<class Scalar, class MV, class OP>
Teuchos::Array<std::string>
SolverFactory<Scalar, MV, OP>::canonicalSolverNames () const
{
Teuchos::Array<std::string> canonicalNames;
typedef std::map<std::string, details::EBelosSolverType>::const_iterator iter_type;
for (iter_type iter = canonicalNameToEnum_.begin();
iter != canonicalNameToEnum_.end(); ++iter) {
canonicalNames.push_back (iter->first);
}
return canonicalNames;
}
template<class Scalar, class MV, class OP>
Teuchos::Array<std::string>
SolverFactory<Scalar, MV, OP>::solverNameAliases () const
{
Teuchos::Array<std::string> names;
{
typedef std::map<std::string, std::string>::const_iterator iter_type;
for (iter_type iter = aliasToCanonicalName_.begin();
iter != aliasToCanonicalName_.end(); ++iter) {
names.push_back (iter->first);
}
}
return names;
}
template<class Scalar, class MV, class OP>
Teuchos::Array<std::string>
SolverFactory<Scalar, MV, OP>::supportedSolverNames () const
{
Teuchos::Array<std::string> names;
{
typedef std::map<std::string, std::string>::const_iterator iter_type;
for (iter_type iter = aliasToCanonicalName_.begin();
iter != aliasToCanonicalName_.end(); ++iter) {
names.push_back (iter->first);
}
}
{
typedef std::map<std::string, details::EBelosSolverType>::const_iterator iter_type;
for (iter_type iter = canonicalNameToEnum_.begin();
iter != canonicalNameToEnum_.end(); ++iter) {
names.push_back (iter->first);
}
}
return names;
}
} // namespace Belos
#endif // __Belos_SolverFactory_hpp
|