/usr/include/trilinos/Galeri_Elasticity2DProblem.hpp is in libtrilinos-galeri-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 | // @HEADER
//
// ***********************************************************************
//
// Galeri: Finite Element and Matrix Generation Package
// Copyright (2006) ETHZ/Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact
// Jeremie Gaidamour (jngaida@sandia.gov)
// Jonathan Hu (jhu@sandia.gov)
// Ray Tuminaro (rstumin@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#ifndef GALERI_ELASTICITY2DPROBLEM_HPP
#define GALERI_ELASTICITY2DPROBLEM_HPP
#include <Teuchos_SerialDenseMatrix.hpp>
#include <Teuchos_ParameterList.hpp>
#include "Galeri_Problem.hpp"
#include "Galeri_MultiVectorTraits.hpp"
#include "Galeri_XpetraUtils.hpp"
namespace Galeri {
namespace Xpetra {
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Map, typename Matrix, typename MultiVector>
class Elasticity2DProblem : public Problem<Map,Matrix,MultiVector> {
public:
Elasticity2DProblem(Teuchos::ParameterList& list, const Teuchos::RCP<const Map>& map) : Problem<Map,Matrix,MultiVector>(list, map) {
E = list.get("E", Teuchos::as<typename Teuchos::ScalarTraits<Scalar>::magnitudeType>(1e9));
nu = list.get("nu", Teuchos::as<typename Teuchos::ScalarTraits<Scalar>::magnitudeType>(0.25));
nx_ = list.get<GlobalOrdinal>("nx", -1);
ny_ = list.get<GlobalOrdinal>("ny", -1);
nDim_ = 2;
double one = 1.0;
stretch.push_back(list.get("stretchx", one));
stretch.push_back(list.get("stretchy", one));
// NOTE: -1 is because galeri counts points, not elements
dims.push_back(nx_-1);
dims.push_back(ny_-1);
TEUCHOS_TEST_FOR_EXCEPTION(nx_ <= 0 || ny_ <= 0, std::logic_error, "nx and ny must be positive");
mode_ = list.get<std::string>("mode", "plane stress");
}
Teuchos::RCP<Matrix> BuildMatrix();
Teuchos::RCP<MultiVector> BuildNullspace();
Teuchos::RCP<MultiVector> BuildCoords();
private:
typedef Scalar SC;
typedef LocalOrdinal LO;
typedef GlobalOrdinal GO;
struct Point {
SC x, y, z;
Point() { z = Teuchos::ScalarTraits<SC>::zero(); }
Point(SC x_, SC y_, SC z_ = Teuchos::ScalarTraits<SC>::zero()) : x(x_), y(y_), z(z_) { }
};
GlobalOrdinal nx_, ny_, nz_;
size_t nDim_;
std::vector<GO> dims;
// NOTE: nodes correspond to a local subdomain nodes. I have to construct overlapped subdomains because
// InsertGlobalValues in Epetra does not support inserting into rows owned by other processor
std::vector<Point> nodes_;
std::vector<std::vector<LO> > elements_;
std::vector<GO> local2Global_;
std::vector<char> dirichlet_;
typename Teuchos::ScalarTraits<Scalar>::magnitudeType E, nu;
std::vector<Scalar> stretch;
std::string mode_;
void EvalDxi (const std::vector<Point>& refPoints, Point& gaussPoint, SC * dxi);
void EvalDeta (const std::vector<Point>& refPoints, Point& gaussPoint, SC * deta);
void BuildMesh();
void BuildMaterialMatrix (Teuchos::SerialDenseMatrix<LO,SC>& D);
void BuildReferencePoints(size_t& numRefPoints, std::vector<Point>& refPoints, size_t& numGaussPoints, std::vector<Point>& gaussPoints);
};
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Map, typename Matrix, typename MultiVector>
Teuchos::RCP<Matrix> Elasticity2DProblem<Scalar,LocalOrdinal,GlobalOrdinal,Map,Matrix,MultiVector>::BuildMatrix() {
using Teuchos::SerialDenseMatrix;
typedef Teuchos::ScalarTraits<SC> TST;
BuildMesh();
const size_t numDofPerNode = 2;
const size_t numNodesPerElem = 4;
const size_t numDofPerElem = numNodesPerElem * numDofPerNode;
TEUCHOS_TEST_FOR_EXCEPTION(elements_[0].size() != numNodesPerElem, std::logic_error, "Incorrect number of element vertices");
// Material constant
SC t = 1;
// Material matrix
RCP<SerialDenseMatrix<LO,SC> > D(new SerialDenseMatrix<LO,SC>);
BuildMaterialMatrix(*D);
// Reference element, and reference Gauss points
size_t numRefPoints, numGaussPoints;
std::vector<Point> refPoints, gaussPoints;
BuildReferencePoints(numRefPoints, refPoints, numGaussPoints, gaussPoints);
// Evaluate the B matrix for the reference element
size_t sDim = 6;
size_t bDim = 4;
std::vector<SerialDenseMatrix<LO,SC> > Bs(numGaussPoints);
std::vector<SerialDenseMatrix<LO,SC> > Ss(numGaussPoints);
for (size_t j = 0; j < numGaussPoints; j++) {
SerialDenseMatrix<LO,SC>& S = Ss[j];
S.shape(Teuchos::as<LO>(sDim), Teuchos::as<LO>(nDim_));
EvalDxi (refPoints, gaussPoints[j], S[0]);
EvalDeta(refPoints, gaussPoints[j], S[1]);
SerialDenseMatrix<LO,SC>& B = Bs[j];
B.shape(Teuchos::as<LO>(bDim), numDofPerElem);
for (size_t k = 0; k < numNodesPerElem; k++) {
B(0, numDofPerNode*k + 0) = S(k,0);
B(1, numDofPerNode*k + 0) = S(k,1);
B(2, numDofPerNode*k + 1) = S(k,0);
B(3, numDofPerNode*k + 1) = S(k,1);
}
}
// Construct reordering matrix (see 6.2-9 from Cook)
SerialDenseMatrix<LO,SC> R(D->numRows(), Teuchos::as<LO>(bDim));
R(0,0) = R(1,3) = R(2,1) = R(2,2) = 1;
this->A_ = MatrixTraits<Map,Matrix>::Build(this->Map_, 9*numDofPerNode);
SC one = TST::one(), zero = TST::zero();
SerialDenseMatrix<LO,SC> prevKE(numDofPerElem, numDofPerElem), prevElementNodes(numNodesPerElem, Teuchos::as<LO>(nDim_)); // cache
for (size_t i = 0; i < elements_.size(); i++) {
// Select nodes subvector
SerialDenseMatrix<LO,SC> elementNodes(numNodesPerElem, Teuchos::as<LO>(nDim_));
std::vector<LO>& elemNodes = elements_[i];
for (size_t j = 0; j < numNodesPerElem; j++) {
elementNodes(j,0) = nodes_[elemNodes[j]].x;
elementNodes(j,1) = nodes_[elemNodes[j]].y;
}
// Check if element is a translation of the previous element
SC xMove = elementNodes(0,0) - prevElementNodes(0,0), yMove = elementNodes(0,1) - prevElementNodes(0,1);
typename TST::magnitudeType eps = 1e-15; // coordinate comparison criteria
bool recompute = false;
{
size_t j = 0;
for (j = 0; j < numNodesPerElem; j++)
if (TST::magnitude(elementNodes(j,0) - (prevElementNodes(j,0) + xMove)) > eps ||
TST::magnitude(elementNodes(j,1) - (prevElementNodes(j,1) + yMove)) > eps)
break;
if (j != numNodesPerElem)
recompute = true;
}
SerialDenseMatrix<LO,SC> KE(numDofPerElem, numDofPerElem);
if (recompute == false) {
// If an element has the same form as previous element, reuse stiffness matrix
KE = prevKE;
} else {
// Evaluate new stiffness matrix for the element
SerialDenseMatrix<LO,SC> K0(D->numRows(), numDofPerElem);
for (size_t j = 0; j < numGaussPoints; j++) {
SerialDenseMatrix<LO,SC>& B = Bs[j];
SerialDenseMatrix<LO,SC>& S = Ss[j];
SerialDenseMatrix<LO,SC> JAC(Teuchos::as<LO>(nDim_), Teuchos::as<LO>(nDim_));
for (size_t p = 0; p < nDim_; p++)
for (size_t q = 0; q < nDim_; q++) {
JAC(p,q) = zero;
for (size_t k = 0; k < numNodesPerElem; k++)
JAC(p,q) += S(k,p)*elementNodes(k,q);
}
SC detJ = JAC(0,0)*JAC(1,1) - JAC(0,1)*JAC(1,0);
// J2 = inv([JAC zeros(2); zeros(2) JAC])
SerialDenseMatrix<LO,SC> J2(Teuchos::as<LO>(nDim_*nDim_),Teuchos::as<LO>(nDim_*nDim_));
J2(0,0) = J2(2,2) = JAC(1,1) / detJ;
J2(0,1) = J2(2,3) = -JAC(0,1) / detJ;
J2(1,0) = J2(3,2) = -JAC(1,0) / detJ;
J2(1,1) = J2(3,3) = JAC(0,0) / detJ;
SerialDenseMatrix<LO,SC> B2(J2.numRows(), B.numCols());
B2.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, one, J2, B, zero);
// KE = KE + t * J2B' * D * J2B * detJ
SerialDenseMatrix<LO,SC> J2B(R.numRows(), B2.numCols());
J2B.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, one, R, B2, zero);
K0 .multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, one, *D, J2B, zero);
KE .multiply(Teuchos::TRANS, Teuchos::NO_TRANS, t*detJ, J2B, K0, one);
}
// Cache the matrix and nodes
prevKE = KE;
prevElementNodes = elementNodes;
}
Teuchos::Array<GO> elemDofs(numDofPerElem);
for (size_t j = 0; j < numNodesPerElem; j++) { // FIXME: this may be inconsistent with the map
elemDofs[numDofPerNode*j + 0] = local2Global_[elemNodes[j]]*numDofPerNode;
elemDofs[numDofPerNode*j + 1] = elemDofs[numDofPerNode*j + 0] + 1;
}
// Deal with Dirichlet nodes
bool isDirichlet = false;
for (size_t j = 0; j < numNodesPerElem; j++)
if (dirichlet_[elemNodes[j]])
isDirichlet = true;
if (isDirichlet) {
bool keepBCs = this->list_.get("keepBCs", false);
if (keepBCs) {
// Simple case: keep Dirichlet DOF
// We rewrite rows and columns corresponding to Dirichlet DOF with zeros
// The diagonal elements corresponding to Dirichlet DOF are set to 1.
for (size_t j = 0; j < numNodesPerElem; j++)
if (dirichlet_[elemNodes[j]]) {
LO j0 = numDofPerNode*j+0;
LO j1 = numDofPerNode*j+1;
for (size_t k = 0; k < numDofPerElem; k++)
KE[j0][k] = KE[k][j0] = KE[j1][k] = KE[k][j1] = zero;
KE[j0][j0] = KE[j1][j1] = one;
}
} else {
// Complex case: get rid of Dirichlet DOF
// The case is complex because if we simply reduce the size of the matrix, it would become inconsistent
// with maps. So, instead, we modify values of the boundary cells as if we had an additional cell close
// to the boundary. For instance, if we have a following cell
// D--.
// | |
// D--D
// we multiply all D-D connections by 2 and multiply diagonals corresponding to D by 2 or 4, depending
// whether it is connected to 1 or 2 other D DOFs.
for (size_t j = 0; j < numNodesPerElem; j++)
if (dirichlet_[elemNodes[j]]) {
LO j0 = numDofPerNode*j, j1 = j0+1;
for (size_t k = 0; k < numNodesPerElem; k++)
if ((j == k) || ((j+k) & 0x1)) {
// Nodes j and k are connected by an edge, or j == k
LO k0 = numDofPerNode*k, k1 = k0+1;
SC f = pow(2.0*TST::one(), Teuchos::as<int>(std::min(dirichlet_[elemNodes[j]], dirichlet_[elemNodes[k]])));
KE(j0,k0) *= f; KE(j0,k1) *= f;
KE(j1,k0) *= f; KE(j1,k1) *= f;
}
}
}
}
// Insert KE into the global matrix
// NOTE: KE is symmetric, therefore it does not matter that it is in the CSC format
for (size_t j = 0; j < numDofPerElem; j++)
if (this->Map_->isNodeGlobalElement(elemDofs[j]))
this->A_->insertGlobalValues(elemDofs[j], elemDofs, Teuchos::ArrayView<SC>(KE[j], numDofPerElem));
}
this->A_->fillComplete();
return this->A_;
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Map, typename Matrix, typename MultiVector>
RCP<MultiVector> Elasticity2DProblem<Scalar,LocalOrdinal,GlobalOrdinal,Map,Matrix,MultiVector>::BuildCoords() {
// FIXME: map here is an extended map, with multiple DOF per node
// as we cannot construct a single DOF map in Problem, we repeat the coords
this->Coords_ = MultiVectorTraits<Map,MultiVector>::Build(this->Map_, nDim_);
typedef Teuchos::ScalarTraits<Scalar> TST;
Teuchos::ArrayRCP<SC> x = this->Coords_->getDataNonConst(0);
Teuchos::ArrayRCP<SC> y = this->Coords_->getDataNonConst(1);
Teuchos::ArrayView<const GO> GIDs = this->Map_->getNodeElementList();
// NOTE: coordinates vector local ordering is consistent with that of the
// matrix map, as it is constructed by going through GIDs and translating
// those.
const typename TST::magnitudeType hx = TST::magnitude(stretch[0]),
hy = TST::magnitude(stretch[1]);
for (GO p = 0; p < GIDs.size(); p += 2) { // FIXME: we assume that DOF for the same node are label consequently
GlobalOrdinal ind = GIDs[p] >> 1;
size_t i = ind % nx_, j = ind / nx_;
x[p] = x[p+1] = (i+1)*hx;
y[p] = y[p+1] = (j+1)*hy;
}
return this->Coords_;
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Map, typename Matrix, typename MultiVector>
RCP<MultiVector> Elasticity2DProblem<Scalar,LocalOrdinal,GlobalOrdinal,Map,Matrix,MultiVector>::BuildNullspace() {
const int numVectors = 3;
this->Nullspace_ = MultiVectorTraits<Map,MultiVector>::Build(this->Map_, numVectors);
typedef Teuchos::ScalarTraits<Scalar> TST;
if (this->Coords_ == Teuchos::null)
BuildCoords();
Teuchos::ArrayView<const GO> GIDs = this->Map_->getNodeElementList();
size_t numDofs = this->Map_->getNodeNumElements();
Teuchos::ArrayRCP<SC> x = this->Coords_->getDataNonConst(0);
Teuchos::ArrayRCP<SC> y = this->Coords_->getDataNonConst(1);
SC one = TST::one();
// NOTE: nullspace local ordering is consistent with that of the matrix
// map, as it inherits ordering from coordinates, which is consistent.
// Translations
Teuchos::ArrayRCP<SC> T0 = this->Nullspace_->getDataNonConst(0), T1 = this->Nullspace_->getDataNonConst(1);
for (size_t i = 0; i < numDofs; i += nDim_) {
T0[i] = one;
T1[i+1] = one;
}
// Calculate center
SC cx = this->Coords_->getVector(0)->meanValue();
SC cy = this->Coords_->getVector(1)->meanValue();
// Rotations
Teuchos::ArrayRCP<SC> R0 = this->Nullspace_->getDataNonConst(2);
for (size_t i = 0; i < numDofs; i += nDim_) {
// Rotate in Y-Z Plane (around Z axis): [ -y; x]
R0[i+0] = -(y[i]-cy);
R0[i+1] = (x[i]-cx);
}
// Equalize norms of all vectors to that of the first one
// We do not normalize them as a vector of ones seems nice
Teuchos::Array<typename TST::magnitudeType> norms2(numVectors);
for (int i = 1; i < numVectors; i++)
norms2[i] = norms2[0] / norms2[i];
norms2[0] = TST::magnitude(TST::one());
this->Nullspace_->norm2(norms2);
Teuchos::Array<SC> norms2scalar(numVectors);
for (int i = 1; i < numVectors; i++)
norms2scalar[i] = norms2[i];
this->Nullspace_->scale(norms2scalar);
return this->Nullspace_;
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Map, typename Matrix, typename MultiVector>
void Elasticity2DProblem<Scalar,LocalOrdinal,GlobalOrdinal,Map,Matrix,MultiVector>::BuildMesh() {
using Teuchos::as;
typedef Teuchos::ScalarTraits<SC> TST;
const typename TST::magnitudeType hx = TST::magnitude(stretch[0]),
hy = TST::magnitude(stretch[1]);
GO myPID = this->Map_->getComm()->getRank();
GO const & one=1;
GO mx = (this->list_).get("mx", one), my = (this->list_).get("my", one);
GO startx, starty, endx, endy;
Utils::getSubdomainData(dims[0], mx, myPID % mx, startx, endx);
Utils::getSubdomainData(dims[1], my, myPID / mx, starty, endy);
LO nx = as<LO>(endx - startx), ny = as<LO>(endy - starty);
// Expand subdomain to do overlap
if (startx > 0) { nx++; startx--; }
if (starty > 0) { ny++; starty--; }
if (startx+nx < dims[0]) { nx++; }
if (starty+ny < dims[1]) { ny++; }
nodes_ .resize((nx+1)*(ny+1));
local2Global_.resize((nx+1)*(ny+1));
dirichlet_ .resize((nx+1)*(ny+1));
elements_ .resize(nx*ny);
#define NODE(i,j) ((j)*(nx+1) + (i))
#define CELL(i,j) ((j)*nx + (i))
// NOTE: the fact that local ordering here is not consistent with that of
// the matrix map does not matter. The two things that matter are:
// local2Global_ assigns to a correct GID, and nodes_ contain correct
// coordinates
for (LO j = 0; j <= ny; j++)
for (LO i = 0; i <= nx; i++) {
GO ii = startx + i, jj = starty + j;
LO nodeID = NODE(i,j);
nodes_ [nodeID] = Point((ii+1)*hx, (jj+1)*hy);
local2Global_[nodeID] = jj*nx_ + ii;
if (ii == 0 && (this->DirichletBC_ & DIR_LEFT)) dirichlet_[nodeID]++;
if (ii == nx_ && (this->DirichletBC_ & DIR_RIGHT)) dirichlet_[nodeID]++;
if (jj == 0 && (this->DirichletBC_ & DIR_BOTTOM)) dirichlet_[nodeID]++;
if (jj == ny_ && (this->DirichletBC_ & DIR_TOP)) dirichlet_[nodeID]++;
}
for (LO j = 0; j < ny; j++)
for (LO i = 0; i < nx; i++) {
std::vector<LO>& element = elements_[CELL(i,j)];
element.resize(4);
element[0] = NODE(i, j);
element[1] = NODE(i+1,j);
element[2] = NODE(i+1,j+1);
element[3] = NODE(i, j+1);
}
#undef NODE
#undef CELL
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Map, typename Matrix, typename MultiVector>
void Elasticity2DProblem<Scalar,LocalOrdinal,GlobalOrdinal,Map,Matrix,MultiVector>::BuildMaterialMatrix(Teuchos::SerialDenseMatrix<LocalOrdinal,Scalar>& D) {
D.shape(3,3);
if (!strcmp(mode_.c_str(), "plane stress")) {
typename Teuchos::ScalarTraits<SC>::magnitudeType c = E / (1 - nu*nu);
D(0,0) = c; D(0,1) = c*nu;
D(1,0) = c*nu; D(1,1) = c;
D(2,2) = c*(1-nu)/2;
} else if (!strcmp(mode_.c_str(), "plane strain")) {
typename Teuchos::ScalarTraits<SC>::magnitudeType c = E / (1 + nu) / (1 - 2*nu);
D(0,0) = c*(1-nu); D(0,1) = c*nu;
D(1,0) = c*nu; D(1,1) = c*(1-nu);
D(2,2) = c*(1-2*nu)/2;
} else {
TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error, "Unknown material model for 2D");
}
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Map, typename Matrix, typename MultiVector>
void Elasticity2DProblem<Scalar,LocalOrdinal,GlobalOrdinal,Map,Matrix,MultiVector>::BuildReferencePoints(size_t& numRefPoints, std::vector<Point>& refPoints, size_t& numGaussPoints, std::vector<Point>& gaussPoints) {
numRefPoints = 4;
numGaussPoints = 4;
refPoints .resize(numRefPoints);
gaussPoints.resize(numGaussPoints);
refPoints[0] = Point(-1,-1);
refPoints[1] = Point( 1,-1);
refPoints[2] = Point( 1, 1);
refPoints[3] = Point(-1, 1);
// Gauss points (reference)
SC sq3 = 1.0/sqrt(3);
gaussPoints[0] = Point( sq3, sq3);
gaussPoints[1] = Point( sq3,-sq3);
gaussPoints[2] = Point(-sq3, sq3);
gaussPoints[3] = Point(-sq3,-sq3);
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Map, typename Matrix, typename MultiVector>
void Elasticity2DProblem<Scalar,LocalOrdinal,GlobalOrdinal,Map,Matrix,MultiVector>::EvalDxi(const std::vector<Point>& refPoints, Point& gaussPoint, SC * dxi) {
for (size_t j = 0; j < refPoints.size(); j++)
dxi[j] = refPoints[j].x * (1.0 + refPoints[j].y*gaussPoint.y)/4.;
dxi[4] = -2.*gaussPoint.x;
dxi[5] = 0.0;
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Map, typename Matrix, typename MultiVector>
void Elasticity2DProblem<Scalar,LocalOrdinal,GlobalOrdinal,Map,Matrix,MultiVector>::EvalDeta(const std::vector<Point>& refPoints, Point& gaussPoint, SC * deta) {
for (size_t j = 0; j < refPoints.size(); j++)
deta[j] = (1.0 + gaussPoint.x*refPoints[j].x)*refPoints[j].y/4.;
deta[4] = 0.0;
deta[5] = -2.*gaussPoint.y;
}
} // namespace Xpetra
} // namespace Galeri
#endif // GALERI_ELASTICITY2DPROBLEM_HPP
|