This file is indexed.

/usr/include/trilinos/Galeri_HexCubeGrid.h is in libtrilinos-galeri-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
// @HEADER
// ************************************************************************
//
//           Galeri: Finite Element and Matrix Generation Package
//                 Copyright (2006) ETHZ/Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions about Galeri? Contact Marzio Sala (marzio.sala _AT_ gmail.com)
//
// ************************************************************************
// @HEADER

#ifndef GALERI_HEXCUBEGRID_H
#define GALERI_HEXCUBEGRID_H

/*! 
 * \file Galeri_HexCubeGrid.h
 */

#include "Epetra_Comm.h"
#include "Epetra_Map.h"
#include "Epetra_Import.h"
#include "Epetra_Export.h"
#include "Epetra_IntSerialDenseMatrix.h"
#include "Teuchos_RefCountPtr.hpp"
#include "Galeri_AbstractGrid.h"
#include "Galeri_Workspace.h"
#include <vector>
#include <limits>

using namespace Teuchos;

namespace Galeri {
namespace FiniteElements {

/*!
 * \class HexCubeGrid
 *
 * \brief Creates a grid composed by hexahedra in a cube.
 *
 * \author Marzio Sala, SNL 9214.
 *
 * \date Last updated on 31-Mar-05.
 */

class HexCubeGrid : public AbstractGrid
{

public:

  //! Constructor.
  /*! 
   * \param Comm - (In) Communicator object.
   *
   * \param nx - (In) number of elements along the X-axis.
   *
   * \param ny - (In) number of elements along the Y-axis.
   *
   * \param mx - (In) Number of subdomains along the X-axis.
   *
   * \param my - (In) Number of subdomains along the Y-axis.
   *
   * \param mz - (In) Number of subdomains along the Z-axis.
   *
   * \param lx - (In) Length of the cube along the X-axis.
   *
   * \param ly - (In) Length of the cube along the Y-axis.
   *
   * \param lz - (In) Length of the cube along the Z-axis.
   *
   * \note The total number of processors must equal mx * my.
   */
  HexCubeGrid(Epetra_Comm& Comm, const int nx, const int ny, const int nz,
              const int mx, const int my, const int mz, 
              const double lx = 1.0, const double ly = 1.0, const double lz = 1.0) :
    Comm_(Comm),
    nx_(nx),
    ny_(ny),
    nz_(nz),
    lx_(lx),
    ly_(ly),
    lz_(lz),
    mx_(mx),
    my_(my),
    mz_(mz)
  {
    // check input
    if (lx <= 0.0 || ly <= 0.0 || lz <= 0.0)
    {
      cerr << "Invalid length, lx = " << lx << ", ly = " << ly 
           << ", lz = " << lz << endl;
      cerr << "File " << __FILE__ << ", line " << __LINE__ << endl;
      throw(-1);
    }

    if (mx * my * mz != Comm.NumProc())
    {
      cerr << "Incorrect processor subdivision, mx = " << mx
           << ", my = " << my << ", mz = " << mz << endl;
      cerr << "File " << __FILE__ << ", line " << __LINE__ << endl;
      throw(-1);
    }

    int px, py, pz;
    GetProcessorXYZ(px, py, pz);

    NumGlobalElements_ = nx_ * ny_ * nz_;
    NumGlobalVertices_ = (nx_ + 1) * (ny_ + 1) * (nz + 1);

    NumMyElementsX_ = nx_ / mx_;
    NumMyElementsY_ = ny_ / my_;
    NumMyElementsZ_ = nz_ / mz_;
    if (px == mx_ - 1) NumMyElementsX_ += nx_ % mx_;
    if (py == my_ - 1) NumMyElementsY_ += ny_ % my_;
    if (pz == mz_ - 1) NumMyElementsZ_ += nz_ % mz_;
    NumMyElements_ = NumMyElementsX_ * NumMyElementsY_ * NumMyElementsZ_;

    NumMyVerticesX_ = NumMyElementsX_ + 1;
    NumMyVerticesY_ = NumMyElementsY_ + 1;
    NumMyVerticesZ_ = NumMyElementsZ_ + 1;
    NumMyVertices_ = NumMyVerticesX_ * NumMyVerticesY_ * NumMyVerticesZ_;

    deltax_ = lx_ / nx_;
    deltay_ = ly_ / ny_;
    deltaz_ = lz_ / nz_;

    CreateElementMap();
    CreateVertexMap();
    CreateBoundaryFaces();
    CreateRowMap();

    Importer_ = rcp(new Epetra_Import(VertexMap(), RowMap()));
  }

  //! Destructor
  virtual ~HexCubeGrid() {}

  virtual int NumDimensions() const
  {
    return(3);
  }

  virtual int NumVerticesPerElement() const
  {
    return(8);
  }

  virtual int NumFacesPerElement() const
  {
    return(6);
  }

  virtual int NumVerticesPerFace() const
  {
    return(4);
  }

  //! Returns \c GALERI_HEX
  virtual std::string ElementType() const
  {
    return("GALERI_HEX");
  }

  virtual const Epetra_Comm& Comm() const
  {
    return(Comm_);
  }

  virtual int NumMyElements() const
  {
    return(NumMyElements_);
  }

  virtual int NumGlobalElements() const
  {
    return(NumGlobalElements_);
  }

  virtual int NumMyVertices() const
  {
    return(NumMyVertices_);
  }

  virtual int NumGlobalVertices() const
  {
    return(NumGlobalVertices_);
  }

  virtual int NumMyBoundaryFaces() const
  {
    return(NumMyBoundaryFaces_);
  }

  virtual int NumGlobalBoundaryFaces() const
  {
    return(NumGlobalBoundaryFaces_);
  }

  virtual void VertexCoord(const int LocalID, double* coord) const
  {
    long long LLGlobalID = VertexMap_->GID64(LocalID);

    if(LLGlobalID > std::numeric_limits<int>::max())
    {
      cerr << "Vertex ID out of int bound" << endl;
      cerr << "File " << __FILE__ << ", line " << __LINE__ << endl;
      throw(-1);
    }

    int GlobalID = (int) LLGlobalID;

    int ix, iy, iz;
    GetVertexXYZ(GlobalID, ix, iy, iz);

    coord[0] = DeltaX() * ix;
    coord[1] = DeltaY() * iy;
    coord[2] = DeltaZ() * iz;
  }

  virtual void VertexCoord(const int Length, const int* IDs, 
                           double* x, double* y, double* z) const
  {
    for (int i = 0 ; i < Length ; ++i)
    {
      int ID;
      long long LLID = VertexMap_->GID64(IDs[i]);

      if(LLID > std::numeric_limits<int>::max())
      {
        cerr << "LLID ID out of int bound" << endl;
        cerr << "File " << __FILE__ << ", line " << __LINE__ << endl;
        throw(-1);
      }

      ID = (int) LLID;

      int ix, iy, iz;
      GetVertexXYZ(ID, ix, iy, iz);

      x[i] = DeltaX() * ix;
      y[i] = DeltaY() * iy;
      z[i] = DeltaZ() * iz;
    }
  }

  virtual void ElementVertices(const int LocalID, int* elements) const
  {
    IL_ElementVertices(LocalID, elements, false);
  }

  virtual double ElementMinLength(const int LocalElement) const
  {
    double min = DeltaX();
    if (DeltaY() < min) min = DeltaY();
    if (DeltaZ() < min) min = DeltaZ();
    return(min);
  }

  virtual double ElementMaxLength(const int LocalElement) const
  {
    return(sqrt(DeltaX() * DeltaX() + DeltaY()*DeltaY()) + DeltaZ() * DeltaZ());
  }

  virtual const RefCountPtr<Epetra_Map> RCPVertexMap() const
  {
    return(VertexMap_);
  }

  virtual const RefCountPtr<Epetra_Map> RCPElementMap() const
  {
    return(ElementMap_);
  }

  virtual const Epetra_Map& VertexMap() const
  {
    return(*(VertexMap_.get()));
  }

  virtual const Epetra_Map& ElementMap() const
  {
    return(*(ElementMap_.get()));
  }

  virtual const Epetra_Map& RowMap() const
  {
    return(*(RowMap_.get()));
  }

  virtual const Epetra_Import& Importer() const
  {
    return(*(Importer_.get()));
  }

  virtual int ElementTag(const int ID) const
  {
    return(1);
  }

  virtual int VertexTag(const int ID) const
  {
    return(1);
  }

  virtual double ElementVolume() const
  {
    return(DeltaX() * DeltaY() * DeltaZ());
  }

  virtual void FaceVertices(const int LocalFace, int& tag, int* IDs) const
  {
    for (int i = 0 ; i < 4 ; ++i)
      IDs[i] = BF_(LocalFace, i);
    tag = BF_(LocalFace, 4);
  }

  inline int FacePatch(const int LocalFace) const
  {
    return(BF_(LocalFace, 4));
  }

  inline int NumMyElementsX() const
  {
    return(NumMyElementsX_);
  }

  inline int NumMyElementsY() const
  {
    return(NumMyElementsY_);
  }

  inline int NumMyElementsXY() const
  {
    return(NumMyElementsX_ * NumMyElementsY_);
  }

  inline int NumMyElementsZ() const
  {
    return(NumMyElementsZ_);
  }

  inline int NumMyVerticesX() const
  {
    return(NumMyVerticesX_);
  }

  inline int NumMyVerticesY() const
  {
    return(NumMyVerticesY_);
  }

  inline int NumMyVerticesXY() const
  {
    return(NumMyVerticesX_ * NumMyVerticesY_);
  }

  inline int NumMyVerticesZ() const
  {
    return(NumMyVerticesZ_);
  }

  inline int NumGlobalElementsX() const
  {
    return(nx_);
  }

  inline int NumGlobalElementsY() const
  {
    return(ny_);
  }

  inline int NumGlobalElementsXY() const
  {
    return(nx_ * ny_);
  }

  inline int NumGlobalElementsZ() const
  {
    return(nz_);
  }

  inline int NumGlobalVerticesX() const
  {
    return(nx_ + 1);
  }

  inline int NumGlobalVerticesY() const
  {
    return(ny_ + 1);
  }

  inline int NumGlobalVerticesXY() const
  {
    return((nx_ + 1) * (ny_ + 1));
  }

  inline int NumGlobalVerticesZ() const
  {
    return(nz_ + 1);
  }

  inline double LengthX() const
  {
    return(lx_);
  }

  inline double LengthY() const
  {
    return(ly_);
  }

  inline double LengthZ() const
  {
    return(lz_);
  }

  inline double DeltaX() const
  {
    return(deltax_);
  }

  inline double DeltaY() const
  {
    return(deltay_);
  }
  
  inline double DeltaZ() const
  {
    return(deltaz_);
  }
  
  virtual double ElementVolume(const int LocalElement) const
  {
    return(DeltaX() * DeltaY() * DeltaZ());
  }

  virtual double FaceArea(const int LocalFace) const
  {
    int patch = BF_(LocalFace, 4);

    if (patch == GALERI_BOTTOM || patch == GALERI_TOP)
      return(DeltaX() * DeltaY());
    else if (patch == GALERI_LEFT || patch == GALERI_RIGHT)
      return(DeltaY() * DeltaZ());
    else
      return(DeltaX() * DeltaZ());
  }

  virtual double MyVolume() const
  {
    return(LengthX() * LengthY() * LengthZ());
  }

  virtual double GlobalVolume() const
  {
    return(LengthX() * LengthY() * LengthZ());
  }

  int NumDomainsX() const
  {
    return(mx_);
  }

  int NumDomainsY() const
  {
    return(my_);
  }

  int NumDomainsZ() const
  {
    return(mz_);
  }

  void ExportToVertexMap(const Epetra_DistObject& RowObject,
                         Epetra_DistObject& VertexObject) const
  {
    VertexObject.Import(RowObject, Importer(), Insert);
  }

  void ExportToRowMap(const Epetra_DistObject& VertexObject,
                            Epetra_DistObject& RowObject) const
  {
    RowObject.Export(VertexObject, Importer(), Insert);
  }

  virtual int NumNeighborsPerElement() const
  {
    return(6);
  }

  virtual void ElementNeighbors(const int LocalElement, int* elements) const
  {
    cerr << "Not yet implemented" << endl;
    throw(-1);
  }

private:

  inline void GetVertexXYZ(const int& GlobalID, int& ix, int& iy, int& iz) const
  {
    int ixy = GlobalID % NumGlobalVerticesXY();
    iz = GlobalID / NumGlobalVerticesXY();
    iy = ixy / NumGlobalVerticesX();
    ix = ixy % NumGlobalVerticesX();
  }

  inline void GetElementXYZ(const int& GlobalID, int& ix, int& iy, int& iz) const
  {
    int ixy = GlobalID % NumGlobalElementsXY();
    iz = GlobalID / NumGlobalElementsXY();
    iy = ixy / NumGlobalElementsX();
    ix = ixy % NumGlobalElementsX();
  }

  inline void GetLocalElementXYZ(const int& MyID, int& ix, int& iy, int& iz) const
  {
    int ixy = MyID % NumMyElementsXY();
    iz = MyID / NumMyElementsXY();
    iy = ixy / NumMyElementsX();
    ix = ixy % NumMyElementsX();
  }

  inline void GetProcessorXYZ(int& ix, int& iy, int& iz) const
  {
    int ixy = Comm().MyPID() % (mx_ * my_);
    iz = Comm().MyPID() / (mx_ * my_);
    iy = ixy / mx_;
    ix = ixy % mx_;
  }

  inline void IL_ElementVertices(const int LocalID, int* elements,
                                 const bool ReturnGlobal = false) const
  {
    int ix, iy, iz;
    GetLocalElementXYZ(LocalID, ix, iy, iz);

    elements[0] = ix + iy * NumMyVerticesX()     + NumMyVerticesXY() * iz;
    elements[1] = ix + iy * NumMyVerticesX() + 1 + NumMyVerticesXY() * iz;
    elements[2] = elements[1] + NumMyVerticesX();
    elements[3] = elements[0] + NumMyVerticesX();

    elements[4] = elements[0] + NumMyVerticesXY();
    elements[5] = elements[1] + NumMyVerticesXY();
    elements[6] = elements[2] + NumMyVerticesXY();
    elements[7] = elements[3] + NumMyVerticesXY();
  }

  void CreateElementMap()
  {
    ElementMap_ = rcp(new Epetra_Map(-1, NumGlobalElements(), 0, Comm()));
    return;
  }

  void CreateBoundaryFaces()
  {
    /* I decompose the cube in the following way:
     
                 +--------------+     
                /              /|
               /   ML_TOP     / |      
              /              /  |
 ML_LEFT --> +--------------+ <-+--- ML_RIGHT
	     |              |   +
             |              |  /
             |   ML_FRONT   | / 
	     |              |/
	     +--------------+
                ML_BOTTOM 
   z
   ^  + y 		
   | /
   |/
   +----> x

    */

    int px, py, pz;
    GetProcessorXYZ(px, py, pz);

    NumMyBoundaryFaces_ = 0;
    if (px == 0)
      NumMyBoundaryFaces_ += NumMyElementsY() * NumMyElementsZ();
    if (px == mx_ - 1)
      NumMyBoundaryFaces_ += NumMyElementsY() * NumMyElementsZ();
    if (py == 0)
      NumMyBoundaryFaces_ += NumMyElementsX() * NumMyElementsZ();
    if (py == my_ - 1)
      NumMyBoundaryFaces_ += NumMyElementsX() * NumMyElementsZ();
    if (pz == 0)
      NumMyBoundaryFaces_ += NumMyElementsX() * NumMyElementsY();
    if (pz == mz_ - 1)
      NumMyBoundaryFaces_ += NumMyElementsX() * NumMyElementsY();

    BF_.Shape(NumMyBoundaryFaces(), 5);

    int count = 0, offset = 0;
    int nx = NumMyVerticesX();
    int ny = NumMyVerticesY();
    int nz = NumMyVerticesZ();

    // lower side
    
    if (pz == 0)
    {
      for (int iy = 0 ; iy < NumMyElementsY() ; iy++) 
      {
        for (int ix = 0 ; ix < NumMyElementsX() ; ix++) 
        {
          BF_(count,0) = ix + iy * nx;
          BF_(count,1) = ix + iy * nx + 1;
          BF_(count,2) = ix + (iy + 1) * nx + 1;
          BF_(count,3) = ix + (iy + 1) * nx;
          BF_(count,4) = GALERI_BOTTOM;
          ++count;
        }
      }
    }

    // upper_side 

    if (pz == mz_ - 1)
    {
      offset = nx * ny * (nz - 1);
      for (int iy = 0 ; iy < NumMyElementsY() ; iy++) 
      {
        for (int ix = 0 ; ix < NumMyElementsX() ; ix++) 
        {
          BF_(count,0) = offset + ix + iy * nx;
          BF_(count,1) = offset + ix + iy * nx + 1;
          BF_(count,2) = offset + ix + (iy+1) * nx + 1;
          BF_(count,3) = offset + ix + (iy+1) * nx;
          BF_(count,4) = GALERI_TOP;
          ++count;
        }
      }
    }

    // face_2 -- front

    if (py == 0)
    {
      for (int iz = 0 ; iz < NumMyElementsZ() ; iz++) 
      {
        offset = nx * ny * iz;
        for (int ix = 0 ; ix < NumMyElementsX() ; ix++) 
        {
          BF_(count,0) = ix + offset;
          BF_(count,1) = ix + offset + 1;
          BF_(count,2) = ix + offset + nx * ny + 1;
          BF_(count,3) = ix + offset + nx * ny;
          BF_(count,4) = GALERI_FRONT;
          ++count;
        }
      }
    }
  
    // face_3 -- right

    if (px == mx_ - 1)
    {
      for (int iz = 0 ; iz < NumMyElementsZ() ; iz++) 
      {
        for (int iy = 0 ; iy < NumMyElementsY() ; iy++) 
        {
          offset = nx*ny*iz + (iy+1)*nx - 1;

          BF_(count,0) = offset;
          BF_(count,1) = offset + nx;
          BF_(count,2) = offset + nx + nx * ny;
          BF_(count,3) = offset + nx * ny;
          BF_(count,4) = GALERI_RIGHT;
          ++count;
        }
      }
    }

    // face_4 -- rear
    
    if (py == my_ - 1)
    {
      for (int iz = 0 ; iz < NumMyElementsZ() ; iz++) 
      {
        offset = nx*ny*(iz+1) - nx ;
        for (int ix = 0 ; ix < NumMyElementsX() ; ix++) 
        {

          BF_(count,0) = ix + offset;
          BF_(count,1) = ix + offset + 1;
          BF_(count,2) = ix + offset + nx*ny + 1;
          BF_(count,3) = ix + offset + nx*ny;
          BF_(count,4) = GALERI_REAR;
          ++count;
        }
      }
    }
    
    // face_5 -- left
    
    if (px == 0)
    {
      for (int iz = 0 ; iz < NumMyElementsZ() ; iz++) 
      {
        for (int iy = 0 ; iy < NumMyElementsY() ; iy++) 
        {
          offset = nx*ny*iz;
          BF_(count,0) = offset + iy * nx;
          BF_(count,1) = offset + (iy + 1) * nx;
          BF_(count,2) = offset + iy * nx + nx * ny;
          BF_(count,3) = offset + (iy + 1) * nx + nx * ny;
          BF_(count,4) = GALERI_LEFT;
          ++count;
        }
      }
    }

    if (count != NumMyBoundaryFaces())
    {
      cerr << "Internal error, count != NumMyBoundaryFaces(), "
           << count << " vs. " << NumMyBoundaryFaces() << endl;
      cerr << "File " << __FILE__ << ", line " << __LINE__ << endl;
      throw(-1);
    }

    return;
  }

  void CreateVertexMap()
  {
#ifdef EPETRA_NO_32BIT_GLOBAL_INDICES
    std::vector<long long> itmp(NumMyVertices());
#else
    std::vector<int> itmp(NumMyVertices());
#endif

    int count = 0;
    int px, py, pz;
    GetProcessorXYZ(px, py, pz);

    int startx = px * (NumGlobalElementsX() / mx_);
    int starty = py * (NumGlobalElementsY() / my_);
    int startz = pz * (NumGlobalElementsZ() / mz_);
    int endx = startx + NumMyVerticesX();
    int endy = starty + NumMyVerticesY();
    int endz = startz + NumMyVerticesZ();

    for (int iz = startz ; iz < endz ; ++iz)
    {
      for (int iy = starty ; iy < endy ; ++iy)
      {
        for (int ix = startx ; ix < endx ; ++ix)
        {
          itmp[count++] = ix + iy * NumGlobalVerticesX() + 
            iz * NumGlobalVerticesXY();
        }
      }
    }
    assert (count == NumMyVertices());

    VertexMap_ = rcp(new Epetra_Map(-1, NumMyVertices(), &itmp[0], 0, Comm()));

    return;
  }

  void CreateRowMap()
  {
#ifdef EPETRA_NO_32BIT_GLOBAL_INDICES
    std::vector<long long> itmp(NumMyVertices());
#else
    std::vector<int> itmp(NumMyVertices());
#endif

    int count = 0;
    int px, py, pz;
    GetProcessorXYZ(px, py, pz);
    int startx = px * (NumGlobalVerticesX() / mx_);
    int starty = py * (NumGlobalVerticesY() / my_);
    int startz = pz * (NumGlobalVerticesZ() / mz_);
    int endx = startx + NumMyVerticesX() - (px == mx_ - 1 ? 0 : 1);
    int endy = starty + NumMyVerticesY() - (py == my_ - 1 ? 0 : 1);
    int endz = startz + NumMyVerticesZ() - (pz == mz_ - 1 ? 0 : 1);

    for (int iz = startz ; iz < endz ; ++iz)
    {
      for (int iy = starty ; iy < endy ; ++iy)
      {
        for (int ix = startx ; ix < endx ; ++ix)
        {
          itmp[count++] = ix + iy * NumGlobalVerticesX() + 
            iz * NumGlobalVerticesXY();
        }
      }
    }
    assert (count <= NumMyVertices());

    RowMap_ = rcp(new Epetra_Map(-1, count, &itmp[0], 0, Comm()));

    return;
  }
  Epetra_Comm& Comm_;

  int NumMyVertices_;
  int NumMyVerticesX_;
  int NumMyVerticesY_;
  int NumMyVerticesZ_;
  int NumGlobalVertices_;
  int NumMyElements_;
  int NumMyElementsX_;
  int NumMyElementsY_;
  int NumMyElementsZ_;
  int NumGlobalElements_;
  int NumMyBoundaryFaces_;
  int NumGlobalBoundaryFaces_;

  int nx_;
  int ny_;
  int nz_;
  double lx_;
  double ly_;
  double lz_;
  int mx_;
  int my_;
  int mz_;
  double deltax_;
  double deltay_;
  double deltaz_;

  RefCountPtr<Epetra_Map> VertexMap_;
  RefCountPtr<Epetra_Map> ElementMap_;
  RefCountPtr<Epetra_Map> RowMap_;
  RefCountPtr<Epetra_Import> Importer_;

  Epetra_IntSerialDenseMatrix BF_;
};

} // namespace FiniteElements
} // namespace Galeri
#endif