This file is indexed.

/usr/include/trilinos/Galeri_SUPGVariational.h is in libtrilinos-galeri-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
// @HEADER
// ************************************************************************
//
//           Galeri: Finite Element and Matrix Generation Package
//                 Copyright (2006) ETHZ/Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions about Galeri? Contact Marzio Sala (marzio.sala _AT_ gmail.com)
//
// ************************************************************************
// @HEADER

#ifndef GALERI_SUPGVARIATIONAL_H
#define GALERI_SUPGVARIATIONAL_H

/*!
 * \file Galeri_SUPGVariationa.h
 */

#include "Galeri_Workspace.h"
#include "Galeri_AbstractVariational.h"

namespace Galeri {
namespace FiniteElements {

/*!
 * \class SUPGVariational
 *
 * \brief SUPG discretization of an advection-diffusion PDE.
 *
 * This class performs the finite element discretization of a scalar,
 * advection-diffusion PDE, using the SUPG stabilization and the coth
 * formula for the definition of tau. This class works only with triangles
 * and tetrahedra.
 *
 * \author Marzio Sala, SNL 9214.
 *
 * \date Last updated on Apr-05.
 */

template<class T>
class SUPGVariational : public AbstractVariational, public T
{
public:

  //! Constructor.
  SUPGVariational(const int NumQuadratureNodes,
                  double (*diff)(const double&, const double&, const double&),
                  double (*bx)(const double&, const double&, const double&),
                  double (*by)(const double&, const double&, const double&),
                  double (*bz)(const double&, const double&, const double&),
                  double (*source)(const double&, const double&, const double&),
                  double (*force)(const double&, const double&, const double&),
                  double (*bc)(const double&, const double&, const double&, const int&),
                  int (*bc_type)(const int&)) :
  T(NumQuadratureNodes),
  diff_(diff),
  source_(source),
  conv_x_(bx),
  conv_y_(by),
  conv_z_(bz),
  force_(force),
  bc_(bc),
  bc_type_(bc_type)
  {}

  //! Destructor.
  ~SUPGVariational() {}

  //! Evaluates the diffusion coefficient at point (x, y, z).
  inline double diff(const double x, const double y, const double z) const
  {
    return (diff_(x, y, z));
  }

  //! Evaluates the source term at point (x, y, z).
  inline double source(const double x, const double y, const double z) const
  {
    return (source_(x, y, z));
  }

  //! Evaluates the force term at point (x, y, z).
  inline double force(const double x, const double y, const double z) const
  {
    return (force_(x, y, z));
  }

  //! Evaluates the x-component of the convective term at point (x, y, z).
  inline double conv_x(const double x, const double y, const double z) const
  {
    return (conv_x_(x, y, z));
  }

  //! Evaluates the y-component of the convective term at point (x, y, z).
  inline double conv_y(const double x, const double y, const double z) const
  {
    return (conv_y_(x, y, z));
  }

  //! Evaluates the z-component of the convective term at point (x, y, z).
  inline double conv_z(const double x, const double y, const double z) const
  {
    return (conv_z_(x, y, z));
  }

  virtual int IntegrateOverElement(const AbstractVariational& Variational,
				   const double* x, const double* y, const double* z,
                                   const double* data,
				   double* ElementMatrix, double* ElementRHS) const
  {
    double xq, yq, zq;
    int size = T::NumPhiFunctions();
    double h = data[0];
    
    // zero out local matrix and rhs
    
    for (int i = 0 ; i < size * size ; i++) ElementMatrix[i] = 0.0;
    for (int i = 0 ; i < size ; i++)        ElementRHS[i] = 0.0;

    // cycle over all quadrature nodes

    for (int ii = 0 ; ii < T::NumQuadrNodes() ; ii++) 
    {
      T::ComputeQuadrNodes(ii,x, y, z, xq, yq, zq);
      T::ComputeJacobian(ii,x, y, z);
      T::ComputeDerivatives(ii);

      // compute local Peclet number for this element
      // using the coth formula
      double Norm = ConvNorm(xq, yq, zq);
      double Pe = 0.5 * Norm * h / diff(xq, yq, zq);
      if (Norm == 0.0)
        tau_ = 0.0;
      else
        tau_ = 0.5 * (h / Norm) * (cosh(Pe) / sinh(Pe) - 1.0 / Pe);

      for (int i = 0 ; i < T::NumPhiFunctions() ; ++i) 
      {
        for (int j = 0 ; j < T::NumPsiFunctions() ; ++j) 
        {
          ElementMatrix[j + size * i] +=
            T::QuadrWeight(ii) * T::DetJacobian(ii) * 
            Variational.LHS(T::Phi(i), T::Psi(j), T::PhiX(i), T::PsiX(j),
                            T::PhiY(i), T::PsiY(j), T::PhiZ(i), T::PsiZ(j),
                            xq, yq, zq);
        }
        ElementRHS[i] += T::QuadrWeight(ii) * T::DetJacobian(ii) *
          Variational.RHS(T::Psi(i), T::PsiX(i), T::PsiY(i), T::PsiZ(i), 
                          xq, yq, zq);
      }
    }

    return 0;
  }

  virtual int ElementNorm(const double* LocalSol, const double* x, 
                          const double* y, const double* z, double* Norm) const
  {
    double xq, yq, zq;

    for (int ii = 0 ; ii < T::NumQuadrNodes() ; ii++) 
    {
      T::ComputeQuadrNodes(ii,x, y, z, xq, yq, zq );
      T::ComputeJacobian(ii,x, y, z);
      T::ComputeDerivatives(ii);

      double GlobalWeight = T::QuadrWeight(ii) * T::DetJacobian(ii);

      double sol      = 0.0, sol_derx = 0.0;
      double sol_dery = 0.0, sol_derz = 0.0;

      for (int k = 0 ; k < T::NumPhiFunctions() ; ++k)
      {
        sol      += T::Phi(k)  * LocalSol[k];
        sol_derx += T::PhiX(k) * LocalSol[k];
        sol_dery += T::PhiY(k) * LocalSol[k];
        sol_derz += T::PhiZ(k) * LocalSol[k];
      }

      Norm[0] += GlobalWeight*sol*sol;
      Norm[1] += GlobalWeight*(sol_derx*sol_derx +
                               sol_dery*sol_dery +
                               sol_derz*sol_derz);
    }

    return 0;
  }

  virtual int ElementNorm(int (*ExactSolution)(double, double, double, double *),
			  const double* x, const double* y, const double* z,
			  double* Norm) const
  {
    double xq, yq, zq;
    double exact[4];

    for (int ii = 0 ; ii < T::NumQuadrNodes() ; ii++) 
    {
      T::ComputeQuadrNodes(ii, x, y, z, xq, yq, zq );
      T::ComputeJacobian(ii, x, y, z);
      T::ComputeDerivatives(ii);

      double GlobalWeight = T::QuadrWeight(ii) * T::DetJacobian(ii);

      (*ExactSolution)(xq, yq, zq, exact);

      Norm[0] += GlobalWeight * exact[0] * exact[0];
      Norm[1] += GlobalWeight * (exact[1] * exact[1] +
                                 exact[2] * exact[2] +
                                 exact[3] * exact[3]);
    }

    return 0;
  }
  
  virtual int ElementNorm(const double* LocalSol,
			  int (*ExactSolution)(double, double, double, double *),
			  const double* x, const double* y, const double* z, double * Norm) const
  {
    double xq, yq, zq;
    double exact[4];

    for (int ii = 0 ; ii < T::NumQuadrNodes() ; ii++) 
    {
      T::ComputeQuadrNodes(ii, x, y, z, xq, yq, zq );
      T::ComputeJacobian(ii, x, y, z);
      T::ComputeDerivatives(ii);

      double GlobalWeight = T::QuadrWeight(ii) * T::DetJacobian(ii);

      double diff      = 0.0, diff_derx = 0.0;
      double diff_dery = 0.0, diff_derz = 0.0;

      for (int k = 0 ; k < T::NumPhiFunctions() ; ++k) 
      {
        diff      += T::Phi(k)  * LocalSol[k];
        diff_derx += T::PhiX(k) * LocalSol[k];
        diff_dery += T::PhiY(k) * LocalSol[k];
        diff_derz += T::PhiZ(k) * LocalSol[k];
      }

      (*ExactSolution)(xq, yq, zq,exact);

      diff      -= exact[0];
      diff_derx -= exact[1];
      diff_dery -= exact[2];
      diff_derz -= exact[3];

      Norm[0] += GlobalWeight * diff * diff;
      Norm[1] += GlobalWeight * (diff_derx * diff_derx +
                                 diff_dery * diff_dery +
                                 diff_derz * diff_derz);
    } 
    return(0);
  }

  inline double LHS(const double Phi, const double Psi,
                    const double PhiX, const double PsiX,
                    const double PhiY, const double PsiY,
                    const double PhiZ, const double PsiZ,
                    const double x, const double y, const double z) const
  {
    double res;
    // Galerkin contribution
    res = diff(x,y,z) * PhiX * PsiX +
          diff(x,y,z) * PhiY * PsiY +
          diff(x,y,z) * PhiZ * PsiZ +
          source(x,y,z) * Phi * Psi +
          conv_x(x,y,z) * PhiX * Psi + 
          conv_y(x,y,z) * PhiY * Psi +
          conv_z(x,y,z) * PhiZ * Psi;
    // SUPG stabilization
    res += tau_ * ((conv_x(x, y, z) * PsiX + 
                    conv_y(x, y, z) * PsiY + 
                    conv_z(x, y, z) * PsiZ) *
                   (conv_x(x, y, z) * PhiX + 
                    conv_y(x, y, z) * PhiY + 
                    conv_z(x, y, z) * PhiZ));
    return(res);
  }

  inline double RHS(const double Psi, const double PsiX, 
                    const double PsiY, const double PsiZ,
                    const double x, const double y, const double z) const
  {
    double res;

    // Galerkin contribution and SUPG stabilization
    res = force(x,y,z) * (Psi + tau_
                       * (conv_x(x, y, z) * PsiX +
                          conv_y(x, y, z) * PsiY +
                          conv_z(x, y, z) * PsiZ) );
    return(res);
  }

  int BC(const int PatchID) const
  {
    return(bc_type_(PatchID));
  }

  double BC(const double x, const double y, const double z, const int Patch) const
  {
    return(bc_(x, y, z, Patch));
  }

private:
  //! Computes the norm of the convective term a point (x, y, z).
  inline double ConvNorm(const double x, const double y, const double z) const
  {
    double cx = conv_x(x, y, z);
    double cy = conv_y(x, y, z);
    double cz = conv_z(x, y, z);
    return (sqrt(cx * cx + cy * cy + cz * cz));
  }

  double (*diff_)(const double& x, const double& y, const double& z);
  double (*source_)(const double& x, const double& y, const double& z);
  double (*conv_x_)(const double& x, const double& y, const double& z);
  double (*conv_y_)(const double& x, const double& y, const double& z);
  double (*conv_z_)(const double& x, const double& y, const double& z);
  double (*force_)(const double& x, const double& y, const double& z);
  double (*bc_)(const double& x, const double& y, const double& z, const int& Patch);
  int (*bc_type_)(const int& Patch);
  mutable double tau_;
};

} // namespace FiniteElements
} // namespace Galeri
#endif