/usr/include/trilinos/Galeri_SUPGVariational.h is in libtrilinos-galeri-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | // @HEADER
// ************************************************************************
//
// Galeri: Finite Element and Matrix Generation Package
// Copyright (2006) ETHZ/Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions about Galeri? Contact Marzio Sala (marzio.sala _AT_ gmail.com)
//
// ************************************************************************
// @HEADER
#ifndef GALERI_SUPGVARIATIONAL_H
#define GALERI_SUPGVARIATIONAL_H
/*!
* \file Galeri_SUPGVariationa.h
*/
#include "Galeri_Workspace.h"
#include "Galeri_AbstractVariational.h"
namespace Galeri {
namespace FiniteElements {
/*!
* \class SUPGVariational
*
* \brief SUPG discretization of an advection-diffusion PDE.
*
* This class performs the finite element discretization of a scalar,
* advection-diffusion PDE, using the SUPG stabilization and the coth
* formula for the definition of tau. This class works only with triangles
* and tetrahedra.
*
* \author Marzio Sala, SNL 9214.
*
* \date Last updated on Apr-05.
*/
template<class T>
class SUPGVariational : public AbstractVariational, public T
{
public:
//! Constructor.
SUPGVariational(const int NumQuadratureNodes,
double (*diff)(const double&, const double&, const double&),
double (*bx)(const double&, const double&, const double&),
double (*by)(const double&, const double&, const double&),
double (*bz)(const double&, const double&, const double&),
double (*source)(const double&, const double&, const double&),
double (*force)(const double&, const double&, const double&),
double (*bc)(const double&, const double&, const double&, const int&),
int (*bc_type)(const int&)) :
T(NumQuadratureNodes),
diff_(diff),
source_(source),
conv_x_(bx),
conv_y_(by),
conv_z_(bz),
force_(force),
bc_(bc),
bc_type_(bc_type)
{}
//! Destructor.
~SUPGVariational() {}
//! Evaluates the diffusion coefficient at point (x, y, z).
inline double diff(const double x, const double y, const double z) const
{
return (diff_(x, y, z));
}
//! Evaluates the source term at point (x, y, z).
inline double source(const double x, const double y, const double z) const
{
return (source_(x, y, z));
}
//! Evaluates the force term at point (x, y, z).
inline double force(const double x, const double y, const double z) const
{
return (force_(x, y, z));
}
//! Evaluates the x-component of the convective term at point (x, y, z).
inline double conv_x(const double x, const double y, const double z) const
{
return (conv_x_(x, y, z));
}
//! Evaluates the y-component of the convective term at point (x, y, z).
inline double conv_y(const double x, const double y, const double z) const
{
return (conv_y_(x, y, z));
}
//! Evaluates the z-component of the convective term at point (x, y, z).
inline double conv_z(const double x, const double y, const double z) const
{
return (conv_z_(x, y, z));
}
virtual int IntegrateOverElement(const AbstractVariational& Variational,
const double* x, const double* y, const double* z,
const double* data,
double* ElementMatrix, double* ElementRHS) const
{
double xq, yq, zq;
int size = T::NumPhiFunctions();
double h = data[0];
// zero out local matrix and rhs
for (int i = 0 ; i < size * size ; i++) ElementMatrix[i] = 0.0;
for (int i = 0 ; i < size ; i++) ElementRHS[i] = 0.0;
// cycle over all quadrature nodes
for (int ii = 0 ; ii < T::NumQuadrNodes() ; ii++)
{
T::ComputeQuadrNodes(ii,x, y, z, xq, yq, zq);
T::ComputeJacobian(ii,x, y, z);
T::ComputeDerivatives(ii);
// compute local Peclet number for this element
// using the coth formula
double Norm = ConvNorm(xq, yq, zq);
double Pe = 0.5 * Norm * h / diff(xq, yq, zq);
if (Norm == 0.0)
tau_ = 0.0;
else
tau_ = 0.5 * (h / Norm) * (cosh(Pe) / sinh(Pe) - 1.0 / Pe);
for (int i = 0 ; i < T::NumPhiFunctions() ; ++i)
{
for (int j = 0 ; j < T::NumPsiFunctions() ; ++j)
{
ElementMatrix[j + size * i] +=
T::QuadrWeight(ii) * T::DetJacobian(ii) *
Variational.LHS(T::Phi(i), T::Psi(j), T::PhiX(i), T::PsiX(j),
T::PhiY(i), T::PsiY(j), T::PhiZ(i), T::PsiZ(j),
xq, yq, zq);
}
ElementRHS[i] += T::QuadrWeight(ii) * T::DetJacobian(ii) *
Variational.RHS(T::Psi(i), T::PsiX(i), T::PsiY(i), T::PsiZ(i),
xq, yq, zq);
}
}
return 0;
}
virtual int ElementNorm(const double* LocalSol, const double* x,
const double* y, const double* z, double* Norm) const
{
double xq, yq, zq;
for (int ii = 0 ; ii < T::NumQuadrNodes() ; ii++)
{
T::ComputeQuadrNodes(ii,x, y, z, xq, yq, zq );
T::ComputeJacobian(ii,x, y, z);
T::ComputeDerivatives(ii);
double GlobalWeight = T::QuadrWeight(ii) * T::DetJacobian(ii);
double sol = 0.0, sol_derx = 0.0;
double sol_dery = 0.0, sol_derz = 0.0;
for (int k = 0 ; k < T::NumPhiFunctions() ; ++k)
{
sol += T::Phi(k) * LocalSol[k];
sol_derx += T::PhiX(k) * LocalSol[k];
sol_dery += T::PhiY(k) * LocalSol[k];
sol_derz += T::PhiZ(k) * LocalSol[k];
}
Norm[0] += GlobalWeight*sol*sol;
Norm[1] += GlobalWeight*(sol_derx*sol_derx +
sol_dery*sol_dery +
sol_derz*sol_derz);
}
return 0;
}
virtual int ElementNorm(int (*ExactSolution)(double, double, double, double *),
const double* x, const double* y, const double* z,
double* Norm) const
{
double xq, yq, zq;
double exact[4];
for (int ii = 0 ; ii < T::NumQuadrNodes() ; ii++)
{
T::ComputeQuadrNodes(ii, x, y, z, xq, yq, zq );
T::ComputeJacobian(ii, x, y, z);
T::ComputeDerivatives(ii);
double GlobalWeight = T::QuadrWeight(ii) * T::DetJacobian(ii);
(*ExactSolution)(xq, yq, zq, exact);
Norm[0] += GlobalWeight * exact[0] * exact[0];
Norm[1] += GlobalWeight * (exact[1] * exact[1] +
exact[2] * exact[2] +
exact[3] * exact[3]);
}
return 0;
}
virtual int ElementNorm(const double* LocalSol,
int (*ExactSolution)(double, double, double, double *),
const double* x, const double* y, const double* z, double * Norm) const
{
double xq, yq, zq;
double exact[4];
for (int ii = 0 ; ii < T::NumQuadrNodes() ; ii++)
{
T::ComputeQuadrNodes(ii, x, y, z, xq, yq, zq );
T::ComputeJacobian(ii, x, y, z);
T::ComputeDerivatives(ii);
double GlobalWeight = T::QuadrWeight(ii) * T::DetJacobian(ii);
double diff = 0.0, diff_derx = 0.0;
double diff_dery = 0.0, diff_derz = 0.0;
for (int k = 0 ; k < T::NumPhiFunctions() ; ++k)
{
diff += T::Phi(k) * LocalSol[k];
diff_derx += T::PhiX(k) * LocalSol[k];
diff_dery += T::PhiY(k) * LocalSol[k];
diff_derz += T::PhiZ(k) * LocalSol[k];
}
(*ExactSolution)(xq, yq, zq,exact);
diff -= exact[0];
diff_derx -= exact[1];
diff_dery -= exact[2];
diff_derz -= exact[3];
Norm[0] += GlobalWeight * diff * diff;
Norm[1] += GlobalWeight * (diff_derx * diff_derx +
diff_dery * diff_dery +
diff_derz * diff_derz);
}
return(0);
}
inline double LHS(const double Phi, const double Psi,
const double PhiX, const double PsiX,
const double PhiY, const double PsiY,
const double PhiZ, const double PsiZ,
const double x, const double y, const double z) const
{
double res;
// Galerkin contribution
res = diff(x,y,z) * PhiX * PsiX +
diff(x,y,z) * PhiY * PsiY +
diff(x,y,z) * PhiZ * PsiZ +
source(x,y,z) * Phi * Psi +
conv_x(x,y,z) * PhiX * Psi +
conv_y(x,y,z) * PhiY * Psi +
conv_z(x,y,z) * PhiZ * Psi;
// SUPG stabilization
res += tau_ * ((conv_x(x, y, z) * PsiX +
conv_y(x, y, z) * PsiY +
conv_z(x, y, z) * PsiZ) *
(conv_x(x, y, z) * PhiX +
conv_y(x, y, z) * PhiY +
conv_z(x, y, z) * PhiZ));
return(res);
}
inline double RHS(const double Psi, const double PsiX,
const double PsiY, const double PsiZ,
const double x, const double y, const double z) const
{
double res;
// Galerkin contribution and SUPG stabilization
res = force(x,y,z) * (Psi + tau_
* (conv_x(x, y, z) * PsiX +
conv_y(x, y, z) * PsiY +
conv_z(x, y, z) * PsiZ) );
return(res);
}
int BC(const int PatchID) const
{
return(bc_type_(PatchID));
}
double BC(const double x, const double y, const double z, const int Patch) const
{
return(bc_(x, y, z, Patch));
}
private:
//! Computes the norm of the convective term a point (x, y, z).
inline double ConvNorm(const double x, const double y, const double z) const
{
double cx = conv_x(x, y, z);
double cy = conv_y(x, y, z);
double cz = conv_z(x, y, z);
return (sqrt(cx * cx + cy * cy + cz * cz));
}
double (*diff_)(const double& x, const double& y, const double& z);
double (*source_)(const double& x, const double& y, const double& z);
double (*conv_x_)(const double& x, const double& y, const double& z);
double (*conv_y_)(const double& x, const double& y, const double& z);
double (*conv_z_)(const double& x, const double& y, const double& z);
double (*force_)(const double& x, const double& y, const double& z);
double (*bc_)(const double& x, const double& y, const double& z, const int& Patch);
int (*bc_type_)(const int& Patch);
mutable double tau_;
};
} // namespace FiniteElements
} // namespace Galeri
#endif
|