This file is indexed.

/usr/include/trilinos/Ifpack2_SparseContainer_def.hpp is in libtrilinos-ifpack2-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
/*@HEADER
// ***********************************************************************
//
//       Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/

#ifndef IFPACK2_SPARSECONTAINER_DEF_HPP
#define IFPACK2_SPARSECONTAINER_DEF_HPP

#include "Ifpack2_SparseContainer_decl.hpp"
#ifdef HAVE_MPI
#include <mpi.h>
#include "Teuchos_DefaultMpiComm.hpp"
#else
#include "Teuchos_DefaultSerialComm.hpp"
#endif
#include "Teuchos_TestForException.hpp"

namespace Ifpack2 {

//==============================================================================
template<class MatrixType, class InverseType>
SparseContainer<MatrixType,InverseType>::
SparseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                 const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
                 const Teuchos::RCP<const import_type>& importer,
                 int OverlapLevel,
                 scalar_type DampingFactor) :
  Container<MatrixType> (matrix, partitions, importer, OverlapLevel,
                         DampingFactor),
  IsInitialized_ (false),
  IsComputed_ (false),
#ifdef HAVE_MPI
  localComm_ (Teuchos::rcp (new Teuchos::MpiComm<int> (MPI_COMM_SELF)))
#else
  localComm_ (Teuchos::rcp (new Teuchos::SerialComm<int> ()))
#endif // HAVE_MPI
{
  global_ordinal_type indexBase = 0;
  for(int i = 0; i < this->numBlocks_; i++)
    localMaps_.emplace_back(this->blockRows_[i], indexBase, localComm_);
}

//==============================================================================
template<class MatrixType, class InverseType>
SparseContainer<MatrixType, InverseType>::
SparseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                 const Teuchos::Array<local_ordinal_type>& localRows) :
  Container<MatrixType> (matrix, localRows),
  IsInitialized_(false),
  IsComputed_(false),
#ifdef HAVE_MPI
  localComm_ (Teuchos::rcp(new Teuchos::MpiComm<int>(MPI_COMM_SELF)))
#else
  localComm_ (Teuchos::rcp(new Teuchos::SerialComm<int>()))
#endif // HAVE_MPI
{
  global_ordinal_type indexBase = 0;
  localMaps_.emplace_back(this->blockRows_[0], indexBase, localComm_);
}

//==============================================================================
template<class MatrixType,class InverseType>
SparseContainer<MatrixType,InverseType>::~SparseContainer()
{
  for(auto inv : Inverses_)
    delete inv.get();
}

//==============================================================================
template<class MatrixType, class InverseType>
bool SparseContainer<MatrixType,InverseType>::isInitialized() const
{
  return IsInitialized_;
}

//==============================================================================
template<class MatrixType, class InverseType>
bool SparseContainer<MatrixType,InverseType>::isComputed() const
{
  return IsComputed_;
}

//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType,InverseType>::setParameters(const Teuchos::ParameterList& List)
{
  List_ = List;
}

//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType,InverseType>::initialize ()
{
  using Teuchos::RCP;
  // We assume that if you called this method, you intend to recompute
  // everything.  Thus, we release references to all the internal
  // objects.  We do this first to save memory.  (In an RCP
  // assignment, the right-hand side and left-hand side coexist before
  // the left-hand side's reference count gets updated.)
  IsInitialized_ = false;
  IsComputed_ = false;

  // (Re)create the CrsMatrices that will contain the
  // local matrices to use for solves.
  diagBlocks_.reserve(this->numBlocks_);
  Inverses_.reserve(this->numBlocks_);
  for(int i = 0; i < this->numBlocks_; i++)
  {
    // Create a local map for the block, with same size as block has rows.
    // Note: this map isn't needed elsewhere in SparseContainer, but the
    // diagBlocks_[...] will keep it alive
    RCP<InverseMap> tempMap(new InverseMap(this->blockRows_[i], 0, localComm_));
    diagBlocks_.emplace_back(new InverseCrs(tempMap, 0));
    // Create the inverse operator using the local matrix.  We give it
    // the matrix here, but don't call its initialize() or compute()
    // methods yet, since we haven't initialized the matrix yet.
    Inverses_.push_back(ptr(new InverseType(diagBlocks_[i])));
  }
  IsInitialized_ = true;
}

//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType,InverseType>::compute ()
{
  IsComputed_ = false;
  if (! this->isInitialized ()) {
    this->initialize ();
  }

  // Extract the submatrix.
  this->extract ();

  // The inverse operator already has a pointer to the submatrix.  Now
  // that the submatrix is filled in, we can initialize and compute
  // the inverse operator.
  for(int i = 0; i < this->numBlocks_; i++)
    Inverses_[i]->initialize ();
  for(int i = 0; i < this->numBlocks_; i++)
    Inverses_[i]->compute ();
  IsComputed_ = true;
}

//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType, InverseType>::clearBlocks ()
{
  for(auto inv : Inverses_)
    delete inv.get();
  Inverses_.clear();
  diagBlocks_.clear();
  Container<MatrixType>::clearBlocks();
}

//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType,InverseType>::
applyImpl (inverse_mv_type& X,
           inverse_mv_type& Y,
           int blockIndex,
           int stride,
           Teuchos::ETransp mode,
           InverseScalar alpha,
           InverseScalar beta) const
{
    TEUCHOS_TEST_FOR_EXCEPTION(
      Inverses_[blockIndex]->getDomainMap()->getNodeNumElements() != X.getLocalLength(),
      std::logic_error, "Ifpack2::SparseContainer::apply: Inverse_ "
      "operator and X have incompatible dimensions (" <<
      Inverses_[blockIndex]->getDomainMap()->getNodeNumElements() << " resp. "
      << X.getLocalLength() << ").  Please report this bug to "
      "the Ifpack2 developers.");
    TEUCHOS_TEST_FOR_EXCEPTION(
      Inverses_[blockIndex]->getRangeMap()->getNodeNumElements() != Y.getLocalLength(),
      std::logic_error, "Ifpack2::SparseContainer::apply: Inverse_ "
      "operator and Y have incompatible dimensions (" <<
      Inverses_[blockIndex]->getRangeMap()->getNodeNumElements() << " resp. "
      << Y.getLocalLength() << ").  Please report this bug to "
      "the Ifpack2 developers.");
    Inverses_[blockIndex]->apply(X, Y, mode, alpha, beta);
}

template<class MatrixType, class InverseType>
void SparseContainer<MatrixType, InverseType>::
apply (HostView& X,
       HostView& Y,
       int blockIndex,
       int stride,
       Teuchos::ETransp mode,
       scalar_type alpha,
       scalar_type beta) const
{
  using Teuchos::ArrayView;
  using Teuchos::as;
  using Teuchos::RCP;
  using Teuchos::rcp;

  // The InverseType template parameter might have different template
  // parameters (Scalar, LO, GO, and/or Node) than MatrixType.  For
  // example, MatrixType (a global object) might use a bigger GO
  // (global ordinal) type than InverseType (which deals with the
  // diagonal block, a local object).  This means that we might have
  // to convert X and Y to the Tpetra::MultiVector specialization that
  // InverseType wants.  This class' X_ and Y_ internal fields are of
  // the right type for InverseType, so we can use those as targets.

  // Tpetra::MultiVector specialization corresponding to InverseType.
  Details::MultiVectorLocalGatherScatter<mv_type, inverse_mv_type> mvgs;
  size_t numVecs = X.dimension_1();

  TEUCHOS_TEST_FOR_EXCEPTION(
    ! IsComputed_, std::runtime_error, "Ifpack2::SparseContainer::apply: "
    "You must have called the compute() method before you may call apply().  "
    "You may call the apply() method as many times as you want after calling "
    "compute() once, but you must have called compute() at least once.");
  TEUCHOS_TEST_FOR_EXCEPTION(
    X.dimension_1() != Y.dimension_1(), std::runtime_error,
    "Ifpack2::SparseContainer::apply: X and Y have different numbers of "
    "vectors.  X has " << X.dimension_1()
    << ", but Y has " << Y.dimension_1() << ".");

  if (numVecs == 0) {
    return; // done! nothing to do
  }

  const local_ordinal_type numRows_ = this->blockRows_[blockIndex];

  // The operator Inverse_ works on a permuted subset of the local
  // parts of X and Y.  The subset and permutation are defined by the
  // index array returned by getLocalRows().  If the permutation is
  // trivial and the subset is exactly equal to the local indices,
  // then we could use the local parts of X and Y exactly, without
  // needing to permute.  Otherwise, we have to use temporary storage
  // to permute X and Y.  For now, we always use temporary storage.
  //
  // Create temporary permuted versions of the input and output.
  // (Re)allocate X_ and/or Y_ only if necessary.  We'll use them to
  // store the permuted versions of X resp. Y.  Note that X_local has
  // the domain Map of the operator, which may be a permuted subset of
  // the local Map corresponding to X.getMap().  Similarly, Y_local
  // has the range Map of the operator, which may be a permuted subset
  // of the local Map corresponding to Y.getMap().  numRows_ here
  // gives the number of rows in the row Map of the local Inverse_
  // operator.
  //
  // FIXME (mfh 20 Aug 2013) There might be an implicit assumption
  // here that the row Map and the range Map of that operator are
  // the same.
  //
  // FIXME (mfh 20 Aug 2013) This "local permutation" functionality
  // really belongs in Tpetra.

  if(invX.size() == 0)
  {
    for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
      invX.emplace_back(Inverses_[i]->getDomainMap(), numVecs);
    for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
      invY.emplace_back(Inverses_[i]->getDomainMap(), numVecs);
  }
  inverse_mv_type& X_local = invX[blockIndex];
  TEUCHOS_TEST_FOR_EXCEPTION(
    X_local.getLocalLength() != (size_t) numRows_, std::logic_error,
    "Ifpack2::SparseContainer::apply: "
    "X_local has length " << X_local.getLocalLength() << ", which does "
    "not match numRows_ = " << numRows_ << ".  Please report this bug to "
    "the Ifpack2 developers.");
  const ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
  mvgs.gatherMVtoView(X_local, X, localRows);

  // We must gather the output multivector Y even on input to
  // Inverse_->apply(), since the Inverse_ operator might use it as an
  // initial guess for a linear solve.  We have no way of knowing
  // whether it does or does not.

  inverse_mv_type& Y_local = invY[blockIndex];
  TEUCHOS_TEST_FOR_EXCEPTION(
    Y_local.getLocalLength () != (size_t) numRows_, std::logic_error,
    "Ifpack2::SparseContainer::apply: "
    "Y_local has length " << Y_local.getLocalLength () << ", which does "
    "not match numRows_ = " << numRows_ << ".  Please report this bug to "
    "the Ifpack2 developers.");
  mvgs.gatherMVtoView(Y_local, Y, localRows);

  // Apply the local operator:
  // Y_local := beta*Y_local + alpha*M^{-1}*X_local
  this->applyImpl(X_local, Y_local, blockIndex, stride, mode, as<InverseScalar>(alpha),
                  as<InverseScalar>(beta));

  // Scatter the permuted subset output vector Y_local back into the
  // original output multivector Y.
  mvgs.scatterMVtoView(Y, Y_local, localRows);
}

//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType, InverseType>::
weightedApply (HostView& X,
               HostView& Y,
               HostView& D,
               int blockIndex,
               int stride,
               Teuchos::ETransp mode,
               scalar_type alpha,
               scalar_type beta) const
{
  using Teuchos::ArrayRCP;
  using Teuchos::ArrayView;
  using Teuchos::Range1D;
  using Teuchos::Ptr;
  using Teuchos::ptr;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcp_const_cast;
  using std::cerr;
  using std::endl;
  typedef Teuchos::ScalarTraits<scalar_type> STS;

  // The InverseType template parameter might have different template
  // parameters (Scalar, LO, GO, and/or Node) than MatrixType.  For
  // example, MatrixType (a global object) might use a bigger GO
  // (global ordinal) type than InverseType (which deals with the
  // diagonal block, a local object).  This means that we might have
  // to convert X and Y to the Tpetra::MultiVector specialization that
  // InverseType wants.  This class' X_ and Y_ internal fields are of
  // the right type for InverseType, so we can use those as targets.

  // Tpetra::Vector specialization corresponding to InverseType.
  typedef Tpetra::Vector<InverseScalar, InverseLocalOrdinal, InverseGlobalOrdinal, InverseNode> inverse_vector_type;

  Details::MultiVectorLocalGatherScatter<mv_type, inverse_mv_type> mvgs;
  const size_t numVecs = X.dimension_1();

  TEUCHOS_TEST_FOR_EXCEPTION(
    ! IsComputed_, std::runtime_error, "Ifpack2::SparseContainer::"
    "weightedApply: You must have called the compute() method before you may "
    "call apply().  You may call the apply() method as many times as you want "
    "after calling compute() once, but you must have called compute() at least "
    "once.");
  TEUCHOS_TEST_FOR_EXCEPTION(
    X.dimension_1() != Y.dimension_1(), std::runtime_error,
    "Ifpack2::SparseContainer::weightedApply: X and Y have different numbers "
    "of vectors.  X has " << X.dimension_1() << ", but Y has "
    << Y.dimension_1() << ".");

  if (numVecs == 0) {
    return; // done! nothing to do
  }

  // The operator Inverse_ works on a permuted subset of the local
  // parts of X and Y.  The subset and permutation are defined by the
  // index array returned by getLocalRows().  If the permutation is
  // trivial and the subset is exactly equal to the local indices,
  // then we could use the local parts of X and Y exactly, without
  // needing to permute.  Otherwise, we have to use temporary storage
  // to permute X and Y.  For now, we always use temporary storage.
  //
  // Create temporary permuted versions of the input and output.
  // (Re)allocate X_ and/or Y_ only if necessary.  We'll use them to
  // store the permuted versions of X resp. Y.  Note that X_local has
  // the domain Map of the operator, which may be a permuted subset of
  // the local Map corresponding to X.getMap().  Similarly, Y_local
  // has the range Map of the operator, which may be a permuted subset
  // of the local Map corresponding to Y.getMap().  numRows_ here
  // gives the number of rows in the row Map of the local Inverse_
  // operator.
  //
  // FIXME (mfh 20 Aug 2013) There might be an implicit assumption
  // here that the row Map and the range Map of that operator are
  // the same.
  //
  // FIXME (mfh 20 Aug 2013) This "local permutation" functionality
  // really belongs in Tpetra.
  const local_ordinal_type numRows = this->blockRows_[blockIndex];

  if(invX.size() == 0)
  {
    for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
      invX.emplace_back(Inverses_[i]->getDomainMap(), numVecs);
    for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
      invY.emplace_back(Inverses_[i]->getDomainMap(), numVecs);
  }
  inverse_mv_type& X_local = invX[blockIndex];
  const ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
  mvgs.gatherMVtoView(X_local, X, localRows);

  // We must gather the output multivector Y even on input to
  // Inverse_->apply(), since the Inverse_ operator might use it as an
  // initial guess for a linear solve.  We have no way of knowing
  // whether it does or does not.

  inverse_mv_type Y_local = invY[blockIndex];
  TEUCHOS_TEST_FOR_EXCEPTION(
    Y_local.getLocalLength() != (size_t) numRows, std::logic_error,
    "Ifpack2::SparseContainer::weightedApply: "
    "Y_local has length " << X_local.getLocalLength() << ", which does "
    "not match numRows_ = " << numRows << ".  Please report this bug to "
    "the Ifpack2 developers.");
  mvgs.gatherMVtoView(Y_local, Y, localRows);

  // Apply the diagonal scaling D to the input X.  It's our choice
  // whether the result has the original input Map of X, or the
  // permuted subset Map of X_local.  If the latter, we also need to
  // gather D into the permuted subset Map.  We choose the latter, to
  // save memory and computation.  Thus, we do the following:
  //
  // 1. Gather D into a temporary vector D_local.
  // 2. Create a temporary X_scaled to hold diag(D_local) * X_local.
  // 3. Compute X_scaled := diag(D_loca) * X_local.

  inverse_vector_type D_local(Inverses_[blockIndex]->getDomainMap());
  TEUCHOS_TEST_FOR_EXCEPTION(
    D_local.getLocalLength() != (size_t) this->blockRows_[blockIndex], std::logic_error,
    "Ifpack2::SparseContainer::weightedApply: "
    "D_local has length " << X_local.getLocalLength () << ", which does "
    "not match numRows_ = " << this->blockRows_[blockIndex] << ".  Please report this bug to "
    "the Ifpack2 developers.");
  mvgs.gatherMVtoView(D_local, D, localRows);
  inverse_mv_type X_scaled(Inverses_[blockIndex]->getDomainMap(), numVecs);
  X_scaled.elementWiseMultiply(STS::one(), D_local, X_local, STS::zero());

  // Y_temp will hold the result of M^{-1}*X_scaled.  If beta == 0, we
  // can write the result of Inverse_->apply() directly to Y_local, so
  // Y_temp may alias Y_local.  Otherwise, if beta != 0, we need
  // temporary storage for M^{-1}*X_scaled, so Y_temp must be
  // different than Y_local.
  Ptr<inverse_mv_type> Y_temp;
  bool deleteYT = false;
  if (beta == STS::zero ()) {
    Y_temp = ptr(&Y_local);
  } else {
    Y_temp = ptr(new inverse_mv_type(Inverses_[blockIndex]->getRangeMap(), numVecs));
    deleteYT = true;
  }
  // Apply the local operator: Y_temp := M^{-1} * X_scaled
  Inverses_[blockIndex]->apply(X_scaled, *Y_temp, mode);
  // Y_local := beta * Y_local + alpha * diag(D_local) * Y_tmp.
  //
  // Note that we still use the permuted subset scaling D_local here,
  // because Y_temp has the same permuted subset Map.  That's good, in
  // fact, because it's a subset: less data to read and multiply.
  Y_local.elementWiseMultiply(alpha, D_local, *Y_temp, beta);
  if(deleteYT)
    delete Y_temp.get();
  // Copy the permuted subset output vector Y_local into the original
  // output multivector Y.
  mvgs.scatterMVtoView(Y, Y_local, localRows);
}

//==============================================================================
template<class MatrixType, class InverseType>
std::ostream& SparseContainer<MatrixType,InverseType>::print(std::ostream& os) const
{
  Teuchos::FancyOStream fos(Teuchos::rcp(&os,false));
  fos.setOutputToRootOnly(0);
  describe(fos);
  return(os);
}

//==============================================================================
template<class MatrixType, class InverseType>
std::string SparseContainer<MatrixType,InverseType>::description() const
{
  std::ostringstream oss;
  oss << "\"Ifpack2::SparseContainer\": {";
  if (isInitialized()) {
    if (isComputed()) {
      oss << "status = initialized, computed";
    }
    else {
      oss << "status = initialized, not computed";
    }
  }
  else {
    oss << "status = not initialized, not computed";
  }
  for(int i = 0; i < this->numBlocks_; i++)
  {
    oss << ", Block Inverse " << i << ": {";
    oss << Inverses_[i]->description();
    oss << "}";
  }
  oss << "}";
  return oss.str();
}

//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType,InverseType>::describe(Teuchos::FancyOStream &os, const Teuchos::EVerbosityLevel verbLevel) const
{
  using std::endl;
  if(verbLevel==Teuchos::VERB_NONE) return;
  os << "================================================================================" << endl;
  os << "Ifpack2::SparseContainer" << endl;
  for(int i = 0; i < this->numBlocks_; i++)
  {
    os << "Block " << i << " rows: = " << this->blockRows_[i] << endl;
  }
  os << "isInitialized()         = " << IsInitialized_ << endl;
  os << "isComputed()            = " << IsComputed_ << endl;
  os << "================================================================================" << endl;
  os << endl;
}

//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType,InverseType>::
extract ()
{
  using Teuchos::Array;
  using Teuchos::ArrayView;

  auto& A = *this->inputMatrix_;
  const size_t MatrixInNumRows = A.getNodeNumRows ();

  // Sanity checking
  for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
  {
    const ArrayView<const local_ordinal_type> localRows = this->getLocalRows(i);
    for (local_ordinal_type j = 0; j < localRows.size(); j++)
    {
      TEUCHOS_TEST_FOR_EXCEPTION(
        localRows[j] < 0 ||
        static_cast<size_t> (localRows[j]) >= MatrixInNumRows,
        std::runtime_error, "Ifpack2::SparseContainer::extract: localRows[j="
        << j << "] = " << localRows[j] << ", which is out of the valid range.  "
        "This probably means that compute() has not yet been called.");
    }
  }

  const size_t maxNumEntriesInRow = A.getNodeMaxNumRowEntries();
  Array<scalar_type> Values;
  Array<local_ordinal_type> Indices;
  Array<InverseScalar> Values_insert;
  Array<InverseGlobalOrdinal> Indices_insert;

  Values.resize (maxNumEntriesInRow);
  Indices.resize (maxNumEntriesInRow);
  Values_insert.resize (maxNumEntriesInRow);
  Indices_insert.resize (maxNumEntriesInRow);

  const InverseLocalOrdinal INVALID = Teuchos::OrdinalTraits<InverseLocalOrdinal>::invalid ();
  for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
  {
    const local_ordinal_type numRows_ = this->blockRows_[i];
    const ArrayView<const local_ordinal_type> localRows = this->getLocalRows(i);
    for (local_ordinal_type j = 0; j < numRows_; j++)
    {
      const local_ordinal_type localRow = this->partitions_[this->partitionIndices_[i] + j];
      size_t numEntries;
      A.getLocalRowCopy(localRow, Indices(), Values(), numEntries);
      size_t num_entries_found = 0;
      for(size_t k = 0; k < numEntries; ++k)
      {
        const local_ordinal_type localCol = Indices[k];
        // Skip off-process elements
        //
        // FIXME (mfh 24 Aug 2013) This assumes the following:
        //
        // 1. The column and row Maps begin with the same set of
        //    on-process entries, in the same order.  That is,
        //    on-process row and column indices are the same.
        // 2. All off-process indices in the column Map of the input
        //    matrix occur after that initial set.
        if(static_cast<size_t> (localCol) >= MatrixInNumRows)
          continue;
        // for local column IDs, look for each ID in the list
        // of columns hosted by this object
        InverseLocalOrdinal jj = INVALID;
        for(local_ordinal_type kk = 0; kk < numRows_; kk++)
        {
          if(localRows[kk] == localCol)
            jj = kk;
        }
        if (jj != INVALID)
        {
          Indices_insert[num_entries_found] = localMaps_[i].getGlobalElement(jj);
          Values_insert[num_entries_found] = Values[k];
          num_entries_found++;
        }
      }
      diagBlocks_[i]->insertGlobalValues(j, Indices_insert (0, num_entries_found),
                                        Values_insert (0, num_entries_found));
    }
    // FIXME (mfh 24 Aug 2013) If we generalize the current set of
    // assumptions on the column and row Maps (see note above), we may
    // need to supply custom domain and range Maps to fillComplete().
    diagBlocks_[i]->fillComplete ();
  }
}

template<typename MatrixType, typename InverseType>
std::string SparseContainer<MatrixType, InverseType>::getName()
{
  typedef ILUT<Tpetra::RowMatrix<scalar_type, local_ordinal_type, global_ordinal_type, node_type> > ILUTInverse;
#ifdef HAVE_IFPACK2_AMESOS2
  typedef Details::Amesos2Wrapper<Tpetra::RowMatrix<scalar_type, local_ordinal_type, global_ordinal_type, node_type>> AmesosInverse;
  if(std::is_same<InverseType, ILUTInverse>::value)
  {
    return "SparseILUT";
  }
  else if(std::is_same<InverseType, AmesosInverse>::value)
  {
    return "SparseAmesos";
  }
  else
  {
    throw std::logic_error("InverseType for SparseContainer must be Ifpack2::ILUT or Details::Amesos2Wrapper");
  }
#else
  // Macros can't have commas in their arguments, so we have to
  // compute the bool first argument separately.
  constexpr bool inverseTypeIsILUT = std::is_same<InverseType, ILUTInverse>::value;
  TEUCHOS_TEST_FOR_EXCEPTION(! inverseTypeIsILUT, std::logic_error,
    "InverseType for SparseContainer must be Ifpack2::ILUT<ROW>");
  return "SparseILUT";    //the only supported sparse container specialization if no Amesos2
#endif
}

} // namespace Ifpack2

// For ETI
#include "Ifpack2_ILUT.hpp"
#ifdef HAVE_IFPACK2_AMESOS2
#include "Ifpack2_Details_Amesos2Wrapper.hpp"
#endif

// There's no need to instantiate for CrsMatrix too.  All Ifpack2
// preconditioners can and should do dynamic casts if they need a type
// more specific than RowMatrix.

#ifdef HAVE_IFPACK2_AMESOS2
#  define IFPACK2_SPARSECONTAINER_INSTANT(S,LO,GO,N) \
    template class Ifpack2::SparseContainer< Tpetra::RowMatrix<S, LO, GO, N>, \
                                             Ifpack2::ILUT<Tpetra::RowMatrix<S,LO,GO,N> > >; \
    template class Ifpack2::SparseContainer< Tpetra::RowMatrix<S, LO, GO, N>, \
                                             Ifpack2::Details::Amesos2Wrapper<Tpetra::RowMatrix<S,LO,GO,N> > >;
#else
#  define IFPACK2_SPARSECONTAINER_INSTANT(S,LO,GO,N) \
    template class Ifpack2::SparseContainer< Tpetra::RowMatrix<S,LO,GO,N>, \
                                             Ifpack2::ILUT<Tpetra::RowMatrix<S, LO, GO, N> > >;
#endif
#endif // IFPACK2_SPARSECONTAINER_DEF_HPP