/usr/include/trilinos/Ifpack2_SparseContainer_def.hpp is in libtrilinos-ifpack2-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 | /*@HEADER
// ***********************************************************************
//
// Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/
#ifndef IFPACK2_SPARSECONTAINER_DEF_HPP
#define IFPACK2_SPARSECONTAINER_DEF_HPP
#include "Ifpack2_SparseContainer_decl.hpp"
#ifdef HAVE_MPI
#include <mpi.h>
#include "Teuchos_DefaultMpiComm.hpp"
#else
#include "Teuchos_DefaultSerialComm.hpp"
#endif
#include "Teuchos_TestForException.hpp"
namespace Ifpack2 {
//==============================================================================
template<class MatrixType, class InverseType>
SparseContainer<MatrixType,InverseType>::
SparseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
const Teuchos::RCP<const import_type>& importer,
int OverlapLevel,
scalar_type DampingFactor) :
Container<MatrixType> (matrix, partitions, importer, OverlapLevel,
DampingFactor),
IsInitialized_ (false),
IsComputed_ (false),
#ifdef HAVE_MPI
localComm_ (Teuchos::rcp (new Teuchos::MpiComm<int> (MPI_COMM_SELF)))
#else
localComm_ (Teuchos::rcp (new Teuchos::SerialComm<int> ()))
#endif // HAVE_MPI
{
global_ordinal_type indexBase = 0;
for(int i = 0; i < this->numBlocks_; i++)
localMaps_.emplace_back(this->blockRows_[i], indexBase, localComm_);
}
//==============================================================================
template<class MatrixType, class InverseType>
SparseContainer<MatrixType, InverseType>::
SparseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
const Teuchos::Array<local_ordinal_type>& localRows) :
Container<MatrixType> (matrix, localRows),
IsInitialized_(false),
IsComputed_(false),
#ifdef HAVE_MPI
localComm_ (Teuchos::rcp(new Teuchos::MpiComm<int>(MPI_COMM_SELF)))
#else
localComm_ (Teuchos::rcp(new Teuchos::SerialComm<int>()))
#endif // HAVE_MPI
{
global_ordinal_type indexBase = 0;
localMaps_.emplace_back(this->blockRows_[0], indexBase, localComm_);
}
//==============================================================================
template<class MatrixType,class InverseType>
SparseContainer<MatrixType,InverseType>::~SparseContainer()
{
for(auto inv : Inverses_)
delete inv.get();
}
//==============================================================================
template<class MatrixType, class InverseType>
bool SparseContainer<MatrixType,InverseType>::isInitialized() const
{
return IsInitialized_;
}
//==============================================================================
template<class MatrixType, class InverseType>
bool SparseContainer<MatrixType,InverseType>::isComputed() const
{
return IsComputed_;
}
//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType,InverseType>::setParameters(const Teuchos::ParameterList& List)
{
List_ = List;
}
//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType,InverseType>::initialize ()
{
using Teuchos::RCP;
// We assume that if you called this method, you intend to recompute
// everything. Thus, we release references to all the internal
// objects. We do this first to save memory. (In an RCP
// assignment, the right-hand side and left-hand side coexist before
// the left-hand side's reference count gets updated.)
IsInitialized_ = false;
IsComputed_ = false;
// (Re)create the CrsMatrices that will contain the
// local matrices to use for solves.
diagBlocks_.reserve(this->numBlocks_);
Inverses_.reserve(this->numBlocks_);
for(int i = 0; i < this->numBlocks_; i++)
{
// Create a local map for the block, with same size as block has rows.
// Note: this map isn't needed elsewhere in SparseContainer, but the
// diagBlocks_[...] will keep it alive
RCP<InverseMap> tempMap(new InverseMap(this->blockRows_[i], 0, localComm_));
diagBlocks_.emplace_back(new InverseCrs(tempMap, 0));
// Create the inverse operator using the local matrix. We give it
// the matrix here, but don't call its initialize() or compute()
// methods yet, since we haven't initialized the matrix yet.
Inverses_.push_back(ptr(new InverseType(diagBlocks_[i])));
}
IsInitialized_ = true;
}
//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType,InverseType>::compute ()
{
IsComputed_ = false;
if (! this->isInitialized ()) {
this->initialize ();
}
// Extract the submatrix.
this->extract ();
// The inverse operator already has a pointer to the submatrix. Now
// that the submatrix is filled in, we can initialize and compute
// the inverse operator.
for(int i = 0; i < this->numBlocks_; i++)
Inverses_[i]->initialize ();
for(int i = 0; i < this->numBlocks_; i++)
Inverses_[i]->compute ();
IsComputed_ = true;
}
//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType, InverseType>::clearBlocks ()
{
for(auto inv : Inverses_)
delete inv.get();
Inverses_.clear();
diagBlocks_.clear();
Container<MatrixType>::clearBlocks();
}
//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType,InverseType>::
applyImpl (inverse_mv_type& X,
inverse_mv_type& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
InverseScalar alpha,
InverseScalar beta) const
{
TEUCHOS_TEST_FOR_EXCEPTION(
Inverses_[blockIndex]->getDomainMap()->getNodeNumElements() != X.getLocalLength(),
std::logic_error, "Ifpack2::SparseContainer::apply: Inverse_ "
"operator and X have incompatible dimensions (" <<
Inverses_[blockIndex]->getDomainMap()->getNodeNumElements() << " resp. "
<< X.getLocalLength() << "). Please report this bug to "
"the Ifpack2 developers.");
TEUCHOS_TEST_FOR_EXCEPTION(
Inverses_[blockIndex]->getRangeMap()->getNodeNumElements() != Y.getLocalLength(),
std::logic_error, "Ifpack2::SparseContainer::apply: Inverse_ "
"operator and Y have incompatible dimensions (" <<
Inverses_[blockIndex]->getRangeMap()->getNodeNumElements() << " resp. "
<< Y.getLocalLength() << "). Please report this bug to "
"the Ifpack2 developers.");
Inverses_[blockIndex]->apply(X, Y, mode, alpha, beta);
}
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType, InverseType>::
apply (HostView& X,
HostView& Y,
int blockIndex,
int stride,
Teuchos::ETransp mode,
scalar_type alpha,
scalar_type beta) const
{
using Teuchos::ArrayView;
using Teuchos::as;
using Teuchos::RCP;
using Teuchos::rcp;
// The InverseType template parameter might have different template
// parameters (Scalar, LO, GO, and/or Node) than MatrixType. For
// example, MatrixType (a global object) might use a bigger GO
// (global ordinal) type than InverseType (which deals with the
// diagonal block, a local object). This means that we might have
// to convert X and Y to the Tpetra::MultiVector specialization that
// InverseType wants. This class' X_ and Y_ internal fields are of
// the right type for InverseType, so we can use those as targets.
// Tpetra::MultiVector specialization corresponding to InverseType.
Details::MultiVectorLocalGatherScatter<mv_type, inverse_mv_type> mvgs;
size_t numVecs = X.dimension_1();
TEUCHOS_TEST_FOR_EXCEPTION(
! IsComputed_, std::runtime_error, "Ifpack2::SparseContainer::apply: "
"You must have called the compute() method before you may call apply(). "
"You may call the apply() method as many times as you want after calling "
"compute() once, but you must have called compute() at least once.");
TEUCHOS_TEST_FOR_EXCEPTION(
X.dimension_1() != Y.dimension_1(), std::runtime_error,
"Ifpack2::SparseContainer::apply: X and Y have different numbers of "
"vectors. X has " << X.dimension_1()
<< ", but Y has " << Y.dimension_1() << ".");
if (numVecs == 0) {
return; // done! nothing to do
}
const local_ordinal_type numRows_ = this->blockRows_[blockIndex];
// The operator Inverse_ works on a permuted subset of the local
// parts of X and Y. The subset and permutation are defined by the
// index array returned by getLocalRows(). If the permutation is
// trivial and the subset is exactly equal to the local indices,
// then we could use the local parts of X and Y exactly, without
// needing to permute. Otherwise, we have to use temporary storage
// to permute X and Y. For now, we always use temporary storage.
//
// Create temporary permuted versions of the input and output.
// (Re)allocate X_ and/or Y_ only if necessary. We'll use them to
// store the permuted versions of X resp. Y. Note that X_local has
// the domain Map of the operator, which may be a permuted subset of
// the local Map corresponding to X.getMap(). Similarly, Y_local
// has the range Map of the operator, which may be a permuted subset
// of the local Map corresponding to Y.getMap(). numRows_ here
// gives the number of rows in the row Map of the local Inverse_
// operator.
//
// FIXME (mfh 20 Aug 2013) There might be an implicit assumption
// here that the row Map and the range Map of that operator are
// the same.
//
// FIXME (mfh 20 Aug 2013) This "local permutation" functionality
// really belongs in Tpetra.
if(invX.size() == 0)
{
for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
invX.emplace_back(Inverses_[i]->getDomainMap(), numVecs);
for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
invY.emplace_back(Inverses_[i]->getDomainMap(), numVecs);
}
inverse_mv_type& X_local = invX[blockIndex];
TEUCHOS_TEST_FOR_EXCEPTION(
X_local.getLocalLength() != (size_t) numRows_, std::logic_error,
"Ifpack2::SparseContainer::apply: "
"X_local has length " << X_local.getLocalLength() << ", which does "
"not match numRows_ = " << numRows_ << ". Please report this bug to "
"the Ifpack2 developers.");
const ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
mvgs.gatherMVtoView(X_local, X, localRows);
// We must gather the output multivector Y even on input to
// Inverse_->apply(), since the Inverse_ operator might use it as an
// initial guess for a linear solve. We have no way of knowing
// whether it does or does not.
inverse_mv_type& Y_local = invY[blockIndex];
TEUCHOS_TEST_FOR_EXCEPTION(
Y_local.getLocalLength () != (size_t) numRows_, std::logic_error,
"Ifpack2::SparseContainer::apply: "
"Y_local has length " << Y_local.getLocalLength () << ", which does "
"not match numRows_ = " << numRows_ << ". Please report this bug to "
"the Ifpack2 developers.");
mvgs.gatherMVtoView(Y_local, Y, localRows);
// Apply the local operator:
// Y_local := beta*Y_local + alpha*M^{-1}*X_local
this->applyImpl(X_local, Y_local, blockIndex, stride, mode, as<InverseScalar>(alpha),
as<InverseScalar>(beta));
// Scatter the permuted subset output vector Y_local back into the
// original output multivector Y.
mvgs.scatterMVtoView(Y, Y_local, localRows);
}
//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType, InverseType>::
weightedApply (HostView& X,
HostView& Y,
HostView& D,
int blockIndex,
int stride,
Teuchos::ETransp mode,
scalar_type alpha,
scalar_type beta) const
{
using Teuchos::ArrayRCP;
using Teuchos::ArrayView;
using Teuchos::Range1D;
using Teuchos::Ptr;
using Teuchos::ptr;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcp_const_cast;
using std::cerr;
using std::endl;
typedef Teuchos::ScalarTraits<scalar_type> STS;
// The InverseType template parameter might have different template
// parameters (Scalar, LO, GO, and/or Node) than MatrixType. For
// example, MatrixType (a global object) might use a bigger GO
// (global ordinal) type than InverseType (which deals with the
// diagonal block, a local object). This means that we might have
// to convert X and Y to the Tpetra::MultiVector specialization that
// InverseType wants. This class' X_ and Y_ internal fields are of
// the right type for InverseType, so we can use those as targets.
// Tpetra::Vector specialization corresponding to InverseType.
typedef Tpetra::Vector<InverseScalar, InverseLocalOrdinal, InverseGlobalOrdinal, InverseNode> inverse_vector_type;
Details::MultiVectorLocalGatherScatter<mv_type, inverse_mv_type> mvgs;
const size_t numVecs = X.dimension_1();
TEUCHOS_TEST_FOR_EXCEPTION(
! IsComputed_, std::runtime_error, "Ifpack2::SparseContainer::"
"weightedApply: You must have called the compute() method before you may "
"call apply(). You may call the apply() method as many times as you want "
"after calling compute() once, but you must have called compute() at least "
"once.");
TEUCHOS_TEST_FOR_EXCEPTION(
X.dimension_1() != Y.dimension_1(), std::runtime_error,
"Ifpack2::SparseContainer::weightedApply: X and Y have different numbers "
"of vectors. X has " << X.dimension_1() << ", but Y has "
<< Y.dimension_1() << ".");
if (numVecs == 0) {
return; // done! nothing to do
}
// The operator Inverse_ works on a permuted subset of the local
// parts of X and Y. The subset and permutation are defined by the
// index array returned by getLocalRows(). If the permutation is
// trivial and the subset is exactly equal to the local indices,
// then we could use the local parts of X and Y exactly, without
// needing to permute. Otherwise, we have to use temporary storage
// to permute X and Y. For now, we always use temporary storage.
//
// Create temporary permuted versions of the input and output.
// (Re)allocate X_ and/or Y_ only if necessary. We'll use them to
// store the permuted versions of X resp. Y. Note that X_local has
// the domain Map of the operator, which may be a permuted subset of
// the local Map corresponding to X.getMap(). Similarly, Y_local
// has the range Map of the operator, which may be a permuted subset
// of the local Map corresponding to Y.getMap(). numRows_ here
// gives the number of rows in the row Map of the local Inverse_
// operator.
//
// FIXME (mfh 20 Aug 2013) There might be an implicit assumption
// here that the row Map and the range Map of that operator are
// the same.
//
// FIXME (mfh 20 Aug 2013) This "local permutation" functionality
// really belongs in Tpetra.
const local_ordinal_type numRows = this->blockRows_[blockIndex];
if(invX.size() == 0)
{
for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
invX.emplace_back(Inverses_[i]->getDomainMap(), numVecs);
for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
invY.emplace_back(Inverses_[i]->getDomainMap(), numVecs);
}
inverse_mv_type& X_local = invX[blockIndex];
const ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
mvgs.gatherMVtoView(X_local, X, localRows);
// We must gather the output multivector Y even on input to
// Inverse_->apply(), since the Inverse_ operator might use it as an
// initial guess for a linear solve. We have no way of knowing
// whether it does or does not.
inverse_mv_type Y_local = invY[blockIndex];
TEUCHOS_TEST_FOR_EXCEPTION(
Y_local.getLocalLength() != (size_t) numRows, std::logic_error,
"Ifpack2::SparseContainer::weightedApply: "
"Y_local has length " << X_local.getLocalLength() << ", which does "
"not match numRows_ = " << numRows << ". Please report this bug to "
"the Ifpack2 developers.");
mvgs.gatherMVtoView(Y_local, Y, localRows);
// Apply the diagonal scaling D to the input X. It's our choice
// whether the result has the original input Map of X, or the
// permuted subset Map of X_local. If the latter, we also need to
// gather D into the permuted subset Map. We choose the latter, to
// save memory and computation. Thus, we do the following:
//
// 1. Gather D into a temporary vector D_local.
// 2. Create a temporary X_scaled to hold diag(D_local) * X_local.
// 3. Compute X_scaled := diag(D_loca) * X_local.
inverse_vector_type D_local(Inverses_[blockIndex]->getDomainMap());
TEUCHOS_TEST_FOR_EXCEPTION(
D_local.getLocalLength() != (size_t) this->blockRows_[blockIndex], std::logic_error,
"Ifpack2::SparseContainer::weightedApply: "
"D_local has length " << X_local.getLocalLength () << ", which does "
"not match numRows_ = " << this->blockRows_[blockIndex] << ". Please report this bug to "
"the Ifpack2 developers.");
mvgs.gatherMVtoView(D_local, D, localRows);
inverse_mv_type X_scaled(Inverses_[blockIndex]->getDomainMap(), numVecs);
X_scaled.elementWiseMultiply(STS::one(), D_local, X_local, STS::zero());
// Y_temp will hold the result of M^{-1}*X_scaled. If beta == 0, we
// can write the result of Inverse_->apply() directly to Y_local, so
// Y_temp may alias Y_local. Otherwise, if beta != 0, we need
// temporary storage for M^{-1}*X_scaled, so Y_temp must be
// different than Y_local.
Ptr<inverse_mv_type> Y_temp;
bool deleteYT = false;
if (beta == STS::zero ()) {
Y_temp = ptr(&Y_local);
} else {
Y_temp = ptr(new inverse_mv_type(Inverses_[blockIndex]->getRangeMap(), numVecs));
deleteYT = true;
}
// Apply the local operator: Y_temp := M^{-1} * X_scaled
Inverses_[blockIndex]->apply(X_scaled, *Y_temp, mode);
// Y_local := beta * Y_local + alpha * diag(D_local) * Y_tmp.
//
// Note that we still use the permuted subset scaling D_local here,
// because Y_temp has the same permuted subset Map. That's good, in
// fact, because it's a subset: less data to read and multiply.
Y_local.elementWiseMultiply(alpha, D_local, *Y_temp, beta);
if(deleteYT)
delete Y_temp.get();
// Copy the permuted subset output vector Y_local into the original
// output multivector Y.
mvgs.scatterMVtoView(Y, Y_local, localRows);
}
//==============================================================================
template<class MatrixType, class InverseType>
std::ostream& SparseContainer<MatrixType,InverseType>::print(std::ostream& os) const
{
Teuchos::FancyOStream fos(Teuchos::rcp(&os,false));
fos.setOutputToRootOnly(0);
describe(fos);
return(os);
}
//==============================================================================
template<class MatrixType, class InverseType>
std::string SparseContainer<MatrixType,InverseType>::description() const
{
std::ostringstream oss;
oss << "\"Ifpack2::SparseContainer\": {";
if (isInitialized()) {
if (isComputed()) {
oss << "status = initialized, computed";
}
else {
oss << "status = initialized, not computed";
}
}
else {
oss << "status = not initialized, not computed";
}
for(int i = 0; i < this->numBlocks_; i++)
{
oss << ", Block Inverse " << i << ": {";
oss << Inverses_[i]->description();
oss << "}";
}
oss << "}";
return oss.str();
}
//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType,InverseType>::describe(Teuchos::FancyOStream &os, const Teuchos::EVerbosityLevel verbLevel) const
{
using std::endl;
if(verbLevel==Teuchos::VERB_NONE) return;
os << "================================================================================" << endl;
os << "Ifpack2::SparseContainer" << endl;
for(int i = 0; i < this->numBlocks_; i++)
{
os << "Block " << i << " rows: = " << this->blockRows_[i] << endl;
}
os << "isInitialized() = " << IsInitialized_ << endl;
os << "isComputed() = " << IsComputed_ << endl;
os << "================================================================================" << endl;
os << endl;
}
//==============================================================================
template<class MatrixType, class InverseType>
void SparseContainer<MatrixType,InverseType>::
extract ()
{
using Teuchos::Array;
using Teuchos::ArrayView;
auto& A = *this->inputMatrix_;
const size_t MatrixInNumRows = A.getNodeNumRows ();
// Sanity checking
for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
{
const ArrayView<const local_ordinal_type> localRows = this->getLocalRows(i);
for (local_ordinal_type j = 0; j < localRows.size(); j++)
{
TEUCHOS_TEST_FOR_EXCEPTION(
localRows[j] < 0 ||
static_cast<size_t> (localRows[j]) >= MatrixInNumRows,
std::runtime_error, "Ifpack2::SparseContainer::extract: localRows[j="
<< j << "] = " << localRows[j] << ", which is out of the valid range. "
"This probably means that compute() has not yet been called.");
}
}
const size_t maxNumEntriesInRow = A.getNodeMaxNumRowEntries();
Array<scalar_type> Values;
Array<local_ordinal_type> Indices;
Array<InverseScalar> Values_insert;
Array<InverseGlobalOrdinal> Indices_insert;
Values.resize (maxNumEntriesInRow);
Indices.resize (maxNumEntriesInRow);
Values_insert.resize (maxNumEntriesInRow);
Indices_insert.resize (maxNumEntriesInRow);
const InverseLocalOrdinal INVALID = Teuchos::OrdinalTraits<InverseLocalOrdinal>::invalid ();
for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
{
const local_ordinal_type numRows_ = this->blockRows_[i];
const ArrayView<const local_ordinal_type> localRows = this->getLocalRows(i);
for (local_ordinal_type j = 0; j < numRows_; j++)
{
const local_ordinal_type localRow = this->partitions_[this->partitionIndices_[i] + j];
size_t numEntries;
A.getLocalRowCopy(localRow, Indices(), Values(), numEntries);
size_t num_entries_found = 0;
for(size_t k = 0; k < numEntries; ++k)
{
const local_ordinal_type localCol = Indices[k];
// Skip off-process elements
//
// FIXME (mfh 24 Aug 2013) This assumes the following:
//
// 1. The column and row Maps begin with the same set of
// on-process entries, in the same order. That is,
// on-process row and column indices are the same.
// 2. All off-process indices in the column Map of the input
// matrix occur after that initial set.
if(static_cast<size_t> (localCol) >= MatrixInNumRows)
continue;
// for local column IDs, look for each ID in the list
// of columns hosted by this object
InverseLocalOrdinal jj = INVALID;
for(local_ordinal_type kk = 0; kk < numRows_; kk++)
{
if(localRows[kk] == localCol)
jj = kk;
}
if (jj != INVALID)
{
Indices_insert[num_entries_found] = localMaps_[i].getGlobalElement(jj);
Values_insert[num_entries_found] = Values[k];
num_entries_found++;
}
}
diagBlocks_[i]->insertGlobalValues(j, Indices_insert (0, num_entries_found),
Values_insert (0, num_entries_found));
}
// FIXME (mfh 24 Aug 2013) If we generalize the current set of
// assumptions on the column and row Maps (see note above), we may
// need to supply custom domain and range Maps to fillComplete().
diagBlocks_[i]->fillComplete ();
}
}
template<typename MatrixType, typename InverseType>
std::string SparseContainer<MatrixType, InverseType>::getName()
{
typedef ILUT<Tpetra::RowMatrix<scalar_type, local_ordinal_type, global_ordinal_type, node_type> > ILUTInverse;
#ifdef HAVE_IFPACK2_AMESOS2
typedef Details::Amesos2Wrapper<Tpetra::RowMatrix<scalar_type, local_ordinal_type, global_ordinal_type, node_type>> AmesosInverse;
if(std::is_same<InverseType, ILUTInverse>::value)
{
return "SparseILUT";
}
else if(std::is_same<InverseType, AmesosInverse>::value)
{
return "SparseAmesos";
}
else
{
throw std::logic_error("InverseType for SparseContainer must be Ifpack2::ILUT or Details::Amesos2Wrapper");
}
#else
// Macros can't have commas in their arguments, so we have to
// compute the bool first argument separately.
constexpr bool inverseTypeIsILUT = std::is_same<InverseType, ILUTInverse>::value;
TEUCHOS_TEST_FOR_EXCEPTION(! inverseTypeIsILUT, std::logic_error,
"InverseType for SparseContainer must be Ifpack2::ILUT<ROW>");
return "SparseILUT"; //the only supported sparse container specialization if no Amesos2
#endif
}
} // namespace Ifpack2
// For ETI
#include "Ifpack2_ILUT.hpp"
#ifdef HAVE_IFPACK2_AMESOS2
#include "Ifpack2_Details_Amesos2Wrapper.hpp"
#endif
// There's no need to instantiate for CrsMatrix too. All Ifpack2
// preconditioners can and should do dynamic casts if they need a type
// more specific than RowMatrix.
#ifdef HAVE_IFPACK2_AMESOS2
# define IFPACK2_SPARSECONTAINER_INSTANT(S,LO,GO,N) \
template class Ifpack2::SparseContainer< Tpetra::RowMatrix<S, LO, GO, N>, \
Ifpack2::ILUT<Tpetra::RowMatrix<S,LO,GO,N> > >; \
template class Ifpack2::SparseContainer< Tpetra::RowMatrix<S, LO, GO, N>, \
Ifpack2::Details::Amesos2Wrapper<Tpetra::RowMatrix<S,LO,GO,N> > >;
#else
# define IFPACK2_SPARSECONTAINER_INSTANT(S,LO,GO,N) \
template class Ifpack2::SparseContainer< Tpetra::RowMatrix<S,LO,GO,N>, \
Ifpack2::ILUT<Tpetra::RowMatrix<S, LO, GO, N> > >;
#endif
#endif // IFPACK2_SPARSECONTAINER_DEF_HPP
|