/usr/include/trilinos/Kokkos_Complex.hpp is in libtrilinos-kokkos-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 | /*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_COMPLEX_HPP
#define KOKKOS_COMPLEX_HPP
#include <Kokkos_Atomic.hpp>
#include <complex>
#include <iostream>
namespace Kokkos {
/// \class complex
/// \brief Partial reimplementation of std::complex that works as the
/// result of a Kokkos::parallel_reduce.
/// \tparam RealType The type of the real and imaginary parts of the
/// complex number. As with std::complex, this is only defined for
/// \c float, \c double, and <tt>long double</tt>. The latter is
/// currently forbidden in CUDA device kernels.
template<class RealType>
class complex {
private:
RealType re_, im_;
public:
//! The type of the real or imaginary parts of this complex number.
typedef RealType value_type;
//! Default constructor (initializes both real and imaginary parts to zero).
KOKKOS_INLINE_FUNCTION complex () :
re_ (0.0), im_ (0.0)
{}
//! Copy constructor.
KOKKOS_INLINE_FUNCTION complex (const complex<RealType>& src) :
re_ (src.re_), im_ (src.im_)
{}
//! Copy constructor from volatile.
KOKKOS_INLINE_FUNCTION complex (const volatile complex<RealType>& src) :
re_ (src.re_), im_ (src.im_)
{}
/// \brief Conversion constructor from std::complex.
///
/// This constructor cannot be called in a CUDA device function,
/// because std::complex's methods and nonmember functions are not
/// marked as CUDA device functions.
template<class InputRealType>
complex (const std::complex<InputRealType>& src) :
re_ (std::real (src)), im_ (std::imag (src))
{}
/// \brief Conversion operator to std::complex.
///
/// This operator cannot be called in a CUDA device function,
/// because std::complex's methods and nonmember functions are not
/// marked as CUDA device functions.
operator std::complex<RealType> () const {
return std::complex<RealType> (re_, im_);
}
/// \brief Constructor that takes just the real part, and sets the
/// imaginary part to zero.
template<class InputRealType>
KOKKOS_INLINE_FUNCTION complex (const InputRealType& val) :
re_ (val), im_ (0.0)
{}
//! Constructor that takes the real and imaginary parts.
template<class RealType1, class RealType2>
KOKKOS_INLINE_FUNCTION complex (const RealType1& re, const RealType2& im) :
re_ (re), im_ (im)
{}
//! Assignment operator.
template<class InputRealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>& operator= (const complex<InputRealType>& src) {
re_ = src.re_;
im_ = src.im_;
return *this;
}
/// \brief Assignment operator, for volatile <tt>*this</tt> and
/// nonvolatile input.
///
/// \param src [in] Input; right-hand side of the assignment.
///
/// This operator returns \c void instead of <tt>volatile
/// complex<RealType>& </tt>. See Kokkos Issue #177 for the
/// explanation. In practice, this means that you should not chain
/// assignments with volatile lvalues.
template<class InputRealType>
KOKKOS_INLINE_FUNCTION
void operator= (const complex<InputRealType>& src) volatile {
re_ = src.re_;
im_ = src.im_;
// We deliberately do not return anything here. See explanation
// in public documentation above.
}
//! Assignment operator.
template<class InputRealType>
KOKKOS_INLINE_FUNCTION
volatile complex<RealType>& operator= (const volatile complex<InputRealType>& src) volatile {
re_ = src.re_;
im_ = src.im_;
return *this;
}
//! Assignment operator.
template<class InputRealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>& operator= (const volatile complex<InputRealType>& src) {
re_ = src.re_;
im_ = src.im_;
return *this;
}
//! Assignment operator (from a real number).
template<class InputRealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>& operator= (const InputRealType& val) {
re_ = val;
im_ = static_cast<RealType> (0.0);
return *this;
}
//! Assignment operator (from a real number).
template<class InputRealType>
KOKKOS_INLINE_FUNCTION
void operator= (const InputRealType& val) volatile {
re_ = val;
im_ = static_cast<RealType> (0.0);
}
/// \brief Assignment operator from std::complex.
///
/// This constructor cannot be called in a CUDA device function,
/// because std::complex's methods and nonmember functions are not
/// marked as CUDA device functions.
template<class InputRealType>
complex<RealType>& operator= (const std::complex<InputRealType>& src) {
re_ = std::real (src);
im_ = std::imag (src);
return *this;
}
//! The imaginary part of this complex number.
KOKKOS_INLINE_FUNCTION RealType& imag () {
return im_;
}
//! The real part of this complex number.
KOKKOS_INLINE_FUNCTION RealType& real () {
return re_;
}
//! The imaginary part of this complex number.
KOKKOS_INLINE_FUNCTION const RealType imag () const {
return im_;
}
//! The real part of this complex number.
KOKKOS_INLINE_FUNCTION const RealType real () const {
return re_;
}
//! The imaginary part of this complex number (volatile overload).
KOKKOS_INLINE_FUNCTION volatile RealType& imag () volatile {
return im_;
}
//! The real part of this complex number (volatile overload).
KOKKOS_INLINE_FUNCTION volatile RealType& real () volatile {
return re_;
}
//! The imaginary part of this complex number (volatile overload).
KOKKOS_INLINE_FUNCTION const RealType imag () const volatile {
return im_;
}
//! The real part of this complex number (volatile overload).
KOKKOS_INLINE_FUNCTION const RealType real () const volatile {
return re_;
}
KOKKOS_INLINE_FUNCTION
complex<RealType>& operator += (const complex<RealType>& src) {
re_ += src.re_;
im_ += src.im_;
return *this;
}
KOKKOS_INLINE_FUNCTION
void operator += (const volatile complex<RealType>& src) volatile {
re_ += src.re_;
im_ += src.im_;
}
KOKKOS_INLINE_FUNCTION
complex<RealType>& operator += (const RealType& src) {
re_ += src;
return *this;
}
KOKKOS_INLINE_FUNCTION
void operator += (const volatile RealType& src) volatile {
re_ += src;
}
KOKKOS_INLINE_FUNCTION
complex<RealType>& operator -= (const complex<RealType>& src) {
re_ -= src.re_;
im_ -= src.im_;
return *this;
}
KOKKOS_INLINE_FUNCTION
complex<RealType>& operator -= (const RealType& src) {
re_ -= src;
return *this;
}
KOKKOS_INLINE_FUNCTION
complex<RealType>& operator *= (const complex<RealType>& src) {
const RealType realPart = re_ * src.re_ - im_ * src.im_;
const RealType imagPart = re_ * src.im_ + im_ * src.re_;
re_ = realPart;
im_ = imagPart;
return *this;
}
KOKKOS_INLINE_FUNCTION
void operator *= (const volatile complex<RealType>& src) volatile {
const RealType realPart = re_ * src.re_ - im_ * src.im_;
const RealType imagPart = re_ * src.im_ + im_ * src.re_;
re_ = realPart;
im_ = imagPart;
}
KOKKOS_INLINE_FUNCTION
complex<RealType>& operator *= (const RealType& src) {
re_ *= src;
im_ *= src;
return *this;
}
KOKKOS_INLINE_FUNCTION
void operator *= (const volatile RealType& src) volatile {
re_ *= src;
im_ *= src;
}
KOKKOS_INLINE_FUNCTION
complex<RealType>& operator /= (const complex<RealType>& y) {
// Scale (by the "1-norm" of y) to avoid unwarranted overflow.
// If the real part is +/-Inf and the imaginary part is -/+Inf,
// this won't change the result.
const RealType s = ::fabs (y.real ()) + ::fabs (y.imag ());
// If s is 0, then y is zero, so x/y == real(x)/0 + i*imag(x)/0.
// In that case, the relation x/y == (x/s) / (y/s) doesn't hold,
// because y/s is NaN.
if (s == 0.0) {
this->re_ /= s;
this->im_ /= s;
}
else {
const complex<RealType> x_scaled (this->re_ / s, this->im_ / s);
const complex<RealType> y_conj_scaled (y.re_ / s, -(y.im_) / s);
const RealType y_scaled_abs = y_conj_scaled.re_ * y_conj_scaled.re_ +
y_conj_scaled.im_ * y_conj_scaled.im_; // abs(y) == abs(conj(y))
*this = x_scaled * y_conj_scaled;
*this /= y_scaled_abs;
}
return *this;
}
KOKKOS_INLINE_FUNCTION
complex<RealType>& operator /= (const RealType& src) {
re_ /= src;
im_ /= src;
return *this;
}
};
//! Binary + operator for complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>
operator + (const complex<RealType>& x, const complex<RealType>& y) {
return complex<RealType> (x.real () + y.real (), x.imag () + y.imag ());
}
//! Unary + operator for complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>
operator + (const complex<RealType>& x) {
return x;
}
//! Binary - operator for complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>
operator - (const complex<RealType>& x, const complex<RealType>& y) {
return complex<RealType> (x.real () - y.real (), x.imag () - y.imag ());
}
//! Unary - operator for complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>
operator - (const complex<RealType>& x) {
return complex<RealType> (-x.real (), -x.imag ());
}
//! Binary * operator for complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>
operator * (const complex<RealType>& x, const complex<RealType>& y) {
return complex<RealType> (x.real () * y.real () - x.imag () * y.imag (),
x.real () * y.imag () + x.imag () * y.real ());
}
/// \brief Binary * operator for std::complex and complex.
///
/// This function exists because GCC 4.7.2 (and perhaps other
/// compilers) are not able to deduce that they can multiply
/// std::complex by Kokkos::complex, by first converting std::complex
/// to Kokkos::complex.
///
/// This function cannot be called in a CUDA device function, because
/// std::complex's methods and nonmember functions are not marked as
/// CUDA device functions.
template<class RealType>
complex<RealType>
operator * (const std::complex<RealType>& x, const complex<RealType>& y) {
return complex<RealType> (x.real () * y.real () - x.imag () * y.imag (),
x.real () * y.imag () + x.imag () * y.real ());
}
/// \brief Binary * operator for RealType times complex.
///
/// This function exists because the compiler doesn't know that
/// RealType and complex<RealType> commute with respect to operator*.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>
operator * (const RealType& x, const complex<RealType>& y) {
return complex<RealType> (x * y.real (), x * y.imag ());
}
//! Imaginary part of a complex number.
template<class RealType>
KOKKOS_INLINE_FUNCTION
RealType imag (const complex<RealType>& x) {
return x.imag ();
}
//! Real part of a complex number.
template<class RealType>
KOKKOS_INLINE_FUNCTION
RealType real (const complex<RealType>& x) {
return x.real ();
}
//! Absolute value (magnitude) of a complex number.
template<class RealType>
KOKKOS_INLINE_FUNCTION
RealType abs (const complex<RealType>& x) {
// FIXME (mfh 31 Oct 2014) Scale to avoid unwarranted overflow.
return ::sqrt (real (x) * real (x) + imag (x) * imag (x));
}
//! Conjugate of a complex number.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType> conj (const complex<RealType>& x) {
return complex<RealType> (real (x), -imag (x));
}
//! Binary operator / for complex and real numbers
template<class RealType1, class RealType2>
KOKKOS_INLINE_FUNCTION
complex<RealType1>
operator / (const complex<RealType1>& x, const RealType2& y) {
return complex<RealType1> (real (x) / y, imag (x) / y);
}
//! Binary operator / for complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>
operator / (const complex<RealType>& x, const complex<RealType>& y) {
// Scale (by the "1-norm" of y) to avoid unwarranted overflow.
// If the real part is +/-Inf and the imaginary part is -/+Inf,
// this won't change the result.
const RealType s = ::fabs (real (y)) + ::fabs (imag (y));
// If s is 0, then y is zero, so x/y == real(x)/0 + i*imag(x)/0.
// In that case, the relation x/y == (x/s) / (y/s) doesn't hold,
// because y/s is NaN.
if (s == 0.0) {
return complex<RealType> (real (x) / s, imag (x) / s);
}
else {
const complex<RealType> x_scaled (real (x) / s, imag (x) / s);
const complex<RealType> y_conj_scaled (real (y) / s, -imag (y) / s);
const RealType y_scaled_abs = real (y_conj_scaled) * real (y_conj_scaled) +
imag (y_conj_scaled) * imag (y_conj_scaled); // abs(y) == abs(conj(y))
complex<RealType> result = x_scaled * y_conj_scaled;
result /= y_scaled_abs;
return result;
}
}
//! Equality operator for two complex numbers.
template<class RealType>
KOKKOS_INLINE_FUNCTION
bool operator == (const complex<RealType>& x, const complex<RealType>& y) {
return real (x) == real (y) && imag (x) == imag (y);
}
//! Equality operator for std::complex and Kokkos::complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
bool operator == (const std::complex<RealType>& x, const complex<RealType>& y) {
return std::real (x) == real (y) && std::imag (x) == imag (y);
}
//! Equality operator for complex and real number.
template<class RealType1, class RealType2>
KOKKOS_INLINE_FUNCTION
bool operator == (const complex<RealType1>& x, const RealType2& y) {
return real (x) == y && imag (x) == static_cast<RealType1> (0.0);
}
//! Equality operator for real and complex number.
template<class RealType>
KOKKOS_INLINE_FUNCTION
bool operator == (const RealType& x, const complex<RealType>& y) {
return y == x;
}
//! Inequality operator for two complex numbers.
template<class RealType>
KOKKOS_INLINE_FUNCTION
bool operator != (const complex<RealType>& x, const complex<RealType>& y) {
return real (x) != real (y) || imag (x) != imag (y);
}
//! Inequality operator for std::complex and Kokkos::complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
bool operator != (const std::complex<RealType>& x, const complex<RealType>& y) {
return std::real (x) != real (y) || std::imag (x) != imag (y);
}
//! Inequality operator for complex and real number.
template<class RealType1, class RealType2>
KOKKOS_INLINE_FUNCTION
bool operator != (const complex<RealType1>& x, const RealType2& y) {
return real (x) != y || imag (x) != static_cast<RealType1> (0.0);
}
//! Inequality operator for real and complex number.
template<class RealType>
KOKKOS_INLINE_FUNCTION
bool operator != (const RealType& x, const complex<RealType>& y) {
return y != x;
}
template<class RealType>
std::ostream& operator << (std::ostream& os, const complex<RealType>& x) {
const std::complex<RealType> x_std (Kokkos::real (x), Kokkos::imag (x));
os << x_std;
return os;
}
template<class RealType>
std::ostream& operator >> (std::ostream& os, complex<RealType>& x) {
std::complex<RealType> x_std;
os >> x_std;
x = x_std; // only assigns on success of above
return os;
}
} // namespace Kokkos
#endif // KOKKOS_COMPLEX_HPP
|