This file is indexed.

/usr/include/trilinos/Kokkos_Complex.hpp is in libtrilinos-kokkos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
/*
//@HEADER
// ************************************************************************
//
//                        Kokkos v. 2.0
//              Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact  H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_COMPLEX_HPP
#define KOKKOS_COMPLEX_HPP

#include <Kokkos_Atomic.hpp>
#include <complex>
#include <iostream>

namespace Kokkos {

/// \class complex
/// \brief Partial reimplementation of std::complex that works as the
///   result of a Kokkos::parallel_reduce.
/// \tparam RealType The type of the real and imaginary parts of the
///   complex number.  As with std::complex, this is only defined for
///   \c float, \c double, and <tt>long double</tt>.  The latter is
///   currently forbidden in CUDA device kernels.
template<class RealType>
class complex {
private:
  RealType re_, im_;

public:
  //! The type of the real or imaginary parts of this complex number.
  typedef RealType value_type;

  //! Default constructor (initializes both real and imaginary parts to zero).
  KOKKOS_INLINE_FUNCTION complex () :
    re_ (0.0), im_ (0.0)
  {}

  //! Copy constructor.
  KOKKOS_INLINE_FUNCTION complex (const complex<RealType>& src) :
    re_ (src.re_), im_ (src.im_)
  {}

  //! Copy constructor from volatile.
  KOKKOS_INLINE_FUNCTION complex (const volatile complex<RealType>& src) :
    re_ (src.re_), im_ (src.im_)
  {}

  /// \brief Conversion constructor from std::complex.
  ///
  /// This constructor cannot be called in a CUDA device function,
  /// because std::complex's methods and nonmember functions are not
  /// marked as CUDA device functions.
  template<class InputRealType>
  complex (const std::complex<InputRealType>& src) :
    re_ (std::real (src)), im_ (std::imag (src))
  {}

  /// \brief Conversion operator to std::complex.
  ///
  /// This operator cannot be called in a CUDA device function,
  /// because std::complex's methods and nonmember functions are not
  /// marked as CUDA device functions.
  operator std::complex<RealType> () const {
    return std::complex<RealType> (re_, im_);
  }

  /// \brief Constructor that takes just the real part, and sets the
  ///   imaginary part to zero.
  template<class InputRealType>
  KOKKOS_INLINE_FUNCTION complex (const InputRealType& val) :
    re_ (val), im_ (0.0)
  {}

  //! Constructor that takes the real and imaginary parts.
  template<class RealType1, class RealType2>
  KOKKOS_INLINE_FUNCTION complex (const RealType1& re, const RealType2& im) :
    re_ (re), im_ (im)
  {}

  //! Assignment operator.
  template<class InputRealType>
  KOKKOS_INLINE_FUNCTION
  complex<RealType>& operator= (const complex<InputRealType>& src) {
    re_ = src.re_;
    im_ = src.im_;
    return *this;
  }

  /// \brief Assignment operator, for volatile <tt>*this</tt> and
  ///   nonvolatile input.
  ///
  /// \param src [in] Input; right-hand side of the assignment.
  ///
  /// This operator returns \c void instead of <tt>volatile
  /// complex<RealType>& </tt>.  See Kokkos Issue #177 for the
  /// explanation.  In practice, this means that you should not chain
  /// assignments with volatile lvalues.
  template<class InputRealType>
  KOKKOS_INLINE_FUNCTION
  void operator= (const complex<InputRealType>& src) volatile {
    re_ = src.re_;
    im_ = src.im_;
    // We deliberately do not return anything here.  See explanation
    // in public documentation above.
  }

  //! Assignment operator.
  template<class InputRealType>
  KOKKOS_INLINE_FUNCTION
  volatile complex<RealType>& operator= (const volatile complex<InputRealType>& src) volatile {
    re_ = src.re_;
    im_ = src.im_;
    return *this;
  }

  //! Assignment operator.
  template<class InputRealType>
  KOKKOS_INLINE_FUNCTION
  complex<RealType>& operator= (const volatile complex<InputRealType>& src) {
    re_ = src.re_;
    im_ = src.im_;
    return *this;
  }

  //! Assignment operator (from a real number).
  template<class InputRealType>
  KOKKOS_INLINE_FUNCTION
  complex<RealType>& operator= (const InputRealType& val) {
    re_ = val;
    im_ = static_cast<RealType> (0.0);
    return *this;
  }

  //! Assignment operator (from a real number).
  template<class InputRealType>
  KOKKOS_INLINE_FUNCTION
  void operator= (const InputRealType& val) volatile {
    re_ = val;
    im_ = static_cast<RealType> (0.0);
  }

  /// \brief Assignment operator from std::complex.
  ///
  /// This constructor cannot be called in a CUDA device function,
  /// because std::complex's methods and nonmember functions are not
  /// marked as CUDA device functions.
  template<class InputRealType>
  complex<RealType>& operator= (const std::complex<InputRealType>& src) {
    re_ = std::real (src);
    im_ = std::imag (src);
    return *this;
  }

  //! The imaginary part of this complex number.
  KOKKOS_INLINE_FUNCTION RealType& imag () {
    return im_;
  }

  //! The real part of this complex number.
  KOKKOS_INLINE_FUNCTION RealType& real () {
    return re_;
  }

  //! The imaginary part of this complex number.
  KOKKOS_INLINE_FUNCTION const RealType imag () const {
    return im_;
  }

  //! The real part of this complex number.
  KOKKOS_INLINE_FUNCTION const RealType real () const {
    return re_;
  }

  //! The imaginary part of this complex number (volatile overload).
  KOKKOS_INLINE_FUNCTION volatile RealType& imag () volatile {
    return im_;
  }

  //! The real part of this complex number (volatile overload).
  KOKKOS_INLINE_FUNCTION volatile RealType& real () volatile {
    return re_;
  }

  //! The imaginary part of this complex number (volatile overload).
  KOKKOS_INLINE_FUNCTION const RealType imag () const volatile {
    return im_;
  }

  //! The real part of this complex number (volatile overload).
  KOKKOS_INLINE_FUNCTION const RealType real () const volatile {
    return re_;
  }

  KOKKOS_INLINE_FUNCTION
  complex<RealType>& operator += (const complex<RealType>& src) {
    re_ += src.re_;
    im_ += src.im_;
    return *this;
  }

  KOKKOS_INLINE_FUNCTION
  void operator += (const volatile complex<RealType>& src) volatile {
    re_ += src.re_;
    im_ += src.im_;
  }

  KOKKOS_INLINE_FUNCTION
  complex<RealType>& operator += (const RealType& src) {
    re_ += src;
    return *this;
  }

  KOKKOS_INLINE_FUNCTION
  void operator += (const volatile RealType& src) volatile {
    re_ += src;
  }

  KOKKOS_INLINE_FUNCTION
  complex<RealType>& operator -= (const complex<RealType>& src) {
    re_ -= src.re_;
    im_ -= src.im_;
    return *this;
  }

  KOKKOS_INLINE_FUNCTION
  complex<RealType>& operator -= (const RealType& src) {
    re_ -= src;
    return *this;
  }

  KOKKOS_INLINE_FUNCTION
  complex<RealType>& operator *= (const complex<RealType>& src) {
    const RealType realPart = re_ * src.re_ - im_ * src.im_;
    const RealType imagPart = re_ * src.im_ + im_ * src.re_;
    re_ = realPart;
    im_ = imagPart;
    return *this;
  }

  KOKKOS_INLINE_FUNCTION
  void operator *= (const volatile complex<RealType>& src) volatile {
    const RealType realPart = re_ * src.re_ - im_ * src.im_;
    const RealType imagPart = re_ * src.im_ + im_ * src.re_;
    re_ = realPart;
    im_ = imagPart;
  }

  KOKKOS_INLINE_FUNCTION
  complex<RealType>& operator *= (const RealType& src) {
    re_ *= src;
    im_ *= src;
    return *this;
  }

  KOKKOS_INLINE_FUNCTION
  void operator *= (const volatile RealType& src) volatile {
    re_ *= src;
    im_ *= src;
  }

  KOKKOS_INLINE_FUNCTION
  complex<RealType>& operator /= (const complex<RealType>& y) {
    // Scale (by the "1-norm" of y) to avoid unwarranted overflow.
    // If the real part is +/-Inf and the imaginary part is -/+Inf,
    // this won't change the result.
    const RealType s = ::fabs (y.real ()) + ::fabs (y.imag ());

    // If s is 0, then y is zero, so x/y == real(x)/0 + i*imag(x)/0.
    // In that case, the relation x/y == (x/s) / (y/s) doesn't hold,
    // because y/s is NaN.
    if (s == 0.0) {
      this->re_ /= s;
      this->im_ /= s;
    }
    else {
      const complex<RealType> x_scaled (this->re_ / s, this->im_ / s);
      const complex<RealType> y_conj_scaled (y.re_ / s, -(y.im_) / s);
      const RealType y_scaled_abs = y_conj_scaled.re_ * y_conj_scaled.re_ +
        y_conj_scaled.im_ * y_conj_scaled.im_; // abs(y) == abs(conj(y))
      *this = x_scaled * y_conj_scaled;
      *this /= y_scaled_abs;
    }
    return *this;
  }

  KOKKOS_INLINE_FUNCTION
  complex<RealType>& operator /= (const RealType& src) {
    re_ /= src;
    im_ /= src;
    return *this;
  }
};

//! Binary + operator for complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>
operator + (const complex<RealType>& x, const complex<RealType>& y) {
  return complex<RealType> (x.real () + y.real (), x.imag () + y.imag ());
}

//! Unary + operator for complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>
operator + (const complex<RealType>& x) {
  return x;
}

//! Binary - operator for complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>
operator - (const complex<RealType>& x, const complex<RealType>& y) {
  return complex<RealType> (x.real () - y.real (), x.imag () - y.imag ());
}

//! Unary - operator for complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>
operator - (const complex<RealType>& x) {
  return complex<RealType> (-x.real (), -x.imag ());
}

//! Binary * operator for complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>
operator * (const complex<RealType>& x, const complex<RealType>& y) {
  return complex<RealType> (x.real () * y.real () - x.imag () * y.imag (),
                            x.real () * y.imag () + x.imag () * y.real ());
}

/// \brief Binary * operator for std::complex and complex.
///
/// This function exists because GCC 4.7.2 (and perhaps other
/// compilers) are not able to deduce that they can multiply
/// std::complex by Kokkos::complex, by first converting std::complex
/// to Kokkos::complex.
///
/// This function cannot be called in a CUDA device function, because
/// std::complex's methods and nonmember functions are not marked as
/// CUDA device functions.
template<class RealType>
complex<RealType>
operator * (const std::complex<RealType>& x, const complex<RealType>& y) {
  return complex<RealType> (x.real () * y.real () - x.imag () * y.imag (),
                            x.real () * y.imag () + x.imag () * y.real ());
}

/// \brief Binary * operator for RealType times complex.
///
/// This function exists because the compiler doesn't know that
/// RealType and complex<RealType> commute with respect to operator*.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>
operator * (const RealType& x, const complex<RealType>& y) {
  return complex<RealType> (x * y.real (), x * y.imag ());
}


//! Imaginary part of a complex number.
template<class RealType>
KOKKOS_INLINE_FUNCTION
RealType imag (const complex<RealType>& x) {
  return x.imag ();
}

//! Real part of a complex number.
template<class RealType>
KOKKOS_INLINE_FUNCTION
RealType real (const complex<RealType>& x) {
  return x.real ();
}

//! Absolute value (magnitude) of a complex number.
template<class RealType>
KOKKOS_INLINE_FUNCTION
RealType abs (const complex<RealType>& x) {
  // FIXME (mfh 31 Oct 2014) Scale to avoid unwarranted overflow.
  return ::sqrt (real (x) * real (x) + imag (x) * imag (x));
}

//! Conjugate of a complex number.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType> conj (const complex<RealType>& x) {
  return complex<RealType> (real (x), -imag (x));
}


//! Binary operator / for complex and real numbers
template<class RealType1, class RealType2>
KOKKOS_INLINE_FUNCTION
complex<RealType1>
operator / (const complex<RealType1>& x, const RealType2& y) {
  return complex<RealType1> (real (x) / y, imag (x) / y);
}

//! Binary operator / for complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
complex<RealType>
operator / (const complex<RealType>& x, const complex<RealType>& y) {
  // Scale (by the "1-norm" of y) to avoid unwarranted overflow.
  // If the real part is +/-Inf and the imaginary part is -/+Inf,
  // this won't change the result.
  const RealType s = ::fabs (real (y)) + ::fabs (imag (y));

  // If s is 0, then y is zero, so x/y == real(x)/0 + i*imag(x)/0.
  // In that case, the relation x/y == (x/s) / (y/s) doesn't hold,
  // because y/s is NaN.
  if (s == 0.0) {
    return complex<RealType> (real (x) / s, imag (x) / s);
  }
  else {
    const complex<RealType> x_scaled (real (x) / s, imag (x) / s);
    const complex<RealType> y_conj_scaled (real (y) / s, -imag (y) / s);
    const RealType y_scaled_abs = real (y_conj_scaled) * real (y_conj_scaled) +
      imag (y_conj_scaled) * imag (y_conj_scaled); // abs(y) == abs(conj(y))
    complex<RealType> result = x_scaled * y_conj_scaled;
    result /= y_scaled_abs;
    return result;
  }
}

//! Equality operator for two complex numbers.
template<class RealType>
KOKKOS_INLINE_FUNCTION
bool operator == (const complex<RealType>& x, const complex<RealType>& y) {
  return real (x) == real (y) && imag (x) == imag (y);
}

//! Equality operator for std::complex and Kokkos::complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
bool operator == (const std::complex<RealType>& x, const complex<RealType>& y) {
  return std::real (x) == real (y) && std::imag (x) == imag (y);
}

//! Equality operator for complex and real number.
template<class RealType1, class RealType2>
KOKKOS_INLINE_FUNCTION
bool operator == (const complex<RealType1>& x, const RealType2& y) {
  return real (x) == y && imag (x) == static_cast<RealType1> (0.0);
}

//! Equality operator for real and complex number.
template<class RealType>
KOKKOS_INLINE_FUNCTION
bool operator == (const RealType& x, const complex<RealType>& y) {
  return y == x;
}

//! Inequality operator for two complex numbers.
template<class RealType>
KOKKOS_INLINE_FUNCTION
bool operator != (const complex<RealType>& x, const complex<RealType>& y) {
  return real (x) != real (y) || imag (x) != imag (y);
}

//! Inequality operator for std::complex and Kokkos::complex.
template<class RealType>
KOKKOS_INLINE_FUNCTION
bool operator != (const std::complex<RealType>& x, const complex<RealType>& y) {
  return std::real (x) != real (y) || std::imag (x) != imag (y);
}

//! Inequality operator for complex and real number.
template<class RealType1, class RealType2>
KOKKOS_INLINE_FUNCTION
bool operator != (const complex<RealType1>& x, const RealType2& y) {
  return real (x) != y || imag (x) != static_cast<RealType1> (0.0);
}

//! Inequality operator for real and complex number.
template<class RealType>
KOKKOS_INLINE_FUNCTION
bool operator != (const RealType& x, const complex<RealType>& y) {
  return y != x;
}

template<class RealType>
std::ostream& operator << (std::ostream& os, const complex<RealType>& x) {
  const std::complex<RealType> x_std (Kokkos::real (x), Kokkos::imag (x));
  os << x_std;
  return os;
}

template<class RealType>
std::ostream& operator >> (std::ostream& os, complex<RealType>& x) {
  std::complex<RealType> x_std;
  os >> x_std;
  x = x_std; // only assigns on success of above
  return os;
}


} // namespace Kokkos

#endif // KOKKOS_COMPLEX_HPP