This file is indexed.

/usr/include/trilinos/Threads/Kokkos_ThreadsExec.hpp is in libtrilinos-kokkos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
/*
//@HEADER
// ************************************************************************
// 
//                        Kokkos v. 2.0
//              Copyright (2014) Sandia Corporation
// 
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact  H. Carter Edwards (hcedwar@sandia.gov)
// 
// ************************************************************************
//@HEADER
*/

#ifndef KOKKOS_THREADSEXEC_HPP
#define KOKKOS_THREADSEXEC_HPP

#include <stdio.h>

#include <utility>
#include <impl/Kokkos_spinwait.hpp>
#include <impl/Kokkos_FunctorAdapter.hpp>

#include <Kokkos_Atomic.hpp>

//----------------------------------------------------------------------------

namespace Kokkos {
namespace Impl {

class ThreadsExec {
public:

  // Fan array has log_2(NT) reduction threads plus 2 scan threads
  // Currently limited to 16k threads.
  enum { MAX_FAN_COUNT    = 16 };
  enum { MAX_THREAD_COUNT = 1 << ( MAX_FAN_COUNT - 2 ) };
  enum { VECTOR_LENGTH    = 8 };

  /** \brief States of a worker thread */
  enum { Terminating ///<  Termination in progress
       , Inactive    ///<  Exists, waiting for work
       , Active      ///<  Exists, performing work
       , Rendezvous  ///<  Exists, waiting in a barrier or reduce

       , ScanCompleted
       , ScanAvailable
       , ReductionAvailable
       };

private:

  friend class Kokkos::Threads ;

  // Fan-in operations' root is the highest ranking thread
  // to place the 'scan' reduction intermediate values on
  // the threads that need them.
  // For a simple reduction the thread location is arbitrary.

  ThreadsExec * const * m_pool_base ; ///< Base for pool fan-in

  void *        m_scratch ;
  int           m_scratch_reduce_end ;
  int           m_scratch_thread_end ;
  int           m_numa_rank ;
  int           m_numa_core_rank ;
  int           m_pool_rank ;
  int           m_pool_rank_rev ;
  int           m_pool_size ;
  int           m_pool_fan_size ;
  int volatile  m_pool_state ;  ///< State for global synchronizations

  // Members for dynamic scheduling
  // Which thread am I stealing from currently
  int m_current_steal_target;
  // This thread's owned work_range
  Kokkos::pair<long,long> m_work_range KOKKOS_ALIGN_16;
  // Team Offset if one thread determines work_range for others
  long m_team_work_index;

  // Is this thread stealing (i.e. its owned work_range is exhausted
  bool m_stealing;

  static void global_lock();
  static void global_unlock();
  static bool spawn();

  static void execute_resize_scratch( ThreadsExec & , const void * );
  static void execute_sleep(          ThreadsExec & , const void * );

  ThreadsExec( const ThreadsExec & );
  ThreadsExec & operator = ( const ThreadsExec & );

  static void execute_serial( void (*)( ThreadsExec & , const void * ) );

public:

  KOKKOS_INLINE_FUNCTION int pool_size() const { return m_pool_size ; }
  KOKKOS_INLINE_FUNCTION int pool_rank() const { return m_pool_rank ; }
  KOKKOS_INLINE_FUNCTION int numa_rank() const { return m_numa_rank ; }
  KOKKOS_INLINE_FUNCTION int numa_core_rank() const { return m_numa_core_rank ; }
  inline long team_work_index() const { return m_team_work_index ; }

  static int get_thread_count();
  static ThreadsExec * get_thread( const int init_thread_rank );

  inline void * reduce_memory() const { return m_scratch ; }
  KOKKOS_INLINE_FUNCTION  void * scratch_memory() const
    { return reinterpret_cast<unsigned char *>(m_scratch) + m_scratch_reduce_end ; }

  KOKKOS_INLINE_FUNCTION  int volatile & state() { return m_pool_state ; }
  KOKKOS_INLINE_FUNCTION  ThreadsExec * const * pool_base() const { return m_pool_base ; }

  static void driver(void);

  ~ThreadsExec();
  ThreadsExec();

  static void * resize_scratch( size_t reduce_size , size_t thread_size );

  static void * root_reduce_scratch();

  static bool is_process();

  static void verify_is_process( const std::string & , const bool initialized );

  static int is_initialized();

  static void initialize( unsigned thread_count ,
                          unsigned use_numa_count ,
                          unsigned use_cores_per_numa ,
                          bool allow_asynchronous_threadpool );

  static void finalize();

  /* Given a requested team size, return valid team size */
  static unsigned team_size_valid( unsigned );

  static void print_configuration( std::ostream & , const bool detail = false );

  //------------------------------------

  static void wait_yield( volatile int & , const int );

  //------------------------------------
  // All-thread functions:

  inline
  int all_reduce( const int value )
    {
      // Make sure there is enough scratch space:
      const int rev_rank = m_pool_size - ( m_pool_rank + 1 );

      *((volatile int*) reduce_memory()) = value ;

      memory_fence();

      // Fan-in reduction with highest ranking thread as the root
      for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
        // Wait: Active -> Rendezvous
        Impl::spinwait( m_pool_base[ rev_rank + (1<<i) ]->m_pool_state , ThreadsExec::Active );
      }

      if ( rev_rank ) {
        m_pool_state = ThreadsExec::Rendezvous ;
        // Wait: Rendezvous -> Active
        Impl::spinwait( m_pool_state , ThreadsExec::Rendezvous );
      }
      else {
        // Root thread does the reduction and broadcast

        int accum = 0 ;

        for ( int rank = 0 ; rank < m_pool_size ; ++rank ) {
          accum += *((volatile int *) get_thread( rank )->reduce_memory());
        }

        for ( int rank = 0 ; rank < m_pool_size ; ++rank ) {
          *((volatile int *) get_thread( rank )->reduce_memory()) = accum ;
        }

        memory_fence();

        for ( int rank = 0 ; rank < m_pool_size ; ++rank ) {
          get_thread( rank )->m_pool_state = ThreadsExec::Active ;
        }
      }

      return *((volatile int*) reduce_memory());
    }

  inline
  void barrier( )
    {
      // Make sure there is enough scratch space:
      const int rev_rank = m_pool_size - ( m_pool_rank + 1 );

      memory_fence();

      // Fan-in reduction with highest ranking thread as the root
      for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
        // Wait: Active -> Rendezvous
        Impl::spinwait( m_pool_base[ rev_rank + (1<<i) ]->m_pool_state , ThreadsExec::Active );
      }

      if ( rev_rank ) {
        m_pool_state = ThreadsExec::Rendezvous ;
        // Wait: Rendezvous -> Active
        Impl::spinwait( m_pool_state , ThreadsExec::Rendezvous );
      }
      else {
        // Root thread does the reduction and broadcast

        memory_fence();

        for ( int rank = 0 ; rank < m_pool_size ; ++rank ) {
          get_thread( rank )->m_pool_state = ThreadsExec::Active ;
        }
      }
    }

  //------------------------------------
  // All-thread functions:

  template< class FunctorType , class ArgTag >
  inline
  void fan_in_reduce( const FunctorType & f ) const
    {
      typedef Kokkos::Impl::FunctorValueJoin< FunctorType , ArgTag > Join ;
      typedef Kokkos::Impl::FunctorFinal<     FunctorType , ArgTag > Final ;

      const int rev_rank  = m_pool_size - ( m_pool_rank + 1 );

      for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {

        ThreadsExec & fan = *m_pool_base[ rev_rank + ( 1 << i ) ] ;

        Impl::spinwait( fan.m_pool_state , ThreadsExec::Active );

        Join::join( f , reduce_memory() , fan.reduce_memory() );
      }

      if ( ! rev_rank ) {
        Final::final( f , reduce_memory() );
      }
    }

  inline
  void fan_in() const
    {
      const int rev_rank = m_pool_size - ( m_pool_rank + 1 );

      for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
        Impl::spinwait( m_pool_base[rev_rank+(1<<i)]->m_pool_state , ThreadsExec::Active );
      }
    }

  template< class FunctorType , class ArgTag >
  inline
  void scan_large( const FunctorType & f )
    {
      // Sequence of states:
      //  0) Active             : entry and exit state
      //  1) ReductionAvailable : reduction value available
      //  2) ScanAvailable      : inclusive scan value available
      //  3) Rendezvous         : All threads inclusive scan value are available
      //  4) ScanCompleted      : exclusive scan value copied

      typedef Kokkos::Impl::FunctorValueTraits< FunctorType , ArgTag > Traits ;
      typedef Kokkos::Impl::FunctorValueJoin<   FunctorType , ArgTag > Join ;
      typedef Kokkos::Impl::FunctorValueInit<   FunctorType , ArgTag > Init ;

      typedef typename Traits::value_type scalar_type ;

      const int      rev_rank = m_pool_size - ( m_pool_rank + 1 );
      const unsigned count    = Traits::value_count( f );

      scalar_type * const work_value = (scalar_type *) reduce_memory();

      //--------------------------------
      // Fan-in reduction with highest ranking thread as the root
      for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
        ThreadsExec & fan = *m_pool_base[ rev_rank + (1<<i) ];

        // Wait: Active -> ReductionAvailable (or ScanAvailable)
        Impl::spinwait( fan.m_pool_state , ThreadsExec::Active );
        Join::join( f , work_value , fan.reduce_memory() );
      }

      // Copy reduction value to scan value before releasing from this phase.
      for ( unsigned i = 0 ; i < count ; ++i ) { work_value[i+count] = work_value[i] ; }

      if ( rev_rank ) {

        // Set: Active -> ReductionAvailable
        m_pool_state = ThreadsExec::ReductionAvailable ;

        // Wait for contributing threads' scan value to be available.
        if ( ( 1 << m_pool_fan_size ) < ( m_pool_rank + 1 ) ) {
          ThreadsExec & th = *m_pool_base[ rev_rank + ( 1 << m_pool_fan_size ) ] ;

          // Wait: Active             -> ReductionAvailable
          // Wait: ReductionAvailable -> ScanAvailable
          Impl::spinwait( th.m_pool_state , ThreadsExec::Active );
          Impl::spinwait( th.m_pool_state , ThreadsExec::ReductionAvailable );

          Join::join( f , work_value + count , ((scalar_type *)th.reduce_memory()) + count );
        }

        // This thread has completed inclusive scan
        // Set: ReductionAvailable -> ScanAvailable
        m_pool_state = ThreadsExec::ScanAvailable ;

        // Wait for all threads to complete inclusive scan
        // Wait: ScanAvailable -> Rendezvous
        Impl::spinwait( m_pool_state , ThreadsExec::ScanAvailable );
      }

      //--------------------------------

      for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
        ThreadsExec & fan = *m_pool_base[ rev_rank + (1<<i) ];
        // Wait: ReductionAvailable -> ScanAvailable
        Impl::spinwait( fan.m_pool_state , ThreadsExec::ReductionAvailable );
        // Set: ScanAvailable -> Rendezvous
        fan.m_pool_state = ThreadsExec::Rendezvous ;
      }

      // All threads have completed the inclusive scan.
      // All non-root threads are in the Rendezvous state.
      // Threads are free to overwrite their reduction value.
      //--------------------------------

      if ( ( rev_rank + 1 ) < m_pool_size ) {
        // Exclusive scan: copy the previous thread's inclusive scan value

        ThreadsExec & th = *m_pool_base[ rev_rank + 1 ] ; // Not the root thread

        const scalar_type * const src_value = ((scalar_type *)th.reduce_memory()) + count ;

        for ( unsigned j = 0 ; j < count ; ++j ) { work_value[j] = src_value[j]; }
      }
      else {
        (void) Init::init( f , work_value );
      }

      //--------------------------------
      // Wait for all threads to copy previous thread's inclusive scan value
      // Wait for all threads: Rendezvous -> ScanCompleted
      for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
        Impl::spinwait( m_pool_base[ rev_rank + (1<<i) ]->m_pool_state , ThreadsExec::Rendezvous );
      }
      if ( rev_rank ) {
        // Set: ScanAvailable -> ScanCompleted
        m_pool_state = ThreadsExec::ScanCompleted ;
        // Wait: ScanCompleted -> Active
        Impl::spinwait( m_pool_state , ThreadsExec::ScanCompleted );
      }
      // Set: ScanCompleted -> Active
      for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
        m_pool_base[ rev_rank + (1<<i) ]->m_pool_state = ThreadsExec::Active ;
      }
    }

  template< class FunctorType , class ArgTag >
  inline
  void scan_small( const FunctorType & f )
    {
      typedef Kokkos::Impl::FunctorValueTraits< FunctorType , ArgTag > Traits ;
      typedef Kokkos::Impl::FunctorValueJoin<   FunctorType , ArgTag > Join ;
      typedef Kokkos::Impl::FunctorValueInit<   FunctorType , ArgTag > Init ;

      typedef typename Traits::value_type scalar_type ;

      const int      rev_rank = m_pool_size - ( m_pool_rank + 1 );
      const unsigned count    = Traits::value_count( f );

      scalar_type * const work_value = (scalar_type *) reduce_memory();

      //--------------------------------
      // Fan-in reduction with highest ranking thread as the root
      for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
        // Wait: Active -> Rendezvous
        Impl::spinwait( m_pool_base[ rev_rank + (1<<i) ]->m_pool_state , ThreadsExec::Active );
      }

      for ( unsigned i = 0 ; i < count ; ++i ) { work_value[i+count] = work_value[i]; }

      if ( rev_rank ) {
        m_pool_state = ThreadsExec::Rendezvous ;
        // Wait: Rendezvous -> Active
        Impl::spinwait( m_pool_state , ThreadsExec::Rendezvous );
      }
      else {
        // Root thread does the thread-scan before releasing threads

        scalar_type * ptr_prev = 0 ;

        for ( int rank = 0 ; rank < m_pool_size ; ++rank ) {
          scalar_type * const ptr = (scalar_type *) get_thread( rank )->reduce_memory();
          if ( rank ) {
            for ( unsigned i = 0 ; i < count ; ++i ) { ptr[i] = ptr_prev[ i + count ]; }
            Join::join( f , ptr + count , ptr );
          }
          else {
            (void) Init::init( f , ptr );
          }
          ptr_prev = ptr ;
        }
      }

      for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
        m_pool_base[ rev_rank + (1<<i) ]->m_pool_state = ThreadsExec::Active ;
      }
    }

  //------------------------------------
  /** \brief  Wait for previous asynchronous functor to
   *          complete and release the Threads device.
   *          Acquire the Threads device and start this functor.
   */
  static void start( void (*)( ThreadsExec & , const void * ) , const void * );

  static int  in_parallel();
  static void fence();
  static bool sleep();
  static bool wake();

  /* Dynamic Scheduling related functionality */
  // Initialize the work range for this thread
  inline void set_work_range(const long& begin, const long& end, const long& chunk_size) {
    m_work_range.first = (begin+chunk_size-1)/chunk_size;
    m_work_range.second = end>0?(end+chunk_size-1)/chunk_size:m_work_range.first;
  }

  // Claim and index from this thread's range from the beginning
  inline long get_work_index_begin () {
    Kokkos::pair<long,long> work_range_new = m_work_range;
    Kokkos::pair<long,long> work_range_old = work_range_new;
    if(work_range_old.first>=work_range_old.second)
      return -1;

    work_range_new.first+=1;

    bool success = false;
    while(!success) {
      work_range_new = Kokkos::atomic_compare_exchange(&m_work_range,work_range_old,work_range_new);
      success = ( (work_range_new == work_range_old) ||
                  (work_range_new.first>=work_range_new.second));
      work_range_old = work_range_new;
      work_range_new.first+=1;
    }
    if(work_range_old.first<work_range_old.second)
      return work_range_old.first;
    else
      return -1;
  }

  // Claim and index from this thread's range from the end
  inline long get_work_index_end () {
    Kokkos::pair<long,long> work_range_new = m_work_range;
    Kokkos::pair<long,long> work_range_old = work_range_new;
    if(work_range_old.first>=work_range_old.second)
      return -1;
    work_range_new.second-=1;
    bool success = false;
    while(!success) {
      work_range_new = Kokkos::atomic_compare_exchange(&m_work_range,work_range_old,work_range_new);
      success = ( (work_range_new == work_range_old) ||
                  (work_range_new.first>=work_range_new.second) );
      work_range_old = work_range_new;
      work_range_new.second-=1;
    }
    if(work_range_old.first<work_range_old.second)
      return work_range_old.second-1;
    else
      return -1;
  }

  // Reset the steal target
  inline void reset_steal_target() {
    m_current_steal_target = (m_pool_rank+1)%pool_size();
    m_stealing = false;
  }

  // Reset the steal target
  inline void reset_steal_target(int team_size) {
    m_current_steal_target = (m_pool_rank_rev+team_size);
    if(m_current_steal_target>=pool_size())
      m_current_steal_target = 0;//pool_size()-1;
    m_stealing = false;
  }

  // Get a steal target; start with my-rank + 1 and go round robin, until arriving at this threads rank
  // Returns -1 fi no active steal target available
  inline int get_steal_target() {
    while(( m_pool_base[m_current_steal_target]->m_work_range.second <=
            m_pool_base[m_current_steal_target]->m_work_range.first  ) &&
          (m_current_steal_target!=m_pool_rank) ) {
      m_current_steal_target = (m_current_steal_target+1)%pool_size();
    }
    if(m_current_steal_target == m_pool_rank)
      return -1;
    else
      return m_current_steal_target;
  }

  inline int get_steal_target(int team_size) {

    while(( m_pool_base[m_current_steal_target]->m_work_range.second <=
            m_pool_base[m_current_steal_target]->m_work_range.first  ) &&
          (m_current_steal_target!=m_pool_rank_rev) ) {
      if(m_current_steal_target + team_size < pool_size())
        m_current_steal_target = (m_current_steal_target+team_size);
      else
        m_current_steal_target = 0;
    }

    if(m_current_steal_target == m_pool_rank_rev)
      return -1;
    else
      return m_current_steal_target;
  }

  inline long steal_work_index (int team_size = 0) {
    long index = -1;
    int steal_target = team_size>0?get_steal_target(team_size):get_steal_target();
    while ( (steal_target != -1) && (index == -1)) {
      index = m_pool_base[steal_target]->get_work_index_end();
      if(index == -1)
        steal_target = team_size>0?get_steal_target(team_size):get_steal_target();
    }
    return index;
  }

  // Get a work index. Claim from owned range until its exhausted, then steal from other thread
  inline long get_work_index (int team_size = 0) {
    long work_index = -1;
    if(!m_stealing) work_index = get_work_index_begin();

    if( work_index == -1) {
      memory_fence();
      m_stealing = true;
      work_index = steal_work_index(team_size);
    }

    m_team_work_index = work_index;
    memory_fence();
    return work_index;
  }

};

} /* namespace Impl */
} /* namespace Kokkos */

//----------------------------------------------------------------------------
//----------------------------------------------------------------------------

namespace Kokkos {

inline int Threads::in_parallel()
{ return Impl::ThreadsExec::in_parallel(); }

inline int Threads::is_initialized()
{ return Impl::ThreadsExec::is_initialized(); }

inline void Threads::initialize(
  unsigned threads_count ,
  unsigned use_numa_count ,
  unsigned use_cores_per_numa ,
  bool allow_asynchronous_threadpool )
{
  Impl::ThreadsExec::initialize( threads_count , use_numa_count , use_cores_per_numa , allow_asynchronous_threadpool );
}

inline void Threads::finalize()
{
  Impl::ThreadsExec::finalize();
}

inline void Threads::print_configuration( std::ostream & s , const bool detail )
{
  Impl::ThreadsExec::print_configuration( s , detail );
}

inline bool Threads::sleep()
{ return Impl::ThreadsExec::sleep() ; }

inline bool Threads::wake()
{ return Impl::ThreadsExec::wake() ; }

inline void Threads::fence()
{ Impl::ThreadsExec::fence() ; }

} /* namespace Kokkos */

//----------------------------------------------------------------------------
//----------------------------------------------------------------------------

#endif /* #define KOKKOS_THREADSEXEC_HPP */