/usr/include/trilinos/MueLu_GMRESSolver_def.hpp is in libtrilinos-muelu-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | // @HEADER
//
// ***********************************************************************
//
// MueLu: A package for multigrid based preconditioning
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact
// Jonathan Hu (jhu@sandia.gov)
// Andrey Prokopenko (aprokop@sandia.gov)
// Ray Tuminaro (rstumin@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#ifndef MUELU_GMRESSOLVER_DEF_HPP
#define MUELU_GMRESSOLVER_DEF_HPP
#include <Teuchos_LAPACK.hpp>
#include <Xpetra_MatrixFactory.hpp>
#include <Xpetra_MatrixMatrix.hpp>
#include <Xpetra_IO.hpp>
#include "MueLu_GMRESSolver.hpp"
#include "MueLu_Constraint.hpp"
#include "MueLu_Monitor.hpp"
#include "MueLu_Utilities.hpp"
namespace MueLu {
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
GMRESSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::GMRESSolver(size_t Its)
: nIts_(Its)
{ }
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void GMRESSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::givapp(Scalar* c, Scalar* s, Scalar* v, int k) const {
for (int i = 0; i < k; i++) {
SC w1 = c[i]*v[i] - s[i]*v[i+1];
SC w2 = s[i]*v[i] + c[i]*v[i+1];
v[i] = w1;
v[i+1] = w2;
}
}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
void GMRESSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Iterate(const Matrix& Aref, const Constraint& C, const Matrix& P0, RCP<Matrix>& finalP) const {
PrintMonitor m(*this, "GMRES iterations");
finalP = MatrixFactory2::BuildCopy(rcpFromRef(P0));
if (nIts_ == 0)
return;
TEUCHOS_TEST_FOR_EXCEPTION(nIts_ > 1, Exceptions::RuntimeError,
"For now, solving Hessenberg system works only for a single iteration");
SC one = Teuchos::ScalarTraits<SC>::one(), zero = Teuchos::ScalarTraits<SC>::zero();
RCP<const Matrix> A = rcpFromRef(Aref);
//bool useTpetra = (A->getRowMap()->lib() == Xpetra::UseTpetra);
// FIXME: Don't know why, but in the MATLAB code we have D = I. Follow that for now.
#if 0
ArrayRCP<const SC> D = Utilities::GetMatrixDiagonal(*A);
#else
ArrayRCP<const SC> D(A->getNodeNumRows(), one);
#endif
Teuchos::FancyOStream& mmfancy = this->GetOStream(Statistics2);
// Initial P0 would only be used for multiplication
RCP<Matrix> X = rcp_const_cast<Matrix>(rcpFromRef(P0)), tmpAP, newV;
std::vector<RCP<Matrix> > V(nIts_+1);
// T is used only for projecting onto
RCP<CrsMatrix> T_ = CrsMatrixFactory::Build(C.GetPattern());
T_->fillComplete(P0.getDomainMap(), P0.getRangeMap());
RCP<Matrix> T = rcp(new CrsMatrixWrap(T_));
SC rho;
{
// R_0 = -D^{-1}*A*X_0
// V_0 = R_0 / ||R_0||_F
tmpAP = MatrixMatrix::Multiply(*A, false, *X, false, mmfancy, true/*doFillComplete*/, true/*optimizeStorage*/);
C.Apply(*tmpAP, *T);
V[0] = MatrixFactory2::BuildCopy(T);
Utilities::MyOldScaleMatrix(*V[0], D, true/*doInverse*/, true/*doFillComplete*/, false/*doOptimizeStorage*/);
rho = sqrt(Utilities::Frobenius(*V[0], *V[0]));
V[0]->resumeFill();
V[0]->scale(-one/rho);
V[0]->fillComplete(V[0]->getDomainMap(), V[0]->getRangeMap());
}
std::vector<SC> h((nIts_+1) * (nIts_+1));
std::vector<SC> c(nIts_+1, 0.0);
std::vector<SC> s(nIts_+1, 0.0);
std::vector<SC> g(nIts_+1, 0.0);
g[0] = rho;
#define I(i,j) ((i) + (j)*(nIts_+1)) // column ordering
for (size_t i = 0; i < nIts_; i++) {
// V_{i+1} = D^{-1}*A*V_i
tmpAP = MatrixMatrix::Multiply(*A, false, *V[i], false, mmfancy, true/*doFillComplete*/, true/*optimizeStorage*/);
C.Apply(*tmpAP, *T);
V[i+1] = MatrixFactory2::BuildCopy(T);
Utilities::MyOldScaleMatrix(*V[i+1], D, true/*doInverse*/, true/*doFillComplete*/, false/*doOptimizeStorage*/);
// Update Hessenberg matrix
for (size_t j = 0; j <= i; j++) {
h[I(j,i)] = Utilities::Frobenius(*V[i+1], *V[j]);
// V_{i+1} = V_{i+1} - h(j,i+1)*V_j
#ifndef TWO_ARG_MATRIX_ADD
newV = Teuchos::null;
MatrixMatrix::TwoMatrixAdd(*V[j], false, -h[I(j,i)], *V[i+1], false, one, newV, mmfancy);
newV->fillComplete(V[i+1]->getDomainMap(), V[i+1]->getRangeMap());
V[i+1].swap(newV);
#else
// FIXME: this does not work now. Fails with the following exception:
// what(): ../../packages/tpetra/core/ext/TpetraExt_MatrixMatrix_def.hpp:408:
//
// Throw number = 1
//
// Throw test that evaluated to true: B.isLocallyIndexed()
//
// TpetraExt::MatrixMatrix::Add(): ERROR, input matrix B must not be locally indexed
MatrixMatrix::TwoMatrixAdd(*V[j], false, -h[I(j,i)], *V[i+1], one);
#endif
}
h[I(i+1,i)] = sqrt(Utilities::Frobenius(*V[i+1], *V[i+1]));
// NOTE: potentially we'll need some reorthogonalization code here
// The matching MATLAB code is
// normav = norm(v.num(k+1).matrix, 'fro');
// normav2 = h(k+1,k);
// if (reorth == -1 && normav + .001*normav2 == normav)
// for j = 1:k
// hr = v(:,j)'*v(:,k+1); % hr=v(:,k+1)'*v(:,j);
// h(j,k) = h(j,k)+hr;
// v(:,k+1) = v(:,k+1)-hr*v(:,j);
// end
// h(k+1,k) = norm(v(:,k+1));
// end
// Check for nonsymmetric case
if (h[I(i+1,i)] != zero) {
// Normalize V_i
V[i+1]->resumeFill();
V[i+1]->scale(one/h[I(i+1,i)]);
V[i+1]->fillComplete(V[i+1]->getDomainMap(), V[i+1]->getRangeMap());
}
if (i > 0)
givapp(&c[0], &s[0], &h[I(0,i)], i); // Due to column ordering &h[...] is a column
SC nu = sqrt(h[I(i,i)]*h[I(i,i)] + h[I(i+1,i)]*h[I(i+1,i)]);
if (nu != zero) {
c[i] = h[I(i, i)] / nu;
s[i] = -h[I(i+1,i)] / nu;
h[I(i,i)] = c[i] * h[I(i,i)] - s[i] * h[I(i+1,i)];
h[I(i+1,i)] = zero;
givapp(&c[i], &s[i], &g[i], 1);
}
}
// Solve Hessenberg system
// y = solve(H, \rho e_1)
std::vector<SC> y(nIts_);
if (nIts_ == 1) {
y[0] = g[0] / h[I(0,0)];
}
#undef I
// Compute final
for (size_t i = 0; i < nIts_; i++) {
#ifndef TWO_ARG_MATRIX_ADD
newV = Teuchos::null;
MatrixMatrix::TwoMatrixAdd(*V[i], false, y[i], *finalP, false, one, newV, mmfancy);
newV->fillComplete(finalP->getDomainMap(), finalP->getRangeMap());
finalP.swap(newV);
#else
MatrixMatrix::TwoMatrixAdd(*V[i], false, y[i], *finalP, one);
#endif
}
}
} // namespace MueLu
#endif //ifndef MUELU_GMRESSOLVER_DECL_HPP
|