/usr/include/trilinos/MueLu_SimpleSmoother_def.hpp is in libtrilinos-muelu-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 | // @HEADER
//
// ***********************************************************************
//
// MueLu: A package for multigrid based preconditioning
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact
// Jonathan Hu (jhu@sandia.gov)
// Andrey Prokopenko (aprokop@sandia.gov)
// Ray Tuminaro (rstumin@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
/*
* MueLu_SimpleSmoother_def.hpp
*
* Created on: 19.03.2013
* Author: wiesner
*/
#ifndef MUELU_SIMPLESMOOTHER_DEF_HPP_
#define MUELU_SIMPLESMOOTHER_DEF_HPP_
#include "Teuchos_ArrayViewDecl.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "MueLu_ConfigDefs.hpp"
#include <Xpetra_Matrix.hpp>
#include <Xpetra_CrsMatrixWrap.hpp>
#include <Xpetra_BlockedCrsMatrix.hpp>
#include <Xpetra_MultiVectorFactory.hpp>
#include <Xpetra_VectorFactory.hpp>
#include "MueLu_SimpleSmoother_decl.hpp"
#include "MueLu_Level.hpp"
#include "MueLu_Utilities.hpp"
#include "MueLu_Monitor.hpp"
#include "MueLu_HierarchyUtils.hpp"
#include "MueLu_SmootherBase.hpp"
#include "MueLu_SubBlockAFactory.hpp"
// include files for default FactoryManager
#include "MueLu_SchurComplementFactory.hpp"
#include "MueLu_DirectSolver.hpp"
#include "MueLu_SmootherFactory.hpp"
#include "MueLu_FactoryManager.hpp"
namespace MueLu {
template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
SimpleSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::SimpleSmoother()
: type_("SIMPLE"), A_(Teuchos::null)
{
//Factory::SetParameter("Sweeps", Teuchos::ParameterEntry(sweeps));
//Factory::SetParameter("Damping factor",Teuchos::ParameterEntry(omega));
//Factory::SetParameter("UseSIMPLEC", Teuchos::ParameterEntry(SIMPLEC));
#if 0
// when declaring default factories without overwriting them leads to a multipleCallCheck exception
// TODO: debug into this
// workaround: always define your factory managers outside either using the C++ API or the XML files
RCP<SchurComplementFactory> SchurFact = Teuchos::rcp(new SchurComplementFactory());
SchurFact->SetParameter("omega",Teuchos::ParameterEntry(omega));
SchurFact->SetParameter("lumping",Teuchos::ParameterEntry(SIMPLEC));
SchurFact->SetFactory("A", this->GetFactory("A"));
// define smoother/solver for SchurComplement equation
Teuchos::ParameterList SCparams;
std::string SCtype;
RCP<SmootherPrototype> smoProtoSC = rcp( new DirectSolver(SCtype,SCparams) );
smoProtoSC->SetFactory("A", SchurFact);
RCP<SmootherFactory> SmooSCFact = rcp( new SmootherFactory(smoProtoSC) );
RCP<FactoryManager> schurFactManager = rcp(new FactoryManager());
schurFactManager->SetFactory("A", SchurFact);
schurFactManager->SetFactory("Smoother", SmooSCFact);
schurFactManager->SetIgnoreUserData(true);
// define smoother/solver for velocity prediction
RCP<SubBlockAFactory> A00Fact = Teuchos::rcp(new SubBlockAFactory(/*this->GetFactory("A"), 0, 0*/));
A00Fact->SetFactory("A",this->GetFactory("A"));
A00Fact->SetParameter("block row",ParameterEntry(0));
A00Fact->SetParameter("block col",ParameterEntry(0));
Teuchos::ParameterList velpredictParams;
std::string velpredictType;
RCP<SmootherPrototype> smoProtoPredict = rcp( new DirectSolver(velpredictType,velpredictParams) );
smoProtoPredict->SetFactory("A", A00Fact);
RCP<SmootherFactory> SmooPredictFact = rcp( new SmootherFactory(smoProtoPredict) );
RCP<FactoryManager> velpredictFactManager = rcp(new FactoryManager());
velpredictFactManager->SetFactory("A", A00Fact);
velpredictFactManager->SetFactory("Smoother", SmooPredictFact);
velpredictFactManager->SetIgnoreUserData(true);
AddFactoryManager(velpredictFactManager, 0);
AddFactoryManager(schurFactManager, 1);
#endif
}
template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
SimpleSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::~SimpleSmoother() {}
template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
RCP<const ParameterList> SimpleSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::GetValidParameterList() const {
RCP<ParameterList> validParamList = rcp(new ParameterList());
validParamList->set< RCP<const FactoryBase> >("A", Teuchos::null, "Generating factory of the matrix A");
validParamList->set< Scalar > ("Damping factor", 1.0, "Damping/Scaling factor in SIMPLE");
validParamList->set< LocalOrdinal > ("Sweeps", 1, "Number of SIMPLE sweeps (default = 1)");
validParamList->set< bool > ("UseSIMPLEC", false, "Use SIMPLEC instead of SIMPLE (default = false)");
return validParamList;
}
//! Add a factory manager at a specific position
template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
void SimpleSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::AddFactoryManager(RCP<const FactoryManagerBase> FactManager, int pos) {
TEUCHOS_TEST_FOR_EXCEPTION(pos < 0, Exceptions::RuntimeError, "MueLu::SimpleSmoother::AddFactoryManager: parameter \'pos\' must not be negative! error.");
size_t myPos = Teuchos::as<size_t>(pos);
if (myPos < FactManager_.size()) {
// replace existing entris in FactManager_ vector
FactManager_.at(myPos) = FactManager;
} else if( myPos == FactManager_.size()) {
// add new Factory manager in the end of the vector
FactManager_.push_back(FactManager);
} else { // if(myPos > FactManager_.size())
RCP<Teuchos::FancyOStream> out = Teuchos::fancyOStream(Teuchos::rcpFromRef(std::cout));
*out << "Warning: cannot add new FactoryManager at proper position " << pos << ". The FactoryManager is just appended to the end. Check this!" << std::endl;
// add new Factory manager in the end of the vector
FactManager_.push_back(FactManager);
}
}
template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
void SimpleSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::SetVelocityPredictionFactoryManager(RCP<FactoryManager> FactManager) {
AddFactoryManager(FactManager, 0); // overwrite factory manager for predicting the primary variable
}
template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
void SimpleSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::SetSchurCompFactoryManager(RCP<FactoryManager> FactManager) {
AddFactoryManager(FactManager, 1); // overwrite factory manager for SchurComplement
}
template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
void SimpleSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::DeclareInput(Level ¤tLevel) const {
currentLevel.DeclareInput("A",this->GetFactory("A").get());
TEUCHOS_TEST_FOR_EXCEPTION(FactManager_.size() != 2, Exceptions::RuntimeError,"MueLu::SimpleSmoother::DeclareInput: You have to declare two FactoryManagers with a \"Smoother\" object: One for predicting the primary variable and one for the SchurComplement system. The smoother for the SchurComplement system needs a SchurComplementFactory as input for variable \"A\". make sure that you use the same proper damping factors for omega both in the SchurComplementFactory and in the SIMPLE smoother!");
// loop over all factory managers for the subblocks of blocked operator A
std::vector<Teuchos::RCP<const FactoryManagerBase> >::const_iterator it;
for(it = FactManager_.begin(); it!=FactManager_.end(); ++it) {
SetFactoryManager currentSFM (rcpFromRef(currentLevel), *it);
// request "Smoother" for current subblock row.
currentLevel.DeclareInput("PreSmoother",(*it)->GetFactory("Smoother").get());
}
}
template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
void SimpleSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Setup(Level ¤tLevel) {
//*********************************************
// Setup routine can be summarized in 4 steps:
// - Set the map extractors
// - Set the blocks
// - Create and set the inverse of the diagonal of F
// - Set the smoother for the Schur Complement
FactoryMonitor m(*this, "Setup blocked SIMPLE Smoother", currentLevel);
if (SmootherPrototype::IsSetup() == true)
this->GetOStream(Warnings0) << "MueLu::SimpleSmoother::Setup(): Setup() has already been called";
// extract blocked operator A from current level
A_ = Factory::Get<RCP<Matrix> > (currentLevel, "A");
RCP<BlockedCrsMatrix> bA = Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(A_);
TEUCHOS_TEST_FOR_EXCEPTION(bA == Teuchos::null, Exceptions::BadCast, "MueLu::SimpleSmoother::Setup: input matrix A is not of type BlockedCrsMatrix! error.");
// store map extractors
rangeMapExtractor_ = bA->getRangeMapExtractor();
domainMapExtractor_ = bA->getDomainMapExtractor();
// Store the blocks in local member variables
F_ = bA->getMatrix(0, 0);
G_ = bA->getMatrix(0, 1);
D_ = bA->getMatrix(1, 0);
Z_ = bA->getMatrix(1, 1);
const ParameterList & pL = Factory::GetParameterList();
bool bSIMPLEC = pL.get<bool>("UseSIMPLEC");
// Create the inverse of the diagonal of F
// TODO add safety check for zeros on diagonal of F!
RCP<Vector> diagFVector = VectorFactory::Build(F_->getRowMap());
if(!bSIMPLEC) {
F_->getLocalDiagCopy(*diagFVector); // extract diagonal of F
} else {
/*const RCP<const Map> rowmap = F_->getRowMap();
size_t locSize = rowmap->getNodeNumElements();
Teuchos::ArrayRCP<SC> diag = diagFVector->getDataNonConst(0);
Teuchos::ArrayView<const LO> cols;
Teuchos::ArrayView<const SC> vals;
for (size_t i=0; i<locSize; ++i) { // loop over rows
F_->getLocalRowView(i,cols,vals);
Scalar absRowSum = Teuchos::ScalarTraits<Scalar>::zero();
for (LO j=0; j<cols.size(); ++j) { // loop over cols
absRowSum += Teuchos::ScalarTraits<Scalar>::magnitude(vals[j]);
}
diag[i] = absRowSum;
}*/
diagFVector = Utilities::GetLumpedMatrixDiagonal(F_);
}
diagFinv_ = Utilities::GetInverse(diagFVector);
// Set the Smoother
// carefully switch to the SubFactoryManagers (defined by the users)
{
RCP<const FactoryManagerBase> velpredictFactManager = FactManager_.at(0);
SetFactoryManager currentSFM (rcpFromRef(currentLevel), velpredictFactManager);
velPredictSmoo_ = currentLevel.Get< RCP<SmootherBase> >("PreSmoother",velpredictFactManager->GetFactory("Smoother").get());
}
{
RCP<const FactoryManagerBase> schurFactManager = FactManager_.at(1);
SetFactoryManager currentSFM (rcpFromRef(currentLevel), schurFactManager);
schurCompSmoo_ = currentLevel.Get< RCP<SmootherBase> >("PreSmoother", schurFactManager->GetFactory("Smoother").get());
}
SmootherPrototype::IsSetup(true);
}
template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
void SimpleSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Apply(MultiVector& X, const MultiVector& B, bool InitialGuessIsZero) const
{
TEUCHOS_TEST_FOR_EXCEPTION(SmootherPrototype::IsSetup() == false, Exceptions::RuntimeError, "MueLu::SimpleSmoother::Apply(): Setup() has not been called");
#ifdef HAVE_MUELU_DEBUG
TEUCHOS_TEST_FOR_EXCEPTION(A_->getRangeMap()->isSameAs(*(B.getMap())) == false, Exceptions::RuntimeError, "MueLu::SimpleSmoother::Apply(): The map of RHS vector B is not the same as range map of the blocked operator A. Please check the map of B and A.");
TEUCHOS_TEST_FOR_EXCEPTION(A_->getDomainMap()->isSameAs(*(X.getMap())) == false, Exceptions::RuntimeError, "MueLu::SimpleSmoother::Apply(): The map of the solution vector X is not the same as domain map of the blocked operator A. Please check the map of X and A.");
#endif
Teuchos::RCP<Teuchos::FancyOStream> fos = Teuchos::getFancyOStream(Teuchos::rcpFromRef(std::cout));
SC zero = Teuchos::ScalarTraits<SC>::zero(), one = Teuchos::ScalarTraits<SC>::one();
// extract parameters from internal parameter list
const ParameterList & pL = Factory::GetParameterList();
LocalOrdinal nSweeps = pL.get<LocalOrdinal>("Sweeps");
Scalar omega = pL.get<Scalar>("Damping factor");
// The boolean flags check whether we use Thyra or Xpetra style GIDs
// However, assuming that SIMPLE always only works for 2x2 blocked operators, we
// most often have to use the ReorderedBlockedCrsOperator as input. If either the
// F or Z (or SchurComplement block S) are 1x1 blocked operators with Thyra style
// GIDs we need an extra transformation of vectors
// In this case, we use the Xpetra (offset) GIDs for all operations and only transform
// the input/output vectors before and after the subsolver calls!
bool bRangeThyraModePredict = rangeMapExtractor_->getThyraMode() && (Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(F_) == Teuchos::null);
bool bDomainThyraModePredict = domainMapExtractor_->getThyraMode() && (Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(F_) == Teuchos::null);
bool bRangeThyraModeSchur = rangeMapExtractor_->getThyraMode() && (Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(Z_) == Teuchos::null);
bool bDomainThyraModeSchur = domainMapExtractor_->getThyraMode() && (Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(Z_) == Teuchos::null);
// The following boolean flags catch the case where we need special transformation
// for the GIDs when calling the subsmoothers.
RCP<BlockedCrsMatrix> bF = Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(F_);
RCP<BlockedCrsMatrix> bZ = Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(Z_);
bool bFThyraSpecialTreatment = false;
bool bZThyraSpecialTreatment = false;
if (bF != Teuchos::null) {
if(bF->Rows() == 1 && bF->Cols() == 1 && rangeMapExtractor_->getThyraMode() == true) bFThyraSpecialTreatment = true;
}
if (bZ != Teuchos::null) {
if(bZ->Rows() == 1 && bZ->Cols() == 1 && rangeMapExtractor_->getThyraMode() == true) bZThyraSpecialTreatment = true;
}
#if 1// new implementation
// create a new vector for storing the current residual in a blocked multi vector
RCP<MultiVector> res = MultiVectorFactory::Build(B.getMap(), B.getNumVectors(), true);
RCP<BlockedMultiVector> residual = Teuchos::rcp(new BlockedMultiVector(rangeMapExtractor_,res));
// create a new solution vector as a blocked multi vector
RCP<MultiVector> rcpX = Teuchos::rcpFromRef(X);
RCP<BlockedMultiVector> bX = Teuchos::rcp(new BlockedMultiVector(domainMapExtractor_,rcpX));
// create a blocked rhs vector
RCP<const MultiVector> rcpB = Teuchos::rcpFromRef(B);
RCP<const BlockedMultiVector> bB = Teuchos::rcp(new const BlockedMultiVector(rangeMapExtractor_,rcpB));
// incrementally improve solution vector X
for (LocalOrdinal run = 0; run < nSweeps; ++run) {
// 1) calculate current residual
residual->update(one,*bB,zero); // r = B
A_->apply(*bX, *residual, Teuchos::NO_TRANS, -one, one);
// split residual vector
Teuchos::RCP<MultiVector> r1 = rangeMapExtractor_->ExtractVector(residual, 0, bRangeThyraModePredict);
Teuchos::RCP<MultiVector> r2 = rangeMapExtractor_->ExtractVector(residual, 1, bRangeThyraModeSchur);
// 2) solve F * \Delta \tilde{x}_1 = r_1
// start with zero guess \Delta \tilde{x}_1
RCP<MultiVector> xtilde1 = domainMapExtractor_->getVector(0, X.getNumVectors(), bDomainThyraModePredict, true);
//xtilde1->putScalar(zero);
if(bFThyraSpecialTreatment == true) {
xtilde1->replaceMap(domainMapExtractor_->getMap(0,true));
r1->replaceMap(rangeMapExtractor_->getMap(0,true));
velPredictSmoo_->Apply(*xtilde1,*r1);
xtilde1->replaceMap(domainMapExtractor_->getMap(0,false));
} else {
velPredictSmoo_->Apply(*xtilde1,*r1);
}
// 3) calculate rhs for SchurComp equation
// r_2 - D \Delta \tilde{x}_1
RCP<MultiVector> schurCompRHS = rangeMapExtractor_->getVector(1, B.getNumVectors(), bRangeThyraModeSchur, false);
if(D_.is_null() == false)
D_->apply(*xtilde1,*schurCompRHS);
else
schurCompRHS->putScalar(zero);
schurCompRHS->update(one,*r2,-one);
// 4) solve SchurComp equation
// start with zero guess \Delta \tilde{x}_2
RCP<MultiVector> xtilde2 = domainMapExtractor_->getVector(1, X.getNumVectors(), bDomainThyraModeSchur, true);
//xtilde2->putScalar(zero);
// Special handling if SchurComplement operator was a 1x1 blocked operator in Thyra mode
// Then, we have to translate the Xpetra offset GIDs to plain Thyra GIDs and vice versa
if(bZThyraSpecialTreatment == true) {
xtilde2->replaceMap(domainMapExtractor_->getMap(1,true));
schurCompRHS->replaceMap(rangeMapExtractor_->getMap(1,true));
schurCompSmoo_->Apply(*xtilde2,*schurCompRHS);
xtilde2->replaceMap(domainMapExtractor_->getMap(1,false));
} else {
schurCompSmoo_->Apply(*xtilde2,*schurCompRHS);
}
// 5) scale xtilde2 with omega
// store this in xhat2
RCP<MultiVector> xhat2 = domainMapExtractor_->getVector(1, X.getNumVectors(), bDomainThyraModeSchur, false);
xhat2->update(omega,*xtilde2,zero);
// 6) calculate xhat1
RCP<MultiVector> xhat1 = domainMapExtractor_->getVector(0, X.getNumVectors(), bDomainThyraModePredict, false);
RCP<MultiVector> xhat1_temp = domainMapExtractor_->getVector(0, X.getNumVectors(), bDomainThyraModePredict, false);
if(G_.is_null() == false)
G_->apply(*xhat2,*xhat1_temp); // store result temporarely in xtilde1_temp
else
xhat1_temp->putScalar(zero);
xhat1->elementWiseMultiply(one/*/omega*/,*diagFinv_,*xhat1_temp,zero);
xhat1->update(one,*xtilde1,-one);
// 7) extract parts of solution vector X
Teuchos::RCP<MultiVector> x1 = domainMapExtractor_->ExtractVector(bX, 0, bDomainThyraModePredict);
Teuchos::RCP<MultiVector> x2 = domainMapExtractor_->ExtractVector(bX, 1, bDomainThyraModeSchur);
// 8) update solution vector with increments xhat1 and xhat2
// rescale increment for x2 with omega_
x1->update(one,*xhat1,one); // x1 = x1_old + xhat1
x2->update(/*omega*/ one,*xhat2,one); // x2 = x2_old + omega xhat2
// write back solution in global vector X
domainMapExtractor_->InsertVector(x1, 0, bX, bDomainThyraModePredict);
domainMapExtractor_->InsertVector(x2, 1, bX, bDomainThyraModeSchur);
}
// write back solution
domainMapExtractor_->InsertVector(bX->getMultiVector(0,bDomainThyraModePredict), 0, rcpX, bDomainThyraModePredict);
domainMapExtractor_->InsertVector(bX->getMultiVector(1,bDomainThyraModeSchur), 1, rcpX, bDomainThyraModeSchur);
#else
// wrap current solution vector in RCP
RCP<MultiVector> rcpX = Teuchos::rcpFromRef(X);
// create residual vector
// contains current residual of current solution X with rhs B
RCP<MultiVector> residual = MultiVectorFactory::Build(B.getMap(), B.getNumVectors());
// incrementally improve solution vector X
for (LocalOrdinal run = 0; run < nSweeps; ++run) {
// 1) calculate current residual
residual->update(one,B,zero); // residual = B
A_->apply(*rcpX, *residual, Teuchos::NO_TRANS, -one, one);
// split residual vector
Teuchos::RCP<MultiVector> r1 = rangeMapExtractor_->ExtractVector(residual, 0, bRangeThyraModePredict);
Teuchos::RCP<MultiVector> r2 = rangeMapExtractor_->ExtractVector(residual, 1, bRangeThyraModeSchur);
// 2) solve F * \Delta \tilde{x}_1 = r_1
// start with zero guess \Delta \tilde{x}_1
RCP<MultiVector> xtilde1 = domainMapExtractor_->getVector(0, X.getNumVectors(), bDomainThyraModePredict);
xtilde1->putScalar(zero);
// Special handling in case that F block is a 1x1 blocked operator in Thyra mode
// Then we have to feed the smoother with real Thyra-based vectors
if(bFThyraSpecialTreatment == true) {
// create empty solution vector based on Thyra GIDs
RCP<MultiVector> xtilde1_thyra = domainMapExtractor_->getVector(0, X.getNumVectors(), true);
// create new RHS vector based on Thyra GIDs
Teuchos::RCP<MultiVector> r1_thyra = rangeMapExtractor_->ExtractVector(residual, 0, true);
velPredictSmoo_->Apply(*xtilde1_thyra,*r1_thyra);
for(size_t k=0; k < xtilde1_thyra->getNumVectors(); k++) {
Teuchos::ArrayRCP<Scalar> xpetraVecData = xtilde1->getDataNonConst(k);
Teuchos::ArrayRCP<const Scalar> thyraVecData = xtilde1_thyra->getData(k);
for(size_t i=0; i < xtilde1_thyra->getLocalLength(); i++) {
xpetraVecData[i] = thyraVecData[i];
}
}
} else {
velPredictSmoo_->Apply(*xtilde1,*r1);
}
// 3) calculate rhs for SchurComp equation
// r_2 - D \Delta \tilde{x}_1
RCP<MultiVector> schurCompRHS = rangeMapExtractor_->getVector(1, B.getNumVectors(), bRangeThyraModeSchur);
D_->apply(*xtilde1,*schurCompRHS);
schurCompRHS->update(one,*r2,-one);
// 4) solve SchurComp equation
// start with zero guess \Delta \tilde{x}_2
RCP<MultiVector> xtilde2 = domainMapExtractor_->getVector(1, X.getNumVectors(), bDomainThyraModeSchur);
xtilde2->putScalar(zero);
// Special handling if SchurComplement operator was a 1x1 blocked operator in Thyra mode
// Then, we have to translate the Xpetra offset GIDs to plain Thyra GIDs and vice versa
if(bZThyraSpecialTreatment == true) {
// create empty solution vector based on Thyra GIDs
RCP<MultiVector> xtilde2_thyra = domainMapExtractor_->getVector(1, X.getNumVectors(), true);
// create new RHS vector based on Thyra GIDs
RCP<MultiVector> schurCompRHS_thyra = rangeMapExtractor_->getVector(1, B.getNumVectors(), true);
// transform vector
for(size_t k=0; k < schurCompRHS->getNumVectors(); k++) {
Teuchos::ArrayRCP<const Scalar> xpetraVecData = schurCompRHS->getData(k);
Teuchos::ArrayRCP<Scalar> thyraVecData = schurCompRHS_thyra->getDataNonConst(k);
for(size_t i=0; i < schurCompRHS->getLocalLength(); i++) {
thyraVecData[i] = xpetraVecData[i];
}
}
schurCompSmoo_->Apply(*xtilde2_thyra,*schurCompRHS_thyra);
for(size_t k=0; k < xtilde2_thyra->getNumVectors(); k++) {
Teuchos::ArrayRCP<Scalar> xpetraVecData = xtilde2->getDataNonConst(k);
Teuchos::ArrayRCP<const Scalar> thyraVecData = xtilde2_thyra->getData(k);
for(size_t i=0; i < xtilde2_thyra->getLocalLength(); i++) {
xpetraVecData[i] = thyraVecData[i];
}
}
} else {
schurCompSmoo_->Apply(*xtilde2,*schurCompRHS);
}
// 5) scale xtilde2 with omega
// store this in xhat2
RCP<MultiVector> xhat2 = domainMapExtractor_->getVector(1, X.getNumVectors(), bDomainThyraModeSchur);
xhat2->update(omega,*xtilde2,zero);
// 6) calculate xhat1
RCP<MultiVector> xhat1 = domainMapExtractor_->getVector(0, X.getNumVectors(), bDomainThyraModePredict);
RCP<MultiVector> xhat1_temp = domainMapExtractor_->getVector(0, X.getNumVectors(), bDomainThyraModePredict);
G_->apply(*xhat2,*xhat1_temp); // store result temporarely in xtilde1_temp
xhat1->elementWiseMultiply(one/*/omega*/,*diagFinv_,*xhat1_temp,zero);
xhat1->update(one,*xtilde1,-one);
// 7) extract parts of solution vector X
Teuchos::RCP<MultiVector> x1 = domainMapExtractor_->ExtractVector(rcpX, 0, bDomainThyraModePredict);
Teuchos::RCP<MultiVector> x2 = domainMapExtractor_->ExtractVector(rcpX, 1, bDomainThyraModeSchur);
// 8) update solution vector with increments xhat1 and xhat2
// rescale increment for x2 with omega_
x1->update(one,*xhat1,one); // x1 = x1_old + xhat1
x2->update(/*omega*/ one,*xhat2,one); // x2 = x2_old + omega xhat2
// write back solution in global vector X
domainMapExtractor_->InsertVector(x1, 0, rcpX, bDomainThyraModePredict);
domainMapExtractor_->InsertVector(x2, 1, rcpX, bDomainThyraModeSchur);
}
#endif
}
template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
RCP<MueLu::SmootherPrototype<Scalar, LocalOrdinal, GlobalOrdinal, Node> >
SimpleSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Copy () const {
return rcp( new SimpleSmoother(*this) );
}
template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
std::string SimpleSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::description() const {
std::ostringstream out;
out << SmootherPrototype::description();
out << "{type = " << type_ << "}";
return out.str();
}
template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
void SimpleSmoother<Scalar, LocalOrdinal, GlobalOrdinal, Node>::print(Teuchos::FancyOStream &out, const VerbLevel verbLevel) const {
MUELU_DESCRIBE;
if (verbLevel & Parameters0) {
out0 << "Prec. type: " << type_ << /*" Sweeps: " << nSweeps_ << " damping: " << omega_ <<*/ std::endl;
}
if (verbLevel & Debug) {
out0 << "IsSetup: " << Teuchos::toString(SmootherPrototype::IsSetup()) << std::endl;
}
}
} // namespace MueLu
#endif /* MUELU_SIMPLESMOOTHER_DEF_HPP_ */
|