/usr/include/trilinos/LOCA_Homotopy_Group.H is in libtrilinos-nox-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 | // $Id$
// $Source$
//@HEADER
// ************************************************************************
//
// LOCA: Library of Continuation Algorithms Package
// Copyright (2005) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Roger Pawlowski (rppawlo@sandia.gov) or
// Eric Phipps (etphipp@sandia.gov), Sandia National Laboratories.
// ************************************************************************
// CVS Information
// $Source$
// $Author$
// $Date$
// $Revision$
// ************************************************************************
//@HEADER
#ifndef LOCA_HOMOTOPY_GROUP_H
#define LOCA_HOMOTOPY_GROUP_H
#include "Teuchos_RCP.hpp"
#include "LOCA_MultiContinuation_AbstractGroup.H" // base class
#include "LOCA_Extended_MultiAbstractGroup.H" // base class
#include "LOCA_Parameter_Vector.H" // class data member
namespace LOCA {
class GlobalData;
namespace Homotopy {
class AbstractGroup;
}
}
namespace LOCA {
namespace Homotopy {
/*!
* \brief %LOCA's Homotopy Algorithm.
*/
/*!
* The %HomotopyGroup is a concrete implementation of the
* LOCA::Continuation::AbstractGroup that modifies the set of nonlinear
* equations to be solved to allow for Homotopy to be applied to the
* system. This object should be used in conjunction with the
* LOCA::Stepper object to drive the continuation. This algorithm solves
* a system of nonlinear equations supplied by the user (\f$ F(x) \f$)
* through continuation. An artificial parameter \f$ \lambda \f$ is used
* to control the continuation. The idea is to solve a simple equation
* starting at \f$ \lambda \f$ = 0 and, using the solution from the
* previous step, solve systems of equations that gets progressively
* closer to the true system of interest ( at \f$ \lambda \f$ = 1.0 we
* recover the original equations \f$ F(x) \f$). By constraining the
* definition of \f$ g(x, \lambda) \f$ and using artificial parameter
* contiuation, the continuation branch should be free of multiplicity and
* bifurcation phenomena.
*
* The modified system of equations, \f$ g(x, \lambda) \f$, supplied by
* the HomotopyGroup is defined as:
*
* \f[ g(x, \lambda) = \lambda F(x) + (1.0 - \lambda)(x - a) \f]
*
* where \f$x\f$ is the solution vector, \f$ \lambda \f$ is an artificial
* parameter, \f$ F(x) \f$ is the set of nonlinear equations the user
* supplies, \f$ g(x) \f$ is the corresponding set of
* homotopy equations that LOCA will solve, and \f$ a \f$ is a random
* vector.
*
* This group requires the loca Stepper for continuation
* from \f$ \lambda \f$ = 0.0 (a simple set of equations to solve) to
* \f$ \lambda \f$ = 1.0 (the set of equations requested by the user,
* \f$ F(x) \f$). The Homotopy::Group will generate the Stepper parameter
* sublist in the parameter list that is passed in to the constructor.
* The user is free to modify this list (it sets default values) before
* passing it into the stepper object but should NOT change the starting
* and stopping values for the continuation parameter.
*
* References:
*
* - ALGORITHM 652 HOMPACK: A Suite of Codes for Globally Convergent
* Homotopy Algorithms, Watson, L.T., Billups, S.C, and Morgan, A.P.,
* ACM Transactions on Mathematical Software, Vol. 13, No. 3, September
* 1987, pp281-310.
*/
class Group :
public LOCA::MultiContinuation::AbstractGroup,
public LOCA::Extended::MultiAbstractGroup {
public:
/*!
* \brief Constructor to set the base group and generate the "%Stepper"
* sublist for homotopy continuation.
*/
/*!
* The locaSublist variable is the "LOCA" sublist (of type
* Teuchos::ParameterList) that will be used in loca continuation runs.
*
* The variables scalarRandomVector and scalarInitialGuess are used to
* give some control over the generation of the random vector. In
* certain instances we have seen the random vector force the solution
* to a set of variables that are unphysical and could break the
* function evaluations (cause them to return nan). For example, in
* heat transfer problems, the temperature could be the dependent
* variable. If the solution vector has an unphysical temperature (
* the random vector could force the temperature to negative or near
* zero values for the solution at \f$ \lambda = 0\f$) then property
* evaluations could break. The random vector can be modified to keep
* the values near the initial guess based on values supplied to the
* constructor of the HomotopyGroup:
*
* \f[
* a = abs(r) * \mbox{scalarRandom} + x_o * \mbox{scalarInitialGuess}
* \f]
*
* where \f$ r \f$ is the random vector generated by a call to
* NOX::Abstract::Vector::random(), \f$ \mbox{scalarRandom} \f$ is a
* scalar value, \f$ x_o \f$ is the initial guess to the solution
* vector, and \f$ \mbox{scalarInitialGuess} \f$ is a scalar value.
* The defualt values force the random vector to be calculated as:
*
* \f[
* a = abs(r)
* \f]
*
* IMPORTANT: For homotopy to work correctly you should not change the
* starting and stopping parameter values (0.0 and 1.0 respectively) set
* in the "%Stepper" sublist.
*/
Group(
Teuchos::ParameterList& locaSublist,
const Teuchos::RCP<LOCA::GlobalData>& global_data,
const Teuchos::RCP<LOCA::Homotopy::AbstractGroup>& g,
double scaleRandom = 1.0,
double scaleInitialGuess = 0.0);
//! Constructor with a user supplied random vector.
Group(
Teuchos::ParameterList& locaSublist,
const Teuchos::RCP<LOCA::GlobalData>& global_data,
const Teuchos::RCP<LOCA::Homotopy::AbstractGroup>& g,
const NOX::Abstract::Vector& randomVector);
//! Copy constructor.
Group(const Group& source, NOX::CopyType type = NOX::DeepCopy);
//! Destructor.
virtual ~Group();
/*!
* @name Implementation of NOX::Abstract::Group virtual methods
*/
//@{
//! Assignment operator
virtual NOX::Abstract::Group&
operator=(const NOX::Abstract::Group& source);
//! Cloning function
virtual Teuchos::RCP<NOX::Abstract::Group>
clone(NOX::CopyType type = NOX::DeepCopy) const;
//! Set the solution vector, x, to y.
virtual void setX(const NOX::Abstract::Vector& y);
//! Compute this.x = grp.x + step * d.
virtual void computeX(const NOX::Abstract::Group& g,
const NOX::Abstract::Vector& d,
double step);
//! Compute the homotopy residual $g$
virtual NOX::Abstract::Group::ReturnType computeF();
//! Compute the Jacobian derivative of the homotopy residual $g$
virtual NOX::Abstract::Group::ReturnType computeJacobian();
//! Compute gradient of homotopy residual $g$
virtual NOX::Abstract::Group::ReturnType computeGradient();
//! Compute %Newton direction using applyJacobianInverse
virtual NOX::Abstract::Group::ReturnType
computeNewton(Teuchos::ParameterList& params);
//! Computes the homotopy Jacobian vector product
virtual NOX::Abstract::Group::ReturnType
applyJacobian(const NOX::Abstract::Vector& input,
NOX::Abstract::Vector& result) const;
//! Computes the homotopy Jacobian-transpose vector product
virtual NOX::Abstract::Group::ReturnType
applyJacobianTranspose(const NOX::Abstract::Vector& input,
NOX::Abstract::Vector& result) const;
//! Applies the inverse of the homotopy Jacobian matrix
virtual NOX::Abstract::Group::ReturnType
applyJacobianInverse(Teuchos::ParameterList& params,
const NOX::Abstract::Vector& input,
NOX::Abstract::Vector& result) const;
//! Applies Jacobian for homotopy system
virtual NOX::Abstract::Group::ReturnType
applyJacobianMultiVector(const NOX::Abstract::MultiVector& input,
NOX::Abstract::MultiVector& result) const;
//! Applies Jacobian-transpose for homotopy system
virtual NOX::Abstract::Group::ReturnType
applyJacobianTransposeMultiVector(
const NOX::Abstract::MultiVector& input,
NOX::Abstract::MultiVector& result) const;
//! Applies Jacobian inverse for homotopy system
virtual NOX::Abstract::Group::ReturnType
applyJacobianInverseMultiVector(
Teuchos::ParameterList& params,
const NOX::Abstract::MultiVector& input,
NOX::Abstract::MultiVector& result) const;
//! Return \c true if the homotopy residual \f$g\f$ is valid.
virtual bool isF() const;
//! Return \c true if the homotopy Jacobian is valid.
virtual bool isJacobian() const;
//! Return \c true if the homotopy gradient is valid.
virtual bool isGradient() const;
//! Return \c true if the homotopy Newton direction is valid.
virtual bool isNewton() const;
//! Return homotopy solution vector \f$x\f$.
virtual const NOX::Abstract::Vector& getX() const;
//! Return homotopy residual \f$g\f$
virtual const NOX::Abstract::Vector& getF() const;
//! Return 2-norm of \f$g\f$.
virtual double getNormF() const;
//! Return homotopy gradient
virtual const NOX::Abstract::Vector& getGradient() const;
//! Return homotopy Newton direction.
virtual const NOX::Abstract::Vector& getNewton() const;
//! Return homotopy solution vector \f$x\f$.
virtual Teuchos::RCP< const NOX::Abstract::Vector > getXPtr() const;
//! Return homotopy residual \f$g\f$
virtual Teuchos::RCP< const NOX::Abstract::Vector > getFPtr() const;
//! Return homotopy gradient
virtual Teuchos::RCP< const NOX::Abstract::Vector > getGradientPtr() const;
//! Return homotopy Newton direction.
virtual Teuchos::RCP< const NOX::Abstract::Vector > getNewtonPtr() const;
//@}
/*!
* @name Implementation of LOCA::Extended::MultiAbstractGroup
* virtual methods
*/
//@{
//! Return underlying group
virtual
Teuchos::RCP<const LOCA::MultiContinuation::AbstractGroup>
getUnderlyingGroup() const;
//! Return underlying group
virtual
Teuchos::RCP<LOCA::MultiContinuation::AbstractGroup>
getUnderlyingGroup();
//@}
/*!
* @name Implementation of LOCA::MultiContinuation::AbstractGroup
* virtual methods
*/
//@{
//! Assignment
virtual void copy(const NOX::Abstract::Group& source);
//! Set parameters indexed by (integer) paramIDs
virtual void setParamsMulti(
const std::vector<int>& paramIDs,
const NOX::Abstract::MultiVector::DenseMatrix& vals);
//! Set the parameter vector in the group to p.
virtual void setParams(const ParameterVector& p);
//! Set parameter indexed by paramID
virtual void setParam(int paramID, double val);
//! Set parameter indexed by paramID
virtual void setParam(std::string paramID, double val);
//! Return a const reference to the paramter vector owned by the group.
virtual const ParameterVector& getParams() const;
//! Return copy of parameter indexed by paramID
virtual double getParam(int paramID) const;
//! Return copy of parameter indexed by paramID
virtual double getParam(std::string paramID) const;
/*!
* Compute \f$\partial F/\partial p\f$ for each parameter \f$p\f$
* indexed by paramIDs. The first column of \em dfdp holds F,
* which is valid if \em isValidF is true. Otherwise F must be
* computed.
*/
virtual NOX::Abstract::Group::ReturnType
computeDfDpMulti(const std::vector<int>& paramIDs,
NOX::Abstract::MultiVector& dfdp,
bool isValidF);
//! Perform any preprocessing before a continuation step starts.
/*!
* The \c stepStatus argument indicates whether the previous step was
* successful.
*/
virtual void
preProcessContinuationStep(
LOCA::Abstract::Iterator::StepStatus stepStatus);
//! Perform any postprocessing after a continuation step finishes.
/*!
* The \c stepStatus argument indicates whether the step was
* successful.
*/
virtual void
postProcessContinuationStep(
LOCA::Abstract::Iterator::StepStatus stepStatus);
//! Projects solution to a few scalars for multiparameter continuation
virtual void projectToDraw(const NOX::Abstract::Vector& x,
double *px) const;
//! Returns the dimension of the project to draw array
virtual int projectToDrawDimension() const;
/*!
* \brief Function to print out solution and continuation
* parameter after successful continuation step.
*/
virtual void printSolution(const double conParam) const;
/*!
* \brief Function to print out solution and continuation
* parameter after successful continuation step.
*/
virtual void printSolution(const NOX::Abstract::Vector& x_,
const double conParam) const;
//@}
protected:
//! Reset the isValid flags to false.
/*! This is called when the solution vector or parameter vector
is changed.
*/
void resetIsValidFlags();
//! Creates and sets the "Stepper" parameter sublist
void setStepperParameters(Teuchos::ParameterList& params);
private:
//! Prohibit generation and use of operator=()
Group& operator=(const Group&);
protected:
//! Pointer LOCA global data object
Teuchos::RCP<LOCA::GlobalData> globalData;
//! Stores the underlying loca group.
Teuchos::RCP<LOCA::Homotopy::AbstractGroup> grpPtr;
//! Stores the homotopy residual vector, \f$ g \f$.
Teuchos::RCP<NOX::Abstract::Vector> gVecPtr;
//! Stores the random Vector, \f$ a \f$.
Teuchos::RCP<NOX::Abstract::Vector> randomVecPtr;
/*!
* \brief Stores the homotopy Newton vector,
* \f$ \frac{\partial r}{\partial x} \f$.
*/
Teuchos::RCP<NOX::Abstract::Vector> newtonVecPtr;
/*!
* Stores the homotopy gradient vector if needed,
* \f$ \frac{\partial r}{\partial x} \f$.
*/
Teuchos::RCP<NOX::Abstract::Vector> gradVecPtr;
//! Is residual vector valid
bool isValidF;
//! Is Jacobian matrix valid
bool isValidJacobian;
//! Is Newton vector valid
bool isValidNewton;
//! Is gradient vector valid
bool isValidGradient;
//! Copy of the ParameterVector for the underlying grpPtr.
/*! We copy this and then add the homotopy parameter to the list. */
LOCA::ParameterVector paramVec;
//! Value of the homotopy continuation parameter.
/*! Ranges from 0.0 (easy solution) to 1.0 (solution to the system of
* interest).
*/
double conParam;
//! Continuatioin parameter ID number from the ParameterVector.
int conParamID;
/*!
* \brief Contains the std::string used to identify the homotopy parameter in
* the ParameterVector object.
*/
const std::string conParamLabel;
/*!
* \brief Tracks whether the LOCA::Homotopy::Group method
* augmentJacobianForHomotopy is implemented. If not, the augmentation
* is applied during the applyJacobian assuming a matrix-free
* implementation.
*/
bool augmentJacForHomotopyNotImplemented;
}; // class Group
} // namespace Homotopy
} // namespace LOCA
#endif
|