This file is indexed.

/usr/include/trilinos/NOX_Thyra_Group.H is in libtrilinos-nox-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
// $Id$
// $Source$

//@HEADER
// ************************************************************************
//
//            NOX: An Object-Oriented Nonlinear Solver Package
//                 Copyright (2002) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Roger Pawlowski (rppawlo@sandia.gov) or
// Eric Phipps (etphipp@sandia.gov), Sandia National Laboratories.
// ************************************************************************
//  CVS Information
//  $Source$
//  $Author$
//  $Date$
//  $Revision$
// ************************************************************************
//@HEADER

#ifndef NOX_THYRA_GROUP_H
#define NOX_THYRA_GROUP_H

#include "Teuchos_RCP.hpp"
#include "Thyra_ModelEvaluator.hpp"
#include "NOX_Abstract_Group.H"    // base class
#include "NOX_Common.H"             // class data element (std::string)
#include "NOX_Thyra_Vector.H"        // class data element
#include "NOX_SharedObjectTemplate.H"  // class data element

// Forward declares
namespace NOX {
  namespace Parameter {
    class List;
  }
}

namespace Thyra {
  template <class Scalar> class ModelEvaluator;
  template <class Scalar> class MultiVectorBase;
  template <class Scalar> class LinearOpBase;
  template <class Scalar> class LinearOpWithSolveBase;
  template <class Scalar> class LinearOpWithSolveFactoryBase;
  template <class Scalar> class DefaultLinearOpSource;
  template <class Scalar> class PreconditionerFactoryBase;
  template <class Scalar> class PreconditionerBase;
}

namespace NOX {

  namespace Thyra {

    /** \brief A concrete implementation of the NOX::Abstract::Group using Thyra.

        NOTE: This Group supports row sum scaling of the function
        (residual and Jacobian).  This is enabled by setting a weight
        vector on the initial guess vector in the Group constructor.
        The residual and Jacobian must be scaled before and then
        unscaled after calls to construct the preconditioner and solve
        the linear system.  This follows the nox epetra group.  This
        design should be changed in a future nox refactor, but
        requires significant changes to the Group object.
    */
    class Group : public virtual NOX::Abstract::Group {

    public:

      /** \brief The default constructor that uses the linear solver from the ModelEvaluator.

          Most users should use this constructor.  It is meant to be
          used in conjunction with a stratimikos linear solver that is
          built as part of the input model evaluator.  For finer
          grained control over the use of the preconditioner and for
          Jacobian-Free Newton-Krylov cases, the power user
          constructor should be used.

          \param[in] initial_guess Initial guess for the solution vector
      \param[in] model ModelEvaluator
      \param[in] weight_vector Optional diagonal weighting vector for the model.
      */
      Group(const NOX::Thyra::Vector& initial_guess,
        const Teuchos::RCP<const ::Thyra::ModelEvaluator<double> >& model,
        const Teuchos::RCP<const ::Thyra::VectorBase<double> >& weight_vector = Teuchos::null,
        const Teuchos::RCP<const ::Thyra::VectorBase<double> >& right_weight_vector = Teuchos::null,
        const bool rightScalingFirst = false);

      /** \brief Power user constructor that takes explicit linear solver objects to handle different combinations.

          This class allows the user to set user-defined linear
          operators and preconditioners (and corresponding
          factories). The user can set the linear_op to be a
          Jacobian-Free Newton Krylov operator (use the class
          NOX::Thyra::MatrixFreeJacobianOperator).

          \param[in] initial_guess (Required) Initial guess for the solution vector
      \param[in] model (Required) ModelEvaluator
      \param[in] linear_op (Optional) Forward operator for the Jacobian.  Must be non-null for Newton-based solvers.
      \param[in] lows_factory (Optional) Factory for building and updating linear solver.
      \param[in] prec_op (Optional) Preconditioner operator.  If set to Teuchos::null and a non-null prec_factory exists, the prec_op will be constructed using the preconditioner factory.
      \param[in] prec_factory (Optional) Factory for updating the precondiitoner.  If set to Teuchos::null and there is a non-null prec_op, then the preconditioner will be updated using the model evaluator as long as the ModelEvaluator::outArgs supports W_prec.
      \param[in] weight_vector (Optional) diagonal weighting vector for the model.
      */
      Group(const NOX::Thyra::Vector& initial_guess,
        const Teuchos::RCP<const ::Thyra::ModelEvaluator<double> >& model,
        const Teuchos::RCP< ::Thyra::LinearOpBase<double> >& linear_op,
        const Teuchos::RCP<const ::Thyra::LinearOpWithSolveFactoryBase<double> >& lows_factory,
        const Teuchos::RCP< ::Thyra::PreconditionerBase<double> >& prec_op,
        const Teuchos::RCP< ::Thyra::PreconditionerFactoryBase<double> >& prec_factory,
        const Teuchos::RCP<const ::Thyra::VectorBase<double> >& weight_vector = Teuchos::null,
        const Teuchos::RCP<const ::Thyra::VectorBase<double> >& right_weight_vector = Teuchos::null,
        const bool rightScalingFirst = false);

      //! Copy constructor
      Group(const NOX::Thyra::Group& source, NOX::CopyType type = DeepCopy);

      //! Destructor.
      ~Group();

      NOX::Abstract::Group& operator=(const NOX::Abstract::Group& source);

      NOX::Abstract::Group& operator=(const NOX::Thyra::Group& source);

      Teuchos::RCP<const ::Thyra::VectorBase<double> > get_current_x() const;

      Teuchos::RCP< ::Thyra::LinearOpBase<double> >
      getNonconstJacobianOperator();

      Teuchos::RCP<const ::Thyra::LinearOpBase<double> >
      getJacobianOperator() const;

      Teuchos::RCP<const ::Thyra::LinearOpBase<double> >
      getScaledJacobianOperator() const;

      void unscaleJacobianOperator() const;

      Teuchos::RCP< ::Thyra::LinearOpWithSolveBase<double> >
      getNonconstJacobian();

      Teuchos::RCP<const ::Thyra::LinearOpWithSolveBase<double> >
      getJacobian() const;

      Teuchos::RCP< ::Thyra::PreconditionerBase<double> >
      getNonconstPreconditioner();

      Teuchos::RCP<const ::Thyra::PreconditionerBase<double> >
      getPreconditioner() const;

      /** @name "Compute" functions. */
      //@{

      void setX(const NOX::Abstract::Vector& y);
      //! See above
      void setX(const NOX::Thyra::Vector& y);

      void computeX(const NOX::Abstract::Group& grp,
            const NOX::Abstract::Vector& d,
            double step);
      //! See above.
      void computeX(const NOX::Thyra::Group& grp,
            const NOX::Thyra::Vector& d,
            double step);

      NOX::Abstract::Group::ReturnType computeF();

      NOX::Abstract::Group::ReturnType computeJacobian();

      NOX::Abstract::Group::ReturnType computeGradient();

      NOX::Abstract::Group::ReturnType
      computeNewton(Teuchos::ParameterList& params);

      //@}

      /** @name Jacobian operations.
       *
       * Operations using the Jacobian matrix. These may not be defined in
       * matrix-free scenarios. */

      //@{

      NOX::Abstract::Group::ReturnType
      applyJacobian(const NOX::Abstract::Vector& input,
            NOX::Abstract::Vector& result) const;

      NOX::Abstract::Group::ReturnType
      applyJacobian(const NOX::Thyra::Vector& input,
            NOX::Thyra::Vector& result) const;

      NOX::Abstract::Group::ReturnType
      applyJacobianMultiVector(const NOX::Abstract::MultiVector& input,
                   NOX::Abstract::MultiVector& result) const;

      NOX::Abstract::Group::ReturnType
      applyJacobianTranspose(const NOX::Abstract::Vector& input,
                 NOX::Abstract::Vector& result) const;

      NOX::Abstract::Group::ReturnType
      applyJacobianTranspose(const NOX::Thyra::Vector& input,
                 NOX::Thyra::Vector& result) const;

      NOX::Abstract::Group::ReturnType
      applyJacobianTransposeMultiVector(
                     const NOX::Abstract::MultiVector& input,
                     NOX::Abstract::MultiVector& result) const;

      NOX::Abstract::Group::ReturnType
      applyJacobianInverse(Teuchos::ParameterList& params,
               const NOX::Abstract::Vector& input,
               NOX::Abstract::Vector& result) const;

      NOX::Abstract::Group::ReturnType
      applyJacobianInverse(Teuchos::ParameterList& params,
               const NOX::Thyra::Vector& input,
               NOX::Thyra::Vector& result) const;

      NOX::Abstract::Group::ReturnType
      applyJacobianInverseMultiVector(
                    Teuchos::ParameterList& params,
                    const NOX::Abstract::MultiVector& input,
                    NOX::Abstract::MultiVector& result) const;

      NOX::Abstract::Group::ReturnType
      applyRightPreconditioning(bool useTranspose,
                Teuchos::ParameterList& params,
                const NOX::Abstract::Vector& input,
                NOX::Abstract::Vector& result) const;
      //@}

      /** @name "Is" functions
       *
       * Checks to see if various objects have been computed. Returns true
       * if the corresponding "compute" function has been called since the
       * last update to the solution vector (via instantiation or
       * computeX). */
      //@{

      bool isF() const;
      bool isJacobian() const;
      bool isGradient() const;
      bool isNewton() const;

      //@}

      /** @name "Get" functions
       *
       * Note that these function do not check whether or not the vectors
       * are valid. Must use the "Is" functions for that purpose. */
      //@{

      const NOX::Abstract::Vector& getX() const;

      const NOX::Abstract::Vector& getScaledX() const;

      const NOX::Abstract::Vector& getF() const;

      double getNormF() const;

      const NOX::Abstract::Vector& getGradient() const;

      const NOX::Abstract::Vector& getNewton() const;

      Teuchos::RCP< const NOX::Abstract::Vector > getXPtr() const;

      Teuchos::RCP< const NOX::Abstract::Vector > getFPtr() const;

      Teuchos::RCP< const NOX::Abstract::Vector > getGradientPtr() const;

      Teuchos::RCP< const NOX::Abstract::Vector > getNewtonPtr() const;

      //@}

      virtual Teuchos::RCP<NOX::Abstract::Group>
      clone(NOX::CopyType type = NOX::DeepCopy) const;

      //! Print out the group
      void print() const;

      /** FOR POWER USERS ONLY!  Grab the inargs used by nox and allow the user to change it.  Used by pseudo-transient solver to add an x_dot and alpha/beta to the model evaluator call. */
      ::Thyra::ModelEvaluatorBase::InArgs<double>& getNonconstInArgs();

      const ::Thyra::ModelEvaluatorBase::InArgs<double>& getInArgs() const;

      Teuchos::RCP< const ::Thyra::ModelEvaluator<double> > getModel() const;

    protected:

      //! resets the isValid flags to false
      void resetIsValidFlags();

      //! Apply Jacobian inverse using Thyra objects
      NOX::Abstract::Group::ReturnType
      applyJacobianInverseMultiVector(
                  Teuchos::ParameterList& p,
                  const ::Thyra::MultiVectorBase<double>& input,
                  ::Thyra::MultiVectorBase<double>& result) const;

      ::Thyra::ESolveMeasureNormType
      getThyraNormType(const std::string& name) const;

      //! Finalizes LOWS to be a valid solver for the Jacobian
      void updateLOWS() const;

      void scaleResidualAndJacobian() const;

      void unscaleResidualAndJacobian() const;

      void computeScaledSolution();

    protected:

      //! Problem interface
      Teuchos::RCP< const ::Thyra::ModelEvaluator<double> > model_;

      /** @name IsValid flags
       *
       * True if the current solution is up-to-date with respect to the
       * currect solution vector. */
      //@{
      bool is_valid_f_;
      bool is_valid_jacobian_;
      bool is_valid_newton_dir_;
      bool is_valid_gradient_dir_;
      mutable bool is_valid_lows_;
      //@}

      //! Solution vector
      Teuchos::RCP<NOX::Thyra::Vector> x_vec_;

      //! Residual vector
      Teuchos::RCP<NOX::Thyra::Vector> f_vec_;

      //! Newton direction vector
      Teuchos::RCP<NOX::Thyra::Vector> newton_vec_;

      //! Gradient direction vector
      Teuchos::RCP<NOX::Thyra::Vector> gradient_vec_;

      //! Shared Jacobian operator with solve
      Teuchos::RCP<
        NOX::SharedObject<
          ::Thyra::LinearOpWithSolveBase<double>,
          NOX::Thyra::Group
          >
        > shared_jacobian_;

      //! Jacobian operator
      Teuchos::RCP< ::Thyra::LinearOpBase<double> > lop_;

      //! Thyra LOWS factory for building Jacobians
      Teuchos::RCP< const ::Thyra::LinearOpWithSolveFactoryBase<double> > lows_factory_;

      //! Source base needed to create preconditioner
      Teuchos::RCP< const ::Thyra::DefaultLinearOpSource<double> > losb_;

      //! Preconditioner for Jacobian
      Teuchos::RCP< ::Thyra::PreconditionerBase<double> > prec_;

      //! Preconditioner factory
      Teuchos::RCP< ::Thyra::PreconditionerFactoryBase<double> > prec_factory_;

      //! Residual InArgs
      mutable ::Thyra::ModelEvaluatorBase::InArgs<double> in_args_;

      //! Residual OutArgs
      mutable ::Thyra::ModelEvaluatorBase::OutArgs<double> out_args_;

      /** \brief Optional wieghting vector for function scaling. NOX assumes that this vector can be updated in between nonlinear iterations.

           This is pulled out of the initial guess vector
      */
      Teuchos::RCP<const ::Thyra::VectorBase<double> > weight_vec_;
      //! Optional wieghting vector for solution (right) scaling. NOX assumes that this vector will not change during an entire nonlinear solve.
      Teuchos::RCP<const ::Thyra::VectorBase<double> > right_weight_vec_;

      //! Inverse of weight vector used to unscale function (left) scaling. NOX assumes that this vector can be updated in between nonlinear iterations.
      mutable Teuchos::RCP< ::Thyra::VectorBase<double> > inv_weight_vec_;
      //! Inverse of weight vector used to unscale solution (right) scaling. NOX assumes that this vector will not change during an entire nonlinear solve.
      Teuchos::RCP< ::Thyra::VectorBase<double> > inv_right_weight_vec_;

      //! Scaled solution vector scaled by the 
      mutable Teuchos::RCP<NOX::Thyra::Vector> scaled_x_vec_;

      //! Do right scaling before left scaling?
      bool rightScalingFirst_;
    };

  } // namespace LAPACK
} // namespace NOX


#endif