/usr/include/trilinos/ROL_AugmentedLagrangianStep.hpp is in libtrilinos-rol-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_AUGMENTEDLAGRANGIANSTEP_H
#define ROL_AUGMENTEDLAGRANGIANSTEP_H
#include "ROL_AugmentedLagrangian.hpp"
#include "ROL_Vector.hpp"
#include "ROL_Objective.hpp"
#include "ROL_BoundConstraint.hpp"
#include "ROL_EqualityConstraint.hpp"
#include "ROL_Types.hpp"
#include "ROL_Algorithm.hpp"
#include "ROL_StatusTest.hpp"
#include "ROL_Step.hpp"
#include "ROL_LineSearchStep.hpp"
#include "ROL_TrustRegionStep.hpp"
#include "Teuchos_ParameterList.hpp"
/** @ingroup step_group
\class ROL::AugmentedLagrangianStep
\brief Provides the interface to compute augmented Lagrangian steps.
*/
namespace ROL {
template <class Real>
class AugmentedLagrangianStep : public Step<Real> {
private:
Teuchos::RCP<Algorithm<Real> > algo_;
Teuchos::RCP<Vector<Real> > x_;
Teuchos::ParameterList parlist_;
// Lagrange multiplier update
bool scaleLagrangian_;
Real minPenaltyReciprocal_;
Real minPenaltyLowerBound_;
Real penaltyUpdate_;
Real maxPenaltyParam_;
// Optimality tolerance update
Real optIncreaseExponent_;
Real optDecreaseExponent_;
Real optToleranceInitial_;
Real optTolerance_;
// Feasibility tolerance update
Real feasIncreaseExponent_;
Real feasDecreaseExponent_;
Real feasToleranceInitial_;
Real feasTolerance_;
// Subproblem information
bool print_;
int maxit_;
int subproblemIter_;
std::string subStep_;
Real outerOptTolerance_;
Real outerFeasTolerance_;
Real outerStepTolerance_;
Real computeGradient(Vector<Real> &g, const Vector<Real> &x,
const Real mu, Objective<Real> &obj,
BoundConstraint<Real> &bnd) {
AugmentedLagrangian<Real> &augLag
= Teuchos::dyn_cast<AugmentedLagrangian<Real> >(obj);
Real gnorm = 0., tol = std::sqrt(ROL_EPSILON<Real>());
augLag.gradient(g,x,tol);
if ( scaleLagrangian_ ) {
g.scale(mu);
}
// Compute norm of projected gradient
if (bnd.isActivated()) {
x_->set(x);
x_->axpy(-1.,g.dual());
bnd.project(*x_);
x_->axpy(-1.,x);
gnorm = x_->norm();
}
else {
gnorm = g.norm();
}
return gnorm;
}
public:
using Step<Real>::initialize;
using Step<Real>::compute;
using Step<Real>::update;
~AugmentedLagrangianStep() {}
AugmentedLagrangianStep(Teuchos::ParameterList &parlist)
: Step<Real>(), algo_(Teuchos::null),
x_(Teuchos::null), parlist_(parlist), subproblemIter_(0) {
Real one(1), p1(0.1), p9(0.9), ten(1.e1), oe8(1.e8), oem8(1.e-8);
Teuchos::ParameterList& sublist = parlist.sublist("Step").sublist("Augmented Lagrangian");
Step<Real>::getState()->searchSize = sublist.get("Initial Penalty Parameter",ten);
// Multiplier update parameters
scaleLagrangian_ = sublist.get("Use Scaled Augmented Lagrangian", false);
minPenaltyLowerBound_ = sublist.get("Penalty Parameter Reciprocal Lower Bound", p1);
minPenaltyReciprocal_ = p1;
penaltyUpdate_ = sublist.get("Penalty Parameter Growth Factor", ten);
maxPenaltyParam_ = sublist.get("Maximum Penalty Parameter", oe8);
// Optimality tolerance update
optIncreaseExponent_ = sublist.get("Optimality Tolerance Update Exponent", one);
optDecreaseExponent_ = sublist.get("Optimality Tolerance Decrease Exponent", one);
optToleranceInitial_ = sublist.get("Initial Optimality Tolerance", one);
// Feasibility tolerance update
feasIncreaseExponent_ = sublist.get("Feasibility Tolerance Update Exponent", p1);
feasDecreaseExponent_ = sublist.get("Feasibility Tolerance Decrease Exponent", p9);
feasToleranceInitial_ = sublist.get("Initial Feasibility Tolerance", one);
// Subproblem information
print_ = sublist.get("Print Intermediate Optimization History", false);
maxit_ = sublist.get("Subproblem Iteration Limit", 1000);
subStep_ = sublist.get("Subproblem Step Type", "Trust Region");
parlist_.sublist("Status Test").set("Iteration Limit",maxit_);
// Outer iteration tolerances
outerFeasTolerance_ = parlist.sublist("Status Test").get("Constraint Tolerance", oem8);
outerOptTolerance_ = parlist.sublist("Status Test").get("Gradient Tolerance", oem8);
outerStepTolerance_ = parlist.sublist("Status Test").get("Step Tolerance", oem8);
}
/** \brief Initialize step with equality constraint.
*/
void initialize( Vector<Real> &x, const Vector<Real> &g, Vector<Real> &l, const Vector<Real> &c,
Objective<Real> &obj, EqualityConstraint<Real> &con, BoundConstraint<Real> &bnd,
AlgorithmState<Real> &algo_state ) {
AugmentedLagrangian<Real> &augLag
= Teuchos::dyn_cast<AugmentedLagrangian<Real> >(obj);
// Initialize step state
Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
state->descentVec = x.clone();
state->gradientVec = g.clone();
state->constraintVec = c.clone();
// Initialize additional storage
x_ = x.clone();
// Initialize the algorithm state
algo_state.nfval = 0;
algo_state.ncval = 0;
algo_state.ngrad = 0;
// Project x onto the feasible set
if ( bnd.isActivated() ) {
bnd.project(x);
}
bnd.update(x,true,algo_state.iter);
// Update objective and constraint.
augLag.update(x,true,algo_state.iter);
algo_state.value = augLag.getObjectiveValue(x);
algo_state.gnorm = computeGradient(*(state->gradientVec),x,state->searchSize,obj,bnd);
augLag.getConstraintVec(*(state->constraintVec),x);
algo_state.cnorm = (state->constraintVec)->norm();
// Update evaluation counters
algo_state.ncval += augLag.getNumberConstraintEvaluations();
algo_state.nfval += augLag.getNumberFunctionEvaluations();
algo_state.ngrad += augLag.getNumberGradientEvaluations();
// Initialize intermediate stopping tolerances
Real one(1), TOL(1.e-2);
minPenaltyReciprocal_ = std::min(one/state->searchSize,minPenaltyLowerBound_);
optTolerance_ = std::max(TOL*outerOptTolerance_,
optToleranceInitial_*std::pow(minPenaltyReciprocal_,optDecreaseExponent_));
optTolerance_ = std::min(optTolerance_,TOL*algo_state.gnorm);
feasTolerance_ = std::max(TOL*outerFeasTolerance_,
feasToleranceInitial_*std::pow(minPenaltyReciprocal_,feasDecreaseExponent_));
}
/** \brief Compute step (equality and bound constraints).
*/
void compute( Vector<Real> &s, const Vector<Real> &x, const Vector<Real> &l,
Objective<Real> &obj, EqualityConstraint<Real> &con,
BoundConstraint<Real> &bnd, AlgorithmState<Real> &algo_state ) {
Real one(1);
AugmentedLagrangian<Real> &augLag
= Teuchos::dyn_cast<AugmentedLagrangian<Real> >(obj);
parlist_.sublist("Status Test").set("Gradient Tolerance",optTolerance_);
parlist_.sublist("Status Test").set("Step Tolerance",1.e-6*optTolerance_);
algo_ = Teuchos::rcp(new Algorithm<Real>(subStep_,parlist_,false));
x_->set(x);
if ( bnd.isActivated() ) {
algo_->run(*x_,augLag,bnd,print_);
}
else {
algo_->run(*x_,augLag,print_);
}
s.set(*x_); s.axpy(-one,x);
subproblemIter_ = (algo_->getState())->iter;
}
/** \brief Update step, if successful (equality and bound constraints).
*/
void update( Vector<Real> &x, Vector<Real> &l, const Vector<Real> &s,
Objective<Real> &obj, EqualityConstraint<Real> &con,
BoundConstraint<Real> &bnd,
AlgorithmState<Real> &algo_state ) {
Real one(1), oem2(1.e-2);
AugmentedLagrangian<Real> &augLag
= Teuchos::dyn_cast<AugmentedLagrangian<Real> >(obj);
Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
// Update the step and store in state
x.plus(s);
algo_state.iterateVec->set(x);
state->descentVec->set(s);
algo_state.snorm = s.norm();
algo_state.iter++;
// Update objective function value
algo_state.value = augLag.getObjectiveValue(x);
// Update constraint value
augLag.getConstraintVec(*(state->constraintVec),x);
algo_state.cnorm = (state->constraintVec)->norm();
// Compute gradient of the augmented Lagrangian
algo_state.gnorm = computeGradient(*(state->gradientVec),x,state->searchSize,obj,bnd);
// Update evaluation counters
algo_state.nfval += augLag.getNumberFunctionEvaluations();
algo_state.ngrad += augLag.getNumberGradientEvaluations();
algo_state.ncval += augLag.getNumberConstraintEvaluations();
// Update objective function and constraints
augLag.update(x,true,algo_state.iter);
bnd.update(x,true,algo_state.iter);
// Update multipliers
minPenaltyReciprocal_ = std::min(one/state->searchSize,minPenaltyLowerBound_);
if ( algo_state.cnorm < feasTolerance_ ) {
l.axpy(state->searchSize,(state->constraintVec)->dual());
optTolerance_ = std::max(oem2*outerOptTolerance_,
optTolerance_*std::pow(minPenaltyReciprocal_,optIncreaseExponent_));
feasTolerance_ = std::max(oem2*outerFeasTolerance_,
feasTolerance_*std::pow(minPenaltyReciprocal_,feasIncreaseExponent_));
// Update Algorithm State
algo_state.snorm += state->searchSize*algo_state.cnorm;
algo_state.lagmultVec->set(l);
}
else {
state->searchSize = std::min(penaltyUpdate_*state->searchSize,maxPenaltyParam_);
optTolerance_ = std::max(oem2*outerOptTolerance_,
optToleranceInitial_*std::pow(minPenaltyReciprocal_,optDecreaseExponent_));
feasTolerance_ = std::max(oem2*outerFeasTolerance_,
feasToleranceInitial_*std::pow(minPenaltyReciprocal_,feasDecreaseExponent_));
}
augLag.reset(l,state->searchSize);
}
/** \brief Print iterate header.
*/
std::string printHeader( void ) const {
std::stringstream hist;
hist << " ";
hist << std::setw(6) << std::left << "iter";
hist << std::setw(15) << std::left << "fval";
hist << std::setw(15) << std::left << "cnorm";
hist << std::setw(15) << std::left << "gLnorm";
hist << std::setw(15) << std::left << "snorm";
hist << std::setw(10) << std::left << "penalty";
hist << std::setw(10) << std::left << "feasTol";
hist << std::setw(10) << std::left << "optTol";
hist << std::setw(8) << std::left << "#fval";
hist << std::setw(8) << std::left << "#grad";
hist << std::setw(8) << std::left << "#cval";
hist << std::setw(8) << std::left << "subIter";
hist << "\n";
return hist.str();
}
/** \brief Print step name.
*/
std::string printName( void ) const {
std::stringstream hist;
hist << "\n" << " Augmented Lagrangian solver";
hist << "\n";
return hist.str();
}
/** \brief Print iterate status.
*/
std::string print( AlgorithmState<Real> &algo_state, bool pHeader = false ) const {
std::stringstream hist;
hist << std::scientific << std::setprecision(6);
if ( algo_state.iter == 0 ) {
hist << printName();
}
if ( pHeader ) {
hist << printHeader();
}
if ( algo_state.iter == 0 ) {
hist << " ";
hist << std::setw(6) << std::left << algo_state.iter;
hist << std::setw(15) << std::left << algo_state.value;
hist << std::setw(15) << std::left << algo_state.cnorm;
hist << std::setw(15) << std::left << algo_state.gnorm;
hist << std::setw(15) << std::left << " ";
hist << std::scientific << std::setprecision(2);
hist << std::setw(10) << std::left << Step<Real>::getStepState()->searchSize;
hist << std::setw(10) << std::left << std::max(feasTolerance_,outerFeasTolerance_);
hist << std::setw(10) << std::left << std::max(optTolerance_,outerOptTolerance_);
hist << "\n";
}
else {
hist << " ";
hist << std::setw(6) << std::left << algo_state.iter;
hist << std::setw(15) << std::left << algo_state.value;
hist << std::setw(15) << std::left << algo_state.cnorm;
hist << std::setw(15) << std::left << algo_state.gnorm;
hist << std::setw(15) << std::left << algo_state.snorm;
hist << std::scientific << std::setprecision(2);
hist << std::setw(10) << std::left << Step<Real>::getStepState()->searchSize;
hist << std::setw(10) << std::left << feasTolerance_;
hist << std::setw(10) << std::left << optTolerance_;
hist << std::scientific << std::setprecision(6);
hist << std::setw(8) << std::left << algo_state.nfval;
hist << std::setw(8) << std::left << algo_state.ngrad;
hist << std::setw(8) << std::left << algo_state.ncval;
hist << std::setw(8) << std::left << subproblemIter_;
hist << "\n";
}
return hist.str();
}
/** \brief Compute step for bound constraints; here only to satisfy the
interface requirements, does nothing, needs refactoring.
*/
void compute( Vector<Real> &s, const Vector<Real> &x, Objective<Real> &obj,
BoundConstraint<Real> &con,
AlgorithmState<Real> &algo_state ) {}
/** \brief Update step, for bound constraints; here only to satisfy the
interface requirements, does nothing, needs refactoring.
*/
void update( Vector<Real> &x, const Vector<Real> &s, Objective<Real> &obj,
BoundConstraint<Real> &con,
AlgorithmState<Real> &algo_state ) {}
}; // class AugmentedLagrangianStep
} // namespace ROL
#endif
|