This file is indexed.

/usr/include/trilinos/ROL_CompositeEqualityConstraint_SimOpt.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_COMPOSITE_EQUALITY_CONSTRAINT_SIMOPT_H
#define ROL_COMPOSITE_EQUALITY_CONSTRAINT_SIMOPT_H

#include "ROL_EqualityConstraint_SimOpt.hpp"

/** @ingroup func_group
    \class ROL::CompositeEqualityConstraint_SimOpt
    \brief Defines a composite equality constraint operator interface for
           simulation-based optimization.

    This equality constraint interface inherits from ROL_EqualityConstraint_SimOpt, for the
    use case when \f$\mathcal{X}=\mathcal{U}\times\mathcal{Z}\f$ where \f$\mathcal{U}\f$ and 
    \f$\mathcal{Z}\f$ are Banach spaces.  \f$\mathcal{U}\f$ denotes the "simulation space"
    and \f$\mathcal{Z}\f$ denotes the "optimization space" (of designs, controls, parameters).
    The simulation-based constraints are of the form
    \f[
      c(u,S(z)) = 0
    \f]
    where \f$S(z)\f$ solves the reducible constraint
    \f[
       c_0(S(z),z) = 0.
    \f]

    ---
*/


namespace ROL {

template <class Real>
class CompositeEqualityConstraint_SimOpt : public virtual EqualityConstraint_SimOpt<Real> {
private:
  // Constraints
  const Teuchos::RCP<EqualityConstraint_SimOpt<Real> > conVal_;
  const Teuchos::RCP<EqualityConstraint_SimOpt<Real> > conRed_;
  // Additional vector storage for solve
  Teuchos::RCP<Vector<Real> > Sz_;
  Teuchos::RCP<Vector<Real> > primRed_;
  Teuchos::RCP<Vector<Real> > dualRed_;
  Teuchos::RCP<Vector<Real> > primZ_;
  Teuchos::RCP<Vector<Real> > dualZ_;
  Teuchos::RCP<Vector<Real> > dualZ1_;
  // Boolean variables
  bool isSolved_;

  void solveConRed(const Vector<Real> &z, Real &tol) {
    if ( !isSolved_ ) {
      conRed_->solve(*primRed_, *Sz_, z, tol);
      isSolved_ = true;
    }
  }

  void applySens(Vector<Real> &jv, const Vector<Real> &v, const Vector<Real> &z, Real &tol) { 
    solveConRed(z, tol);
    conRed_->applyJacobian_2(*primRed_, v, *Sz_, z, tol);
    conRed_->applyInverseJacobian_1(jv, *primRed_, *Sz_, z, tol);
    jv.scale(static_cast<Real>(-1));
  }

  void applyAdjointSens(Vector<Real> &ajv, const Vector<Real> &v, const Vector<Real> &z, Real &tol) {
    solveConRed(z, tol);
    conRed_->applyInverseAdjointJacobian_1(*dualRed_, v, *Sz_, z, tol);
    conRed_->applyAdjointJacobian_2(ajv, *dualRed_, *Sz_, z, tol);
    ajv.scale(static_cast<Real>(-1));
  }

public:
  CompositeEqualityConstraint_SimOpt(const Teuchos::RCP<EqualityConstraint_SimOpt<Real> > &conVal,
                                     const Teuchos::RCP<EqualityConstraint_SimOpt<Real> > &conRed,
                                     const Vector<Real> &cVal, const Vector<Real> &cRed,
                                     const Vector<Real> &u, const Vector<Real> &Sz, const Vector<Real> &z)
    : EqualityConstraint_SimOpt<Real>(), conVal_(conVal), conRed_(conRed), isSolved_(false) {
    Sz_      = Sz.clone();
    primRed_ = cRed.clone();
    dualRed_ = cRed.dual().clone();
    primZ_   = z.clone();
    dualZ_   = z.dual().clone();
    dualZ1_  = z.dual().clone();
  }

  void update(const Vector<Real> &u, const Vector<Real> &z, bool flag = true, int iter = -1 ) {
    Real ctol = std::sqrt(ROL_EPSILON<Real>());
    update_1(u, flag, iter);
    update_2(z, flag, iter);
    isSolved_ = false;
    solveConRed(z, ctol);
    conRed_->update(*Sz_, z, flag, iter);
    conVal_->update(u, *Sz_, flag, iter);
  }

  void update_1( const Vector<Real> &u, bool flag = true, int iter = -1 ) {
    conVal_->update_1(u, flag, iter);
  }

  void update_2( const Vector<Real> &z, bool flag = true, int iter = -1 ) {
    conRed_->update_2(z, flag, iter);
  }

  void value(Vector<Real> &c, const Vector<Real> &u, const Vector<Real> &z, Real &tol) {
    solveConRed(z, tol);
    conVal_->value(c, u, *Sz_, tol);
  }

  void applyJacobian_1(Vector<Real> &jv, const Vector<Real> &v, const Vector<Real> &u,
                       const Vector<Real> &z, Real &tol) {
    solveConRed(z, tol);
    conVal_->applyJacobian_1(jv, v, u, *Sz_, tol);
  }

  void applyJacobian_2(Vector<Real> &jv, const Vector<Real> &v, const Vector<Real> &u,
                       const Vector<Real> &z, Real &tol) { 
    applySens(*primZ_, v, z, tol);
    conVal_->applyJacobian_2(jv, *primZ_, u, *Sz_, tol);
  }

  void applyInverseJacobian_1(Vector<Real> &ijv, const Vector<Real> &v, const Vector<Real> &u,
                              const Vector<Real> &z, Real &tol) {
    solveConRed(z, tol);
    conVal_->applyInverseJacobian_1(ijv, v, u, *Sz_, tol);
  }

  void applyAdjointJacobian_1(Vector<Real> &ajv, const Vector<Real> &v, const Vector<Real> &u,
                              const Vector<Real> &z, Real &tol) {
    solveConRed(z, tol);
    conVal_->applyAdjointJacobian_1(ajv, v, u, *Sz_, tol);
  }

  void applyAdjointJacobian_2(Vector<Real> &ajv, const Vector<Real> &v, const Vector<Real> &u,
                              const Vector<Real> &z, Real &tol) {
    solveConRed(z, tol);
    conVal_->applyAdjointJacobian_2(*dualZ_, v, u, *Sz_, tol);
    applyAdjointSens(ajv, *dualZ_, z, tol);
  }

  void applyInverseAdjointJacobian_1(Vector<Real> &ijv, const Vector<Real> &v, const Vector<Real> &u,
                                     const Vector<Real> &z, Real &tol) {
    solveConRed(z, tol);
    conVal_->applyInverseAdjointJacobian_1(ijv, v, u, *Sz_, tol);
  }

  void applyAdjointHessian_11(Vector<Real> &ahwv, const Vector<Real> &w, const Vector<Real> &v,
                              const Vector<Real> &u, const Vector<Real> &z, Real &tol) {
    solveConRed(z, tol);
    conVal_->applyAdjointHessian_11(ahwv, w, v, u, z, tol);
  }

  void applyAdjointHessian_12(Vector<Real> &ahwv, const Vector<Real> &w, const Vector<Real> &v,
                              const Vector<Real> &u, const Vector<Real> &z, Real &tol) {
    solveConRed(z, tol);
    conVal_->applyAdjointHessian_12(*dualZ_, w, v, u, *Sz_, tol);
    applyAdjointSens(ahwv, *dualZ_, z, tol);
  }

  void applyAdjointHessian_21(Vector<Real> &ahwv, const Vector<Real> &w, const Vector<Real> &v,
                              const Vector<Real> &u, const Vector<Real> &z, Real &tol) {
    applySens(*primZ_, v, z, tol);
    conVal_->applyAdjointHessian_21(ahwv, w, *primZ_, u, *Sz_, tol);
  }

  void applyAdjointHessian_22(Vector<Real> &ahwv, const Vector<Real> &w, const Vector<Real> &v,
                              const Vector<Real> &u, const Vector<Real> &z, Real &tol) {
    ahwv.zero();
    applySens(*primZ_, v, z, tol);

    conVal_->applyAdjointJacobian_2(*dualZ_, w, u, *Sz_, tol);
    conRed_->applyInverseAdjointJacobian_1(*dualRed_, *dualZ_, *Sz_, z, tol);
    conRed_->applyAdjointHessian_22(*dualZ_, *dualRed_, v, *Sz_, z, tol);
    ahwv.axpy(static_cast<Real>(-1), *dualZ_);
    conRed_->applyAdjointHessian_12(*dualZ_, *dualRed_, *primZ_, *Sz_, z, tol);
    ahwv.axpy(static_cast<Real>(-1), *dualZ_);

    conRed_->applyAdjointHessian_11(*dualZ1_, *dualRed_, *primZ_, *Sz_, z, tol);
    conRed_->applyAdjointHessian_21(*dualZ_, *dualRed_, v, *Sz_, z, tol);
    dualZ1_->plus(*dualZ_); 
    dualZ1_->scale(static_cast<Real>(-1));
    
    conVal_->applyAdjointHessian_22(*dualZ_, w, *primZ_, u, *Sz_, tol);
    dualZ1_->plus(*dualZ_); 

    applyAdjointSens(*dualZ_, *dualZ1_, z, tol);
    ahwv.plus(*dualZ_);
  }

// Definitions for parametrized (stochastic) equality constraints
public:
  void setParameter(const std::vector<Real> &param) {
    EqualityConstraint_SimOpt<Real>::setParameter(param);
    conVal_->setParameter(param);
    conRed_->setParameter(param);
    isSolved_ = false; // Resolve constraint every time
  }
}; // class CompositeEqualityConstraint_SimOpt

} // namespace ROL

#endif