This file is indexed.

/usr/include/trilinos/ROL_GradientStep.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_GRADIENTSTEP_H
#define ROL_GRADIENTSTEP_H

#include "ROL_Types.hpp"
#include "ROL_Step.hpp"
#include "ROL_Secant.hpp"

/** @ingroup step_group
    \class ROL::GradientStep
    \brief Provides the interface to compute optimization steps
           with the gradient descent method globalized using line search.
*/

namespace ROL {

template <class Real>
class GradientStep : public Step<Real> {
private:

  int verbosity_;         ///< Verbosity setting
  const bool computeObj_; ///< Allows line search to compute objective

public:

  using Step<Real>::initialize;
  using Step<Real>::compute;
  using Step<Real>::update;

  /** \brief Constructor.

      Constructor to build a GradientStep object.  Algorithmic specifications
      are passed in through a Teuchos::ParameterList.

      @param[in]     parlist    is a parameter list containing algorithmic specifications
  */
  GradientStep( Teuchos::ParameterList &parlist, const bool computeObj = true )
    : Step<Real>(), verbosity_(0), computeObj_(computeObj) {
    // Parse ParameterList
    verbosity_ = parlist.sublist("General").get("Print Verbosity",0);
  }

  void compute( Vector<Real> &s, const Vector<Real> &x,
                Objective<Real> &obj, BoundConstraint<Real> &bnd,
                AlgorithmState<Real> &algo_state ) {
    Real one(1);
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();

    // Compute search direction
    s.set((step_state->gradientVec)->dual());
    s.scale(-one);
  }

  void update( Vector<Real> &x, const Vector<Real> &s, Objective<Real> &obj, BoundConstraint<Real> &con,
               AlgorithmState<Real> &algo_state ) {
    Real tol = std::sqrt(ROL_EPSILON<Real>());
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();

    // Update iterate and store step
    algo_state.iter++;
    x.plus(s);
    (step_state->descentVec)->set(s);
    algo_state.snorm = s.norm();

    // Compute new gradient
    obj.update(x,true,algo_state.iter);
    if ( computeObj_ ) {
      algo_state.value = obj.value(x,tol);
      algo_state.nfval++;
    }
    obj.gradient(*(step_state->gradientVec),x,tol);
    algo_state.ngrad++;

    // Update algorithm state
    (algo_state.iterateVec)->set(x);
    algo_state.gnorm = (step_state->gradientVec)->norm();
  }

  std::string printHeader( void ) const {
    std::stringstream hist;

    if( verbosity_>0 ) {
      hist << std::string(109,'-') <<  "\n";
      hist <<  EDescentToString(DESCENT_STEEPEST);
      hist << " status output definitions\n\n";
      hist << "  iter     - Number of iterates (steps taken) \n";
      hist << "  value    - Objective function value \n";
      hist << "  gnorm    - Norm of the gradient\n";
      hist << "  snorm    - Norm of the step (update to optimization vector)\n";
      hist << "  #fval    - Cumulative number of times the objective function was evaluated\n";
      hist << "  #grad    - Number of times the gradient was computed\n";
      hist << std::string(109,'-') << "\n";
    }

    hist << "  ";
    hist << std::setw(6)  << std::left << "iter";
    hist << std::setw(15) << std::left << "value";
    hist << std::setw(15) << std::left << "gnorm";
    hist << std::setw(15) << std::left << "snorm";
    hist << std::setw(10) << std::left << "#fval";
    hist << std::setw(10) << std::left << "#grad";
    hist << "\n";
    return hist.str();
  }
  std::string printName( void ) const {
    std::stringstream hist;
    hist << "\n" << EDescentToString(DESCENT_STEEPEST) << "\n";
    return hist.str();
  }
  std::string print( AlgorithmState<Real> &algo_state, bool print_header = false ) const {
    std::stringstream hist;
    hist << std::scientific << std::setprecision(6);
    if ( algo_state.iter == 0 ) {
      hist << printName();
    }
    if ( print_header ) {
      hist << printHeader();
    }
    if ( algo_state.iter == 0 ) {
      hist << "  ";
      hist << std::setw(6) << std::left << algo_state.iter;
      hist << std::setw(15) << std::left << algo_state.value;
      hist << std::setw(15) << std::left << algo_state.gnorm;
      hist << "\n";
    }
    else {
      hist << "  ";
      hist << std::setw(6)  << std::left << algo_state.iter;
      hist << std::setw(15) << std::left << algo_state.value;
      hist << std::setw(15) << std::left << algo_state.gnorm;
      hist << std::setw(15) << std::left << algo_state.snorm;
      hist << std::setw(10) << std::left << algo_state.nfval;
      hist << std::setw(10) << std::left << algo_state.ngrad;
      hist << "\n";
    }
    return hist.str();
  }
}; // class GradientStep

} // namespace ROL
#endif