This file is indexed.

/usr/include/trilinos/ROL_HMCR.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_HMCR_HPP
#define ROL_HMCR_HPP

#include "ROL_RiskMeasure.hpp"
#include "ROL_PlusFunction.hpp"
#include "ROL_RiskVector.hpp"

/** @ingroup risk_group
    \class ROL::HMCR
    \brief Provides an interface for a convex combination of the
           expected value and the higher moment coherent risk measure.

    The higher moment coherent risk measure of order \f$p\f$ with confidence
    level \f$0\le \beta < 1\f$ is
    \f[
       \mathcal{R}(X) = \inf_{t\in\mathbb{R}} \left\{
         t + \frac{1}{1-\beta} \mathbb{E}\left[(X-t)_+^p\right]^{1/p}
         \right\}
    \f]
    where \f$(x)_+ = \max\{0,x\}\f$.
    \f$\mathcal{R}\f$ is a law-invariant coherent risk measure.
    ROL implements this by augmenting the optimization vector \f$x_0\f$ with
    the parameter \f$t\f$, then minimizes jointly for \f$(x_0,t)\f$.

    The user can provide a smooth approximation of \f$(\cdot)_+\f$ using the
    ROL::PlusFunction class.
*/

namespace ROL {

template<class Real>
class HMCR : public RiskMeasure<Real> {
private:
  // Plus function (approximation)
  Teuchos::RCP<PlusFunction<Real> > plusFunction_;

  // User inputs
  Real prob_;
  Real lambda_;
  unsigned order_;

  // 1/(1-prob)
  Real coeff_;

  // Temporary vector storage
  Teuchos::RCP<Vector<Real> > mDualVector0_;
  Teuchos::RCP<Vector<Real> > gDualVector0_;
  Teuchos::RCP<Vector<Real> > mDualVector1_;
  Teuchos::RCP<Vector<Real> > gDualVector1_;

  // Statistic storage
  Real xvar_;
  Real vvar_;

  // Temporary scalar storage
  Real pnorm_;
  Real coeff0_;
  Real coeff1_;
  Real coeff2_;

  // Flag to initialized vector storage
  bool HMCR_firstReset_;

  void checkInputs(void) const {
    const Real zero(0), one(1);
    TEUCHOS_TEST_FOR_EXCEPTION((prob_ <= zero) || (prob_ >= one), std::invalid_argument,
      ">>> ERROR (ROL::HMCR): Confidence level must be between 0 and 1!");
    TEUCHOS_TEST_FOR_EXCEPTION((lambda_ < zero) || (lambda_ > one), std::invalid_argument,
      ">>> ERROR (ROL::HMCR): Convex combination parameter must be positive!");
    TEUCHOS_TEST_FOR_EXCEPTION((order_ < 2), std::invalid_argument,
      ">>> ERROR (ROL::HMCR): Norm order is less than 2!");
    TEUCHOS_TEST_FOR_EXCEPTION(plusFunction_ == Teuchos::null, std::invalid_argument,
      ">>> ERROR (ROL::HMCR): PlusFunction pointer is null!");
  }

public:
  /** \brief Constructor.

      @param[in]     prob    is the confidence level
      @param[in]     lambda  is the convex combination parameter (lambda=0
                             corresponds to the expected value whereas lambda=1
                             corresponds to the higher moment coherent risk measure)
      @param[in]     order   is the order of higher moment coherent risk measure
      @param[in]     pf      is the plus function or an approximation
  */
  HMCR( const Real prob, const Real lambda, const unsigned order,
        const Teuchos::RCP<PlusFunction<Real> > &pf )
    : RiskMeasure<Real>(),
      plusFunction_(pf), prob_(prob), lambda_(lambda), order_(order),
      xvar_(0), vvar_(0), pnorm_(0), coeff0_(0), coeff1_(0), coeff2_(0),
      HMCR_firstReset_(true) {
    checkInputs();
    const Real one(1);
    coeff_ = one/(one-prob_);
  }

  /** \brief Constructor.

      @param[in]     parlist is a parameter list specifying inputs

      parlist should contain sublists "SOL"->"Risk Measure"->"HMCR" and
      within the "HMCR" sublist should have the following parameters
      \li "Confidence Level" (between 0 and 1)
      \li "Convex Combination Parameter" (between 0 and 1)
      \li "Order" (unsigned integer)
      \li A sublist for plus function information.
  */
  HMCR( Teuchos::ParameterList &parlist )
    : RiskMeasure<Real>(),
      xvar_(0), vvar_(0), pnorm_(0), coeff0_(0), coeff1_(0), coeff2_(0),
      HMCR_firstReset_(true) {
    Teuchos::ParameterList &list
      = parlist.sublist("SOL").sublist("Risk Measure").sublist("HMCR");
    // Check HMCR inputs
    prob_  = list.get<Real>("Confidence Level");
    lambda_ = list.get<Real>("Convex Combination Parameter");
    order_ = (unsigned)list.get<int>("Order",2);
    // Build (approximate) plus function
    plusFunction_  = Teuchos::rcp(new PlusFunction<Real>(list));
    // Check inputs
    checkInputs();
    const Real one(1);
    coeff_ = one/(one-prob_);
  }

  void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x) {
    RiskMeasure<Real>::reset(x0,x);
    xvar_ = Teuchos::dyn_cast<const RiskVector<Real> >(x).getStatistic(0);
    // Initialize additional vector storage
    if ( HMCR_firstReset_ ) {
      mDualVector0_ = (x0->dual()).clone();
      gDualVector0_ = (x0->dual()).clone();
      mDualVector1_ = (x0->dual()).clone();
      gDualVector1_ = (x0->dual()).clone();
      HMCR_firstReset_  = false;
    }
    // Zero temporary storage
    const Real zero(0);
    mDualVector0_->zero(); gDualVector0_->zero();
    pnorm_ = zero; coeff0_ = zero;
  }

  void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x,
             Teuchos::RCP<Vector<Real> > &v0, const Vector<Real> &v) {
    reset(x0,x);
    v0    = Teuchos::rcp_const_cast<Vector<Real> >(
            Teuchos::dyn_cast<const RiskVector<Real> >(v).getVector());
    vvar_ = Teuchos::dyn_cast<const RiskVector<Real> >(v).getStatistic(0);
    // Zero temporary storage
    const Real zero(0);
    mDualVector1_->zero(); gDualVector1_->zero();
    coeff1_ = zero; coeff2_ = zero;
  }

  void update(const Real val, const Real weight) {
    const Real rorder = static_cast<Real>(order_);
    // Expected value
    RiskMeasure<Real>::val_ += weight*val;
    // Higher moment
    Real pf = plusFunction_->evaluate(val-xvar_,0);
    pnorm_ += weight*std::pow(pf,rorder);
  }

  Real getValue(SampleGenerator<Real> &sampler) {
    const Real one(1);
    const Real power = one/static_cast<Real>(order_);
    std::vector<Real> val_in(2), val_out(2);
    val_in[0] = RiskMeasure<Real>::val_;
    val_in[1] = pnorm_;
    sampler.sumAll(&val_in[0],&val_out[0],2);
    return (one-lambda_)*val_out[0]
          + lambda_*(xvar_ + coeff_*std::pow(val_out[1],power));
  }

  void update(const Real val, const Vector<Real> &g, const Real weight) {
    const Real one(1);
    const Real rorder0 = static_cast<Real>(order_);
    const Real rorder1 = rorder0 - one;
    // Expected value
    RiskMeasure<Real>::g_->axpy(weight,g);
    // Higher moment
    Real pf0 = plusFunction_->evaluate(val-xvar_,0);
    Real pf1 = plusFunction_->evaluate(val-xvar_,1);

    Real pf0p0 = std::pow(pf0,rorder0);
    Real pf0p1 = std::pow(pf0,rorder1);

    pnorm_  += weight*pf0p0;
    coeff0_ += weight*pf0p1*pf1;

    mDualVector0_->axpy(weight*pf0p1*pf1,g);
  }

  void getGradient(Vector<Real> &g, SampleGenerator<Real> &sampler) {
    const Real zero(0), one(1);
    std::vector<Real> val_in(2), val_out(2);
    val_in[0] = pnorm_; val_in[1] = coeff0_;

    sampler.sumAll(&val_in[0],&val_out[0],2);
    sampler.sumAll(*(RiskMeasure<Real>::g_),*(RiskMeasure<Real>::dualVector_));
    RiskMeasure<Real>::dualVector_->scale(one-lambda_);
    Real var = lambda_;
    // If the higher moment term is positive then compute gradient
    if ( val_in[0] > zero ) {
      const Real rorder0 = static_cast<Real>(order_);
      const Real rorder1 = rorder0 - one;
      Real denom = std::pow(val_out[0],rorder1/rorder0);
      // Sum higher moment contribution
      sampler.sumAll(*mDualVector0_,*gDualVector0_);
      RiskMeasure<Real>::dualVector_->axpy(lambda_*coeff_/denom,*gDualVector0_);
      // Compute statistic gradient
      var -= lambda_*coeff_*((denom > zero) ? val_out[1]/denom : zero);
    }
    // Set gradients
    (Teuchos::dyn_cast<RiskVector<Real> >(g)).setStatistic(var);
    (Teuchos::dyn_cast<RiskVector<Real> >(g)).setVector(*(RiskMeasure<Real>::dualVector_));
  }

  void update(const Real val, const Vector<Real> &g, const Real gv, const Vector<Real> &hv,
              const Real weight) {
    const Real one(1);
    const Real rorder0 = static_cast<Real>(order_);
    const Real rorder1 = rorder0-one;
    const Real rorder2 = rorder1-one;
    // Expected value
    RiskMeasure<Real>::hv_->axpy(weight,hv);
    // Higher moment
    Real pf0 = plusFunction_->evaluate(val-xvar_,0);
    Real pf1 = plusFunction_->evaluate(val-xvar_,1);
    Real pf2 = plusFunction_->evaluate(val-xvar_,2);

    Real pf0p0 = std::pow(pf0,rorder0);
    Real pf0p1 = std::pow(pf0,rorder1);
    Real pf0p2 = std::pow(pf0,rorder2);

    Real scale0 = (rorder1*pf0p2*pf1*pf1 + pf0p1*pf2)*(gv-vvar_);
    Real scale1 = pf0p1*pf1;

    pnorm_  += weight*pf0p0;
    coeff0_ += weight*scale0;
    coeff1_ += weight*scale1;
    coeff2_ += weight*rorder1*scale1*(vvar_-gv);

    mDualVector0_->axpy(weight*scale0,g);
    mDualVector0_->axpy(weight*scale1,hv);
    mDualVector1_->axpy(weight*scale1,g);
  }

  void getHessVec(Vector<Real> &hv, SampleGenerator<Real> &sampler) {
    const Real zero(0), one(1);
    std::vector<Real> val_in(4), val_out(4);
    val_in[0] = pnorm_;  val_in[1] = coeff0_;
    val_in[2] = coeff1_; val_in[3] = coeff2_;

    sampler.sumAll(&val_in[0],&val_out[0],4);
    sampler.sumAll(*(RiskMeasure<Real>::hv_),*(RiskMeasure<Real>::dualVector_));

    Real var = zero;
    RiskMeasure<Real>::dualVector_->scale(one-lambda_);

    if ( val_out[0] > zero ) {
      const Real rorder0 = static_cast<Real>(order_);
      const Real rorder1 = rorder0-one;
      const Real rorder2 = rorder0 + rorder1;
      const Real coeff   = lambda_*coeff_;

      sampler.sumAll(*mDualVector0_,*gDualVector0_);
      sampler.sumAll(*mDualVector1_,*gDualVector1_);

      Real denom1 = std::pow(val_out[0],rorder1/rorder0);
      Real denom2 = std::pow(val_out[0],rorder2/rorder0);

      var = -coeff*(val_out[1]/denom1 + val_out[3]*val_out[2]/denom2);
      RiskMeasure<Real>::dualVector_->axpy(coeff/denom1,*gDualVector0_);
      RiskMeasure<Real>::dualVector_->axpy(coeff*val_out[3]/denom2,*gDualVector1_);
    }

    (Teuchos::dyn_cast<RiskVector<Real> >(hv)).setStatistic(var);
    (Teuchos::dyn_cast<RiskVector<Real> >(hv)).setVector(*(RiskMeasure<Real>::dualVector_));
  }
};

}

#endif