This file is indexed.

/usr/include/trilinos/ROL_InteriorPointStep.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_INTERIORPOINTSTEP_H
#define ROL_INTERIORPOINTSTEP_H

#include "ROL_CompositeStep.hpp"
#include "ROL_ConstraintStatusTest.hpp"
#include "ROL_InteriorPoint.hpp"
#include "ROL_ObjectiveFromBoundConstraint.hpp"
#include "ROL_Types.hpp"


namespace ROL {

template <class Real>
class InteriorPointStep : public Step<Real> {

typedef InteriorPoint::PenalizedObjective<Real>   IPOBJ;
typedef InteriorPoint::CompositeConstraint<Real>  IPCON;

typedef PartitionedVector<Real> PV;
typedef typename PV::size_type  size_type; 

const static size_type OPT   = 0;
const static size_type SLACK = 1;

private:

  Teuchos::RCP<StatusTest<Real> >       status_;
  Teuchos::RCP<Step<Real> >             step_;  
  Teuchos::RCP<IPOBJ>                   ipobj_;
  Teuchos::RCP<IPCON>                   ipcon_;
  Teuchos::RCP<Algorithm<Real> >        algo_;
  Teuchos::RCP<Teuchos::ParameterList>  parlist_;

  // Storage
  Teuchos::RCP<PV> x_;
  Teuchos::RCP<Vector<Real> > g_;
  Teuchos::RCP<Vector<Real> > l_;
  Teuchos::RCP<Vector<Real> > c_;

  Real mu_;      // Barrier parameter
  Real mumin_;   // Minimal value of barrier parameter
  Real mumax_;   // Maximal value of barrier parameter 
  Real rho_;     // Barrier parameter reduction factor
  int  maxit_;   // Maximum number of interior point subproblem solves

  // For the subproblem
  Real gtol_;           // Status test gradient tolerance
  Real ctol_;           // Status test constraint tolerance
  Real stol_;           // Status test step tolerance
  int subproblemIter_;  // Status test maximum number of iterations

  int verbosity_;       // Adjust level of detail in printing step information

public:
 
  using Step<Real>::initialize;
  using Step<Real>::compute;
  using Step<Real>::update;

  ~InteriorPointStep() {}

  InteriorPointStep(Teuchos::ParameterList &parlist) :
    Step<Real>(), 
    status_(Teuchos::null), 
    step_(Teuchos::null),
    ipobj_(Teuchos::null),
    ipcon_(Teuchos::null),
    algo_(Teuchos::null), 
    x_(Teuchos::null),
    g_(Teuchos::null),
    l_(Teuchos::null),
    c_(Teuchos::null) {

    using Teuchos::ParameterList;
    
    verbosity_ = parlist.sublist("General").get("Print Verbosity",0);

    // List of general Interior Point parameters
    ParameterList& iplist  = parlist.sublist("Step").sublist("Interior Point");

    mu_             = iplist.get("Initial Barrier Penalty",1.0);
    mumin_          = iplist.get("Minimum Barrier Penalty",1.e-4);
    mumax_          = iplist.get("Maximum Barrier Penalty",1e8);
    rho_            = iplist.get("Barrier Penalty Reduction Factor",0.5);
    subproblemIter_ = iplist.get("Subproblem Iteration Limit",10);


    // List of Status Test parameters
    ParameterList& stlist  = parlist.sublist("Status Test");

    gtol_  = stlist.get("Gradient Tolerance", 1.e-8);
    ctol_  = stlist.get("Constraint Tolerance", 1.e-8);
    stol_  = stlist.get("Step Tolerance", 1.e-8);
    maxit_ = stlist.get("Iteration Limit", 100);
 
    parlist_ = Teuchos::rcp(&parlist, false);

  }

  /** \brief Initialize step with equality constraint 
   */
  void initialize( Vector<Real> &x, const Vector<Real> &g, 
                   Vector<Real> &l, const Vector<Real> &c,
                   Objective<Real> &obj, EqualityConstraint<Real> &con, 
                   AlgorithmState<Real> &algo_state ) {

    Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
    state->descentVec    = x.clone();
    state->gradientVec   = g.clone();
    state->constraintVec = c.clone();

    // Initialize storage
    x_ = Teuchos::rcp_static_cast<PV>(x.clone());
    g_ = g.clone();
    l_ = l.clone();
    c_ = c.clone();

    x_->set(x);

    ipobj_ = Teuchos::rcp(&Teuchos::dyn_cast<IPOBJ>(obj),false);
    ipcon_ = Teuchos::rcp(&Teuchos::dyn_cast<IPCON>(con),false);

    // Set initial penalty
    ipobj_->updatePenalty(mu_);

    algo_state.nfval = 0;
    algo_state.ncval = 0;
    algo_state.ngrad = 0;

    Real zerotol = 0.0;
    obj.update(*x_,true,algo_state.iter);
    algo_state.value = obj.value(*x_,zerotol);

    obj.gradient(*g_,*x_,zerotol);
    algo_state.gnorm = g_->norm();

    con.value(*c_,*x_,zerotol);
    algo_state.cnorm = c_->norm();

    algo_state.nfval += ipobj_->getNumberFunctionEvaluations();
    algo_state.ngrad += ipobj_->getNumberGradientEvaluations();
    algo_state.ncval += ipcon_->getNumberConstraintEvaluations(); 

  }


  
  void initialize( Vector<Real> &x, const Vector<Real> &g, Vector<Real> &l, const Vector<Real> &c,
                   Objective<Real> &obj, EqualityConstraint<Real> &con, BoundConstraint<Real> &bnd, 
                   AlgorithmState<Real> &algo_state ) {
    initialize(x,g,l,c,obj,con,algo_state);
  }




  /** \brief Compute step (equality constraints).
  */
  void compute( Vector<Real> &s, const Vector<Real> &x, const Vector<Real> &l,
                Objective<Real> &obj, EqualityConstraint<Real> &con, 
                AlgorithmState<Real> &algo_state ) {

    // Create the algorithm 
    algo_ = Teuchos::rcp( new Algorithm<Real>("Composite Step",*parlist_,false) );

    x_->set(x);

    //  Run the algorithm
    algo_->run(*x_,*g_,*l_,*c_,*ipobj_,*ipcon_,false);

    s.set(*x_); s.axpy(-1.0,x);

    // Get number of iterations from the subproblem solve
    subproblemIter_ = (algo_->getState())->iter;
    
  }

  virtual void compute( Vector<Real> &s, const Vector<Real> &x, const Vector<Real> &l,
                        Objective<Real> &obj, EqualityConstraint<Real> &con, 
                        BoundConstraint<Real> &bnd,
                        AlgorithmState<Real> &algo_state ) {
    compute(s,x,l,obj,con,algo_state); 
  }



  /** \brief Update step, if successful (equality constraints).
  */
  void update( Vector<Real> &x, Vector<Real> &l, const Vector<Real> &s, Objective<Real> &obj, 
               EqualityConstraint<Real> &con,  AlgorithmState<Real> &algo_state ) {

    // If we can change the barrier parameter, do so
    if( (rho_< 1.0 && mu_ > mumin_) || (rho_ > 1.0 && mu_ < mumax_) ) {
      mu_ *= rho_;
      ipobj_->updatePenalty(mu_);
    }

    Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
 
    // Update optimization vector
    x.plus(s);

    algo_state.iterateVec->set(x);
    state->descentVec->set(s);
    algo_state.snorm = s.norm();
    algo_state.iter++;

    Real zerotol = 0.0;

    algo_state.value = ipobj_->value(x,zerotol);
    algo_state.value = ipobj_->getObjectiveValue();

    ipcon_->value(*c_,x,zerotol);
    state->constraintVec->set(*c_);

    ipobj_->gradient(*g_,x,zerotol);
    state->gradientVec->set(*g_);

    ipcon_->applyAdjointJacobian(*g_,*l_,x,zerotol);
    state->gradientVec->plus(*g_);    

    x_->set(x);
    x_->axpy(-1.0,state->gradientVec->dual());

    Elementwise::ThresholdUpper<Real> threshold(0.0);

    //PartitionedVector<Real> &xpv = Teuchos::dyn_cast<PartitionedVector<Real> >(*x_);

    Teuchos::RCP<Vector<Real> > slack = x_->get(SLACK);
   
    slack->applyUnary(threshold);

    x_->axpy(-1.0,x);

    algo_state.gnorm = x_->norm();
    algo_state.cnorm = state->constraintVec->norm();
    algo_state.snorm = s.norm();

    algo_state.nfval += ipobj_->getNumberFunctionEvaluations();
    algo_state.ngrad += ipobj_->getNumberGradientEvaluations();
    algo_state.ncval += ipcon_->getNumberConstraintEvaluations();
    
  }

  void update( Vector<Real> &x, Vector<Real> &l, const Vector<Real> &s,
               Objective<Real> &obj, EqualityConstraint<Real> &con,
               BoundConstraint<Real> &bnd,
               AlgorithmState<Real> &algo_state ) {
    update(x,l,s,obj,con,algo_state); 
  }



  /** \brief Compute step for bound constraints; here only to satisfy the
             interface requirements, does nothing, needs refactoring.
  */
  virtual void compute( Vector<Real> &s, const Vector<Real> &x, Objective<Real> &obj, 
                        BoundConstraint<Real> &con, 
                        AlgorithmState<Real> &algo_state ) {}

  /** \brief Update step, for bound constraints; here only to satisfy the
             interface requirements, does nothing, needs refactoring.
  */
  virtual void update( Vector<Real> &x, const Vector<Real> &s, Objective<Real> &obj, 
                       BoundConstraint<Real> &con,
                       AlgorithmState<Real> &algo_state ) {}

  /** \brief Print iterate header.
  */
  std::string printHeader( void ) const {
    std::stringstream hist;

    if( verbosity_ > 0 ) {

      hist << std::string(116,'-') << "\n";
      hist << "Interior Point status output definitions\n\n";
   
      hist << "  IPiter  - Number of interior point steps taken\n";
      hist << "  CSiter  - Number of Composite Steps taken in each subproblem\n";
      hist << "  penalty - Penalty parameter multiplying the barrier objective\n";
      hist << "  fval    - Number of objective evaluations\n";
      hist << "  cnorm   - Norm of the composite constraint\n";
      hist << "  gLnorm  - Norm of the Lagrangian's gradient\n";
      hist << "  snorm   - Norm of step (update to optimzation and slack vector)\n";
      hist << "  #fval   - Number of objective function evaluations\n";
      hist << "  #grad   - Number of gradient evaluations\n";
      hist << "  #cval   - Number of composite constraint evaluations\n"; 
      hist << std::string(116,'-') << "\n";
      
     
    }

    hist << "  ";
    hist << std::setw(9)  << std::left  << "IPiter";
    hist << std::setw(9)  << std::left  << "CSiter";
    hist << std::setw(15) << std::left  << "penalty";
    hist << std::setw(15) << std::left  << "fval";
    hist << std::setw(15) << std::left  << "cnorm";
    hist << std::setw(15) << std::left  << "gLnorm";
    hist << std::setw(15) << std::left  << "snorm";
    hist << std::setw(8)  << std::left  << "#fval";
    hist << std::setw(8)  << std::left  << "#grad";
    hist << std::setw(8)  << std::left  << "#cval";

    hist << "\n";
    return hist.str();
  }

  /** \brief Print step name.
  */
  std::string printName( void ) const {
    std::stringstream hist;
    hist << "\n" << "Composite Step Interior Point Solver\n";
    return hist.str();
  }

  /** \brief Print iterate status.
  */
  std::string print( AlgorithmState<Real> &algo_state, bool pHeader = false ) const {
    std::stringstream hist;
    hist << std::scientific << std::setprecision(6);
    if ( algo_state.iter == 0 ) {
      hist << printName();
    }
    if ( pHeader ) {
      hist << printHeader();
    }
    if ( algo_state.iter == 0 ) {
      hist << "  ";
      hist << std::setw(9)  << std::left << algo_state.iter;
      hist << std::setw(9)  << std::left << subproblemIter_;
      hist << std::setw(15) << std::left << mu_;
      hist << std::setw(15) << std::left << algo_state.value;
      hist << std::setw(15) << std::left << algo_state.cnorm;
      hist << std::setw(15) << std::left << algo_state.gnorm;
      hist << "\n";
    }
    else {
      hist << "  ";
      hist << std::setw(9)  << std::left << algo_state.iter;
      hist << std::setw(9)  << std::left << subproblemIter_;
      hist << std::setw(15) << std::left << mu_;
      hist << std::setw(15) << std::left << algo_state.value;
      hist << std::setw(15) << std::left << algo_state.cnorm;
      hist << std::setw(15) << std::left << algo_state.gnorm;
      hist << std::setw(15) << std::left << algo_state.snorm;
//      hist << std::scientific << std::setprecision(6);
      hist << std::setw(8) << std::left << algo_state.nfval;
      hist << std::setw(8) << std::left << algo_state.ngrad;
      hist << std::setw(8) << std::left << algo_state.ncval;
      hist << "\n";
    }

    return hist.str(); 
  }





}; // class InteriorPointStep

} // namespace ROL

#endif // ROL_INTERIORPOINTSTEP_H