This file is indexed.

/usr/include/trilinos/ROL_SROMGenerator.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_SROMGENERATOR_HPP
#define ROL_SROMGENERATOR_HPP

#include "ROL_SampleGenerator.hpp"

#include "ROL_Objective.hpp"
#include "ROL_BoundConstraint.hpp"
#include "ROL_ScalarLinearEqualityConstraint.hpp"

#include "ROL_Algorithm.hpp"
#include "ROL_BoundConstraint.hpp"

#include "ROL_MomentObjective.hpp"
#include "ROL_CDFObjective.hpp"
#include "ROL_LinearCombinationObjective.hpp"
#include "ROL_SROMVector.hpp"

#include "ROL_StdVector.hpp"

namespace ROL {

template<class Real>
class SROMGenerator : public SampleGenerator<Real> {
private:
  // Parameterlist for optimization
  Teuchos::ParameterList parlist_;
  // Vector of distributions (size = dimension of space)
  std::vector<Teuchos::RCP<Distribution<Real> > > dist_;

  const int dimension_;
  int numSamples_;
  int numMySamples_;
  int numNewSamples_;
  bool adaptive_;
  bool print_;

  Real ptol_;
  Real atol_;

  void pruneSamples(const ProbabilityVector<Real> &prob,
                    const AtomVector<Real>        &atom) {
    // Remove points with zero weight
    std::vector<std::vector<Real> > pts;
    std::vector<Real> wts;
    for (int i = 0; i < numMySamples_; i++) {
      if ( prob.getProbability(i) > ptol_ ) {
        pts.push_back(*(atom.getAtom(i)));
        wts.push_back(prob.getProbability(i));
      }
    }
    numMySamples_ = wts.size();
    // Remove atoms that are within atol of each other
    Real err = 0.0;
    std::vector<Real> pt;
    std::vector<int> ind;
    for (int i = 0; i < numMySamples_; i++) {
      pt = pts[i]; ind.clear();
      for (int j = i+1; j < numMySamples_; j++) {
        err = 0.0;
        for (int d = 0; d < dimension_; d++) {
          err += std::pow(pt[d] - pts[j][d],2);
        }
        err = std::sqrt(err);
        if ( err < atol_ ) {
          ind.push_back(j);
          for (int d = 0; d < dimension_; d++) {
            pts[i][d] += pts[j][d];
            wts[i]    += wts[j];
          }
        }
      }
      if ( ind.size() > 0 ) {
        for (int d = 0; d < dimension_; d++) {
          pts[i][d] /= (Real)(ind.size()+1);
        }
        for (int k = ind.size()-1; k >= 0; k--) {
          pts.erase(pts.begin()+ind[k]);
          wts.erase(wts.begin()+ind[k]);
        }
      }
      numMySamples_ = wts.size();
    }
    // Renormalize weights
    Real psum = 0.0, sum = 0.0;
    for (int i = 0; i < numMySamples_; i++) {
      psum += wts[i];
    }
    SampleGenerator<Real>::sumAll(&psum,&sum,1);
    for (int i = 0; i < numMySamples_; i++) {
      wts[i] /= sum;
    }
    // Set points and weights
    SampleGenerator<Real>::setPoints(pts);
    SampleGenerator<Real>::setWeights(wts);
  }

public:

  SROMGenerator(Teuchos::ParameterList                          &parlist,
          const Teuchos::RCP<BatchManager<Real> >               &bman,
          const std::vector<Teuchos::RCP<Distribution<Real> > > &dist)
    : SampleGenerator<Real>(bman), parlist_(parlist), dist_(dist),
      dimension_(dist.size()) {
    // Get SROM sublist
    Teuchos::ParameterList list = parlist.sublist("SOL").sublist("Sample Generator").sublist("SROM");
    numSamples_    = list.get("Number of Samples",50);
    adaptive_      = list.get("Adaptive Sampling",false);
    numNewSamples_ = list.get("Number of New Samples Per Adaptation",0);
    print_         = list.get("Output to Screen",false);
    ptol_          = list.get("Probability Tolerance",1.e2*std::sqrt(ROL_EPSILON<Real>()));
    atol_          = list.get("Atom Tolerance",1.e2*std::sqrt(ROL_EPSILON<Real>()));
    print_        *= !SampleGenerator<Real>::batchID();
    // Compute batch local number of samples
    int rank    = (int)SampleGenerator<Real>::batchID();
    int nProc   = (int)SampleGenerator<Real>::numBatches();
    int frac    = numSamples_ / nProc;
    int rem     = numSamples_ % nProc;
    numMySamples_  = frac + ((rank < rem) ? 1 : 0);
    // Initialize vectors
    Teuchos::RCP<ProbabilityVector<Real> > prob, prob_lo, prob_hi, prob_eq;
    Teuchos::RCP<AtomVector<Real> > atom, atom_lo, atom_hi, atom_eq;
    Teuchos::RCP<Vector<Real> > x, x_lo, x_hi, x_eq;
    initialize_vectors(prob,prob_lo,prob_hi,prob_eq,atom,atom_lo,atom_hi,atom_eq,x,x_lo,x_hi,x_eq,bman);
    Teuchos::RCP<Vector<Real> > l
      = Teuchos::rcp(new StdVector<Real>(Teuchos::rcp(new std::vector<Real>(1,0.))));
    bool optProb = false, optAtom = true;
    for ( int i = 0; i < 2; i++ ) {
      if ( i == 0 ) { optProb = false; optAtom = true;  }
      if ( i == 1 ) { optProb = true;  optAtom = true;  }
      // Initialize objective function
      std::vector<Teuchos::RCP<Objective<Real> > > obj_vec;
      Teuchos::RCP<Objective<Real> > obj;
      initialize_objective(obj_vec,obj,dist,bman,optProb,optAtom,list);
      // Initialize constraints
      Teuchos::RCP<BoundConstraint<Real> > bnd
        = Teuchos::rcp(new BoundConstraint<Real>(x_lo,x_hi));
      Teuchos::RCP<EqualityConstraint<Real> > con
        = Teuchos::rcp(new ScalarLinearEqualityConstraint<Real>(x_eq,1.0));
      // Test objective and constraints
      if ( print_ ) { std::cout << "\nCheck derivatives of CDFObjective\n"; }
      check_objective(*x,obj_vec[0],bman,optProb,optAtom);
      if ( print_ ) { std::cout << "\nCheck derivatives of MomentObjective\n"; }
      check_objective(*x,obj_vec[1],bman,optProb,optAtom);
      if ( print_ ) { std::cout << "\nCheck derivatives of LinearCombinationObjective\n"; }
      check_objective(*x,obj,bman,optProb,optAtom);
      if ( print_ && optProb ) { std::cout << "\nCheck ScalarLinearEqualityConstraint\n"; }
      check_constraint(*x,con,bman,optProb);
      // Solve optimization problems to sample
      Teuchos::RCP<Algorithm<Real> > algo;
      initialize_optimizer(algo,list,optProb);
      if ( optProb ) {
        std::string type = list.sublist("Step").get("Type","Trust Region");
        Teuchos::RCP<Teuchos::ParameterList> plist = Teuchos::rcpFromRef(list);
        Teuchos::RCP<OptimizationProblem<Real> > optProblem;
        if (type == "Augmented Lagrangian") {
          Teuchos::RCP<Objective<Real> > augLag
            = Teuchos::rcp(new AugmentedLagrangian<Real>(obj,con,*l,1.,*x,l->dual(),parlist));
          optProblem = Teuchos::rcp(new OptimizationProblem<Real>(augLag,x,bnd,con,l,plist));
        }
        else if (type == "Moreau-Yosida Penalty") {
          Teuchos::RCP<Objective<Real> > myPen
            = Teuchos::rcp(new MoreauYosidaPenalty<Real>(obj,bnd,*x,10.0));
          optProblem = Teuchos::rcp(new OptimizationProblem<Real>(myPen,x,bnd,con,l,plist));
        }
        else {
          optProblem = Teuchos::rcp(new OptimizationProblem<Real>(obj,x,bnd,con,l,plist));
        }
        //ROL::OptimizationProblem<Real> optProblem(obj,x,bnd,con,l,plist);
        algo->run(*optProblem,print_);
      }
      else {
        algo->run(*x,*obj,*bnd,print_);
      }
    }
    // Prune samples with zero weight and set samples/weights
    pruneSamples(*prob,*atom);
  }

  void refine(void) {}

private:

  void get_scaling_vectors(std::vector<Real> &typw, std::vector<Real> &typx) const {
    typw.clear(); typx.clear();
    typw.resize(numMySamples_,(Real)(numSamples_*numSamples_));
    typx.resize(numMySamples_*dimension_,0);
    Real mean = 1, var = 1, one(1);
    for (int j = 0; j < dimension_; j++) {
      mean = std::abs(dist_[j]->moment(1));
      var  = dist_[j]->moment(2) - mean*mean;
      mean = ((mean > ROL_EPSILON<Real>()) ? mean : std::sqrt(var));
      mean = ((mean > ROL_EPSILON<Real>()) ? mean : one);
      for (int i = 0; i < numMySamples_; i++) {
        typx[i*dimension_ + j] = one/(mean*mean);
      }
    }
  }

  void initialize_vectors(Teuchos::RCP<ProbabilityVector<Real> >  &prob,
                          Teuchos::RCP<ProbabilityVector<Real> >  &prob_lo,
                          Teuchos::RCP<ProbabilityVector<Real> >  &prob_hi,
                          Teuchos::RCP<ProbabilityVector<Real> >  &prob_eq,
                          Teuchos::RCP<AtomVector<Real> >         &atom,
                          Teuchos::RCP<AtomVector<Real> >         &atom_lo,
                          Teuchos::RCP<AtomVector<Real> >         &atom_hi,
                          Teuchos::RCP<AtomVector<Real> >         &atom_eq,
                          Teuchos::RCP<Vector<Real> >             &vec,
                          Teuchos::RCP<Vector<Real> >             &vec_lo,
                          Teuchos::RCP<Vector<Real> >             &vec_hi,
                          Teuchos::RCP<Vector<Real> >             &vec_eq,
                          const Teuchos::RCP<BatchManager<Real> > &bman) const {
    // Compute scaling for probability and atom vectors
    std::vector<Real> typx, typw;
    get_scaling_vectors(typw,typx);
    // Compute initial guess and bounds for probability and atom vectors
    std::vector<Real> pt(dimension_*numMySamples_,0.), wt(numMySamples_,1./(Real)numSamples_);
    std::vector<Real> pt_lo(dimension_*numMySamples_,0.), pt_hi(dimension_*numMySamples_,0.);
    std::vector<Real> wt_lo(numMySamples_,0.), wt_hi(numMySamples_,1.);
    std::vector<Real> pt_eq(dimension_*numMySamples_,0.), wt_eq(numMySamples_,1.);
    Real lo = 0., hi = 0.;
    srand(12345*SampleGenerator<Real>::batchID());
    for ( int j = 0; j < dimension_; j++) {
      lo = dist_[j]->lowerBound();
      hi = dist_[j]->upperBound();
      for (int i = 0; i < numMySamples_; i++) {
        pt[i*dimension_ + j] = dist_[j]->invertCDF((Real)rand()/(Real)RAND_MAX);
        //pt[i*dimension_ + j] = dist_[j]->invertCDF(0);
        pt_lo[i*dimension_ + j] = lo;
        pt_hi[i*dimension_ + j] = hi;
      }
    }
    // Build probability, atom, and SROM vectors 
    prob = Teuchos::rcp(new PrimalProbabilityVector<Real>(
           Teuchos::rcp(new std::vector<Real>(wt)),bman,
           Teuchos::rcp(new std::vector<Real>(typw))));
    atom = Teuchos::rcp(new PrimalAtomVector<Real>(
           Teuchos::rcp(new std::vector<Real>(pt)),bman,numMySamples_,dimension_,
           Teuchos::rcp(new std::vector<Real>(typx))));
    vec  = Teuchos::rcp(new SROMVector<Real>(prob,atom));
    // Lower and upper bounds on Probability Vector
    prob_lo = Teuchos::rcp(new PrimalProbabilityVector<Real>(
              Teuchos::rcp(new std::vector<Real>(wt_lo)),bman,
              Teuchos::rcp(new std::vector<Real>(typw))));
    prob_hi = Teuchos::rcp(new PrimalProbabilityVector<Real>(
              Teuchos::rcp(new std::vector<Real>(wt_hi)),bman,
              Teuchos::rcp(new std::vector<Real>(typw))));
    // Lower and upper bounds on Atom Vector
    atom_lo = Teuchos::rcp(new PrimalAtomVector<Real>(
              Teuchos::rcp(new std::vector<Real>(pt_lo)),bman,numMySamples_,dimension_,
              Teuchos::rcp(new std::vector<Real>(typx))));
    atom_hi = Teuchos::rcp(new PrimalAtomVector<Real>(
              Teuchos::rcp(new std::vector<Real>(pt_hi)),bman,numMySamples_,dimension_,
              Teuchos::rcp(new std::vector<Real>(typx))));
    // Lower and upper bounds on SROM Vector
    vec_lo = Teuchos::rcp(new SROMVector<Real>(prob_lo,atom_lo));
    vec_hi = Teuchos::rcp(new SROMVector<Real>(prob_hi,atom_hi));
    // Equality constraint vectors
    prob_eq = Teuchos::rcp(new DualProbabilityVector<Real>(
              Teuchos::rcp(new std::vector<Real>(wt_eq)),bman,
              Teuchos::rcp(new std::vector<Real>(typw))));
    atom_eq = Teuchos::rcp(new DualAtomVector<Real>(
              Teuchos::rcp(new std::vector<Real>(pt_eq)),bman,numMySamples_,dimension_,
              Teuchos::rcp(new std::vector<Real>(typx))));
    vec_eq  = Teuchos::rcp(new SROMVector<Real>(prob_eq,atom_eq));
  }

  void initialize_objective(std::vector<Teuchos::RCP<Objective<Real> > > &obj_vec,
                            Teuchos::RCP<Objective<Real> >               &obj,
                            const std::vector<Teuchos::RCP<Distribution<Real> > > &dist,
                            const Teuchos::RCP<BatchManager<Real> >      &bman,
                            const bool optProb, const bool optAtom,
                            Teuchos::ParameterList                       &list) const {
    // Build CDF objective function
    Real scale = list.get("CDF Smoothing Parameter",1.e-2);
    obj_vec.push_back(Teuchos::rcp(new CDFObjective<Real>(dist,bman,scale,optProb,optAtom)));
    // Build moment matching objective function
    Teuchos::Array<int> tmp_order
      = Teuchos::getArrayFromStringParameter<int>(list,"Moments");
    std::vector<int> order(tmp_order.size(),0);
    for ( int i = 0; i < tmp_order.size(); i++) {
      order[i] = static_cast<int>(tmp_order[i]);
    }
    obj_vec.push_back(Teuchos::rcp(new MomentObjective<Real>(dist,order,bman,optProb,optAtom)));
    // Build linear combination objective function
    Teuchos::Array<Real> tmp_coeff
      = Teuchos::getArrayFromStringParameter<Real>(list,"Coefficients");
    std::vector<Real> coeff(2,0.);
    coeff[0] = tmp_coeff[0]; coeff[1] = tmp_coeff[1];
    obj = Teuchos::rcp(new LinearCombinationObjective<Real>(coeff,obj_vec));
  }

  void initialize_optimizer(Teuchos::RCP<Algorithm<Real> > &algo,
                            Teuchos::ParameterList         &parlist,
                            const bool optProb) const {
    std::string type = parlist.sublist("Step").get("Type","Trust Region");
    if ( optProb ) {
      if ( type == "Moreau-Yosida Penalty" ) {
        algo = Teuchos::rcp(new Algorithm<Real>("Moreau-Yosida Penalty",parlist,false));
      }
      else if ( type == "Augmented Lagrangian" ) {
        algo = Teuchos::rcp(new Algorithm<Real>("Augmented Lagrangian",parlist,false));
      }
      else {
        algo = Teuchos::rcp(new Algorithm<Real>("Interior Point",parlist,false));
      }
    }
    else {
      algo = Teuchos::rcp(new Algorithm<Real>("Trust Region",parlist,false));
    }
  }

  void check_objective(const Vector<Real>                      &x,
                       const Teuchos::RCP<Objective<Real> >    &obj,
                       const Teuchos::RCP<BatchManager<Real> > &bman,
                       const bool optProb, const bool optAtom) {
    // Get scaling for probability and atom vectors
    std::vector<Real> typx, typw;
    get_scaling_vectors(typw,typx);
    // Set random direction
    std::vector<Real> pt(dimension_*numMySamples_,0.), wt(numMySamples_,0.);
    for (int i = 0; i < numMySamples_; i++) {
      wt[i] = (optProb ? (Real)rand()/(Real)RAND_MAX : 0);
      for ( int j = 0; j < dimension_; j++) {
        pt[i*dimension_ + j] = (optAtom ? dist_[j]->invertCDF((Real)rand()/(Real)RAND_MAX) : 0);
      }
    }
    Teuchos::RCP<ProbabilityVector<Real> > dprob
      = Teuchos::rcp(new PrimalProbabilityVector<Real>(
        Teuchos::rcp(new std::vector<Real>(wt)),bman,
        Teuchos::rcp(new std::vector<Real>(typw))));
    Teuchos::RCP<AtomVector<Real> > datom
      = Teuchos::rcp(new PrimalAtomVector<Real>(
        Teuchos::rcp(new std::vector<Real>(pt)),bman,numMySamples_,dimension_,
        Teuchos::rcp(new std::vector<Real>(typx))));
    SROMVector<Real> d = SROMVector<Real>(dprob,datom);
    // Check derivatives
    obj->checkGradient(x,d,print_);
    obj->checkHessVec(x,d,print_);
  }

  void check_constraint(const Vector<Real>                            &x,
                        const Teuchos::RCP<EqualityConstraint<Real> > &con,
                        const Teuchos::RCP<BatchManager<Real> >       &bman,
                        const bool optProb) {
    if ( optProb ) {
      StdVector<Real> c(Teuchos::rcp(new std::vector<Real>(1,1.0)));
      // Get scaling for probability and atom vectors
      std::vector<Real> typx, typw;
      get_scaling_vectors(typw,typx);
      // Set random direction
      std::vector<Real> pt(dimension_*numMySamples_,0.), wt(numMySamples_,0.);
      for (int i = 0; i < numMySamples_; i++) {
        wt[i] = (Real)rand()/(Real)RAND_MAX;
        for ( int j = 0; j < dimension_; j++) {
          pt[i*dimension_ + j] = dist_[j]->invertCDF((Real)rand()/(Real)RAND_MAX);
        }
      }
      Teuchos::RCP<ProbabilityVector<Real> > dprob
        = Teuchos::rcp(new PrimalProbabilityVector<Real>(
          Teuchos::rcp(new std::vector<Real>(wt)),bman,
          Teuchos::rcp(new std::vector<Real>(typw))));
      Teuchos::RCP<AtomVector<Real> > datom
        = Teuchos::rcp(new PrimalAtomVector<Real>(
          Teuchos::rcp(new std::vector<Real>(pt)),bman,numMySamples_,dimension_,
          Teuchos::rcp(new std::vector<Real>(typx))));
      SROMVector<Real> d = SROMVector<Real>(dprob,datom);
      // Check derivatives
      con->checkApplyJacobian(x,d,c,print_);
      con->checkAdjointConsistencyJacobian(c,d,x,print_);
    }
  }
};

}

#endif