This file is indexed.

/usr/include/trilinos/ROL_TpetraMultiVector.hpp is in libtrilinos-rol-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_TPETRAMULTIVECTOR_HPP
#define ROL_TPETRAMULTIVECTOR_HPP

/** \class ROL::TpetraMultiVector
    \brief Implements the ROL::Vector interface for a Tpetra_MultiVector.
    \author Created by Greg von Winckel
*/



#include "ROL_Vector.hpp"
#include "Tpetra_MultiVector_def.hpp"

namespace ROL {

namespace TPMultiVector {


  // Locally define a Kokkos wrapper functor for UnaryFunction  
  template <class Real, 
          class LO=Tpetra::Map<>::local_ordinal_type, 
          class GO=Tpetra::Map<>::global_ordinal_type, 
          class Node=Tpetra::Map<>::node_type >
  struct unaryFunc {
    typedef typename Tpetra::MultiVector<Real,LO,GO,Node>::dual_view_type::t_dev ViewType;
    typedef typename ViewType::execution_space execution_space;
    ViewType X_;
    const Elementwise::UnaryFunction<Real>* const f_;
  
    unaryFunc(ViewType& X, const Elementwise::UnaryFunction<Real>* const f)
      : X_(X), f_(f) {}  

    KOKKOS_INLINE_FUNCTION
    void operator()(const int i) const {
      const int M = X_.dimension_1();
      for(int j=0;j<M;++j) {
        X_(i,j) = f_->apply(X_(i,j));
      } 
    }
  };

  // Locally define a Kokkos wrapper functor for BinaryFunction  
  template <class Real, 
            class LO=Tpetra::Map<>::local_ordinal_type, 
            class GO=Tpetra::Map<>::global_ordinal_type, 
            class Node=Tpetra::Map<>::node_type >
   struct binaryFunc {
    typedef typename Tpetra::MultiVector<Real,LO,GO,Node>::dual_view_type::t_dev ViewType;
    typedef typename ViewType::execution_space execution_space;
    ViewType X_;
    ViewType Y_;
    const Elementwise::BinaryFunction<Real>* const f_;

    binaryFunc(ViewType& X, const ViewType& Y, const Elementwise::BinaryFunction<Real>* const f)
      : X_(X), Y_(Y), f_(f) {}

    KOKKOS_INLINE_FUNCTION
    void operator()(const int i) const {
      const int M = X_.dimension_1();
      for(int j=0;j<M;++j) {
        X_(i,j) = f_->apply(X_(i,j),Y_(i,j));    
      }
    } 
  };

  // Locally define a Kokkos wrapper functor for ReductionOp
  template <class Real, 
            class LO=Tpetra::Map<>::local_ordinal_type, 
            class GO=Tpetra::Map<>::global_ordinal_type, 
            class Node=Tpetra::Map<>::node_type >
  struct reduceFunc {
    typedef typename Tpetra::MultiVector<Real,LO,GO,Node>::dual_view_type::t_dev ViewType;
    typedef typename ViewType::execution_space execution_space;
    ViewType X_;
    const Elementwise::ReductionOp<Real>* const r_;

    reduceFunc(const ViewType& X, const Elementwise::ReductionOp<Real>* const r)
      : X_(X), r_(r) {}

    KOKKOS_INLINE_FUNCTION
    void operator()(const int i, Real &rval) const {
      const int M = X_.dimension_1();
  
      for(int j=0;j<M;++j) {
        r_->reduce(X_(i,j),rval);
      }
    } 

    KOKKOS_INLINE_FUNCTION
    void init(Real &rval) const {
      rval = r_->initialValue();
    } 

    KOKKOS_INLINE_FUNCTION
    void join(volatile Real &globalVal, const volatile Real &localVal) const {
      r_->reduce(localVal,globalVal);
    } 
       
  };



}


// Template on the Real/Scalar type, Local Ordinal, Global Ordinal, and Node
template <class Real, 
          class LO=Tpetra::Map<>::local_ordinal_type, 
          class GO=Tpetra::Map<>::global_ordinal_type, 
          class Node=Tpetra::Map<>::node_type >
class TpetraMultiVector : public Vector<Real> {
private:
  const Teuchos::RCP<Tpetra::MultiVector<Real,LO,GO,Node> > tpetra_vec_;
  const Teuchos::RCP<const Tpetra::Map<LO,GO,Node> > map_;
  const Teuchos::RCP<const Teuchos::Comm<int> > comm_;

protected:
  const Teuchos::RCP<const Tpetra::Map<LO,GO,Node> > getMap(void) const {
    return map_;
  }

public:
  virtual ~TpetraMultiVector() {}

  TpetraMultiVector(const Teuchos::RCP<Tpetra::MultiVector<Real,LO,GO,Node> > &tpetra_vec)
    : tpetra_vec_(tpetra_vec), map_(tpetra_vec_->getMap()), comm_(map_->getComm()) {}

  /** \brief Assign \f$y \leftarrow x \f$ where \f$y = \mbox{*this}\f$.
  */
  void set(const Vector<Real> &x) {
    TEUCHOS_TEST_FOR_EXCEPTION( dimension() != x.dimension(),
                                std::invalid_argument,
                                "Error: Vectors must have the same dimension." );
    const TpetraMultiVector &ex = Teuchos::dyn_cast<const TpetraMultiVector>(x);
    tpetra_vec_->assign(*ex.getVector());
  }

  /** \brief Compute \f$y \leftarrow x + y\f$ where \f$y = \mbox{*this}\f$.
  */
  void plus(const Vector<Real> &x) {
    TEUCHOS_TEST_FOR_EXCEPTION( dimension() != x.dimension(),
                                std::invalid_argument,
                                "Error: Vectors must have the same dimension." );
    Real one(1);
    const TpetraMultiVector &ex = Teuchos::dyn_cast<const TpetraMultiVector>(x);
    tpetra_vec_->update(one,*ex.getVector(),one);
  }

  void axpy( const Real alpha, const Vector<Real> &x ) {
    TEUCHOS_TEST_FOR_EXCEPTION( dimension() != x.dimension(),
                                std::invalid_argument,
                                "Error: Vectors must have the same dimension." );
    Real one(1);
    const TpetraMultiVector &ex = Teuchos::dyn_cast<const TpetraMultiVector>(x);
    tpetra_vec_->update(alpha,*ex.getVector(),one);
  }

  /** \brief Compute \f$y \leftarrow \alpha y\f$ where \f$y = \mbox{*this}\f$.
  */
  void scale( const Real alpha ) {
    tpetra_vec_->scale( alpha );
  }

  /** \brief Returns \f$ \langle y,x \rangle \f$ where \f$y = \mbox{*this}\f$.
  */
  virtual Real dot( const Vector<Real> &x ) const {
    TEUCHOS_TEST_FOR_EXCEPTION( dimension() != x.dimension(),
                                std::invalid_argument,
                                "Error: Vectors must have the same dimension." );
    const TpetraMultiVector &ex = Teuchos::dyn_cast<const TpetraMultiVector>(x);
    size_t n = tpetra_vec_->getNumVectors();
    // Perform Euclidean dot between *this and x for each vector
    Teuchos::Array<Real> val(n,0);
    tpetra_vec_->dot( *ex.getVector(), val.view(0,n) );
    // Combine dots for each vector to get a scalar
    Real xy(0);
    for (size_t i = 0; i < n; ++i) {
      xy += val[i];
    }
    return xy;
  }

  /** \brief Returns \f$ \| y \| \f$ where \f$y = \mbox{*this}\f$.
  */
  Real norm() const {
    return std::sqrt(dot(*this));
  }

  /** \brief Clone to make a new (uninitialized) vector.
  */
  virtual Teuchos::RCP<Vector<Real> > clone() const {
    size_t n = tpetra_vec_->getNumVectors();
    return Teuchos::rcp( new TpetraMultiVector(
           Teuchos::rcp( new Tpetra::MultiVector<Real,LO,GO,Node>(map_,n))));
  }

  /**  \brief Set to zero vector.
  */
  void zero() {
    Real zero(0);
    tpetra_vec_->putScalar(zero);
  }

  Teuchos::RCP<const Tpetra::MultiVector<Real,LO,GO,Node> > getVector() const {
    return tpetra_vec_;
  }

  Teuchos::RCP<Tpetra::MultiVector<Real,LO,GO,Node> > getVector() {
    return tpetra_vec_;
  }

  Teuchos::RCP<Vector<Real> > basis( const int i ) const {
    TEUCHOS_TEST_FOR_EXCEPTION( i >= dimension() || i<0,
                                std::invalid_argument,
                                "Error: Basis index must be between 0 and vector dimension." );
    const size_t n = tpetra_vec_->getNumVectors();
    Teuchos::RCP<Tpetra::MultiVector<Real,LO,GO,Node> > e
      = Teuchos::rcp(new Tpetra::MultiVector<Real,LO,GO,Node>(map_,n));
    if (!map_.is_null() && map_->isNodeGlobalElement(static_cast<GO>(i))) {
      for (size_t j = 0; j < n; ++j) {
        e->replaceGlobalValue (i, j, Teuchos::ScalarTraits<Real>::one());
      }
    }
    return Teuchos::rcp(new TpetraMultiVector(e) );
  }

  int dimension() const {
    int nVecs = static_cast<int>(tpetra_vec_->getNumVectors());
    int dim   = static_cast<int>(tpetra_vec_->getGlobalLength());
    return nVecs*dim;
  }

/*****************************************************************************/
/************** ELEMENTWISE DEFINITIONS AND IMPLEMENTATIONS ******************/
/*****************************************************************************/
private:
  typedef typename Tpetra::MultiVector<Real,LO,GO,Node>::dual_view_type::t_dev ViewType;

public:
  void applyUnary( const Elementwise::UnaryFunction<Real> &f ) {
    ViewType v_lcl =  tpetra_vec_->getDualView().d_view;
        
    int lclDim = tpetra_vec_->getLocalLength();
    TPMultiVector::unaryFunc<Real,LO,GO,Node> func(v_lcl, &f);

    Kokkos::parallel_for(lclDim,func);
  }

  void applyBinary( const Elementwise::BinaryFunction<Real> &f, const Vector<Real> &x ) {

    TEUCHOS_TEST_FOR_EXCEPTION( dimension() != x.dimension(),
                                std::invalid_argument,
                                "Error: Vectors must have the same dimension." );

   const TpetraMultiVector &ex = Teuchos::dyn_cast<const TpetraMultiVector>(x);
   Teuchos::RCP<const Tpetra::MultiVector<Real,LO,GO,Node> > xp = ex.getVector();

    ViewType v_lcl = tpetra_vec_->getDualView().d_view;
    ViewType x_lcl = xp->getDualView().d_view;
       
    int lclDim = tpetra_vec_->getLocalLength();

    TPMultiVector::binaryFunc<Real,LO,GO,Node> func(v_lcl,x_lcl,&f);

    Kokkos::parallel_for(lclDim,func);

  }

  Real reduce( const Elementwise::ReductionOp<Real> &r ) const {
    ViewType v_lcl = tpetra_vec_->getDualView().d_view;

    int lclDim = tpetra_vec_->getLocalLength();
    TPMultiVector::reduceFunc<Real,LO,GO,Node> func(v_lcl, &r);

    Real lclValue;

    // Reduce for this MPI process
    Kokkos::parallel_reduce(lclDim,func,lclValue);

    Real gblValue;

    // Reduce over MPI processes
    Teuchos::reduceAll<int,Real>(*comm_,r.reductionType(),lclValue,Teuchos::outArg(gblValue));

    return gblValue; 
  }

}; // class TpetraMultiVector



} // namespace ROL

#endif