This file is indexed.

/usr/include/trilinos/Stokhos_GMRESDivisionExpansionStrategy.hpp is in libtrilinos-stokhos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
// $Id$ 
// $Source$ 
// @HEADER
// ***********************************************************************
// 
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
// 
// ***********************************************************************
// @HEADER

#ifndef STOKHOS_GMRES_DIVISION_EXPANSION_STRATEGY_HPP
#define STOKHOS_GMRES_DIVISION_EXPANSION_STRATEGY_HPP

#include "Stokhos_DivisionExpansionStrategy.hpp"
#include "Stokhos_OrthogPolyBasis.hpp"
#include "Stokhos_Sparse3Tensor.hpp"
#include "Stokhos_DiagPreconditioner.hpp"
#include "Stokhos_JacobiPreconditioner.hpp"
#include "Stokhos_GSPreconditioner.hpp"
#include "Stokhos_SchurPreconditioner.hpp"
#include "Stokhos_BlockPreconditioner.hpp"

#include "Teuchos_TimeMonitor.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"

namespace Stokhos {

  //! Strategy interface for computing PCE of a/b using only b[0]
  /*!
   * Such a strategy is only useful when the division occurs in a preconditioner
   */
  template <typename ordinal_type, typename value_type, typename node_type> 
  class GMRESDivisionExpansionStrategy :
    public DivisionExpansionStrategy<ordinal_type,value_type,node_type> {
  public:

    //! Constructor
    GMRESDivisionExpansionStrategy(
      const Teuchos::RCP<const Stokhos::OrthogPolyBasis<ordinal_type, value_type> >& basis_,
      const Teuchos::RCP<const Stokhos::Sparse3Tensor<ordinal_type, value_type> >& Cijk_, 
      const ordinal_type prec_iter_, 
      const value_type tol_, 
      const ordinal_type PrecNum_, 
      const ordinal_type max_it_, 
      const ordinal_type linear_, 
      const ordinal_type diag_, 
      const ordinal_type equil_);

    //! Destructor
    virtual ~GMRESDivisionExpansionStrategy() {}
 
    // Division operation:  c = \alpha*(a/b) + beta*c
    virtual void divide(
      Stokhos::OrthogPolyApprox<ordinal_type, value_type, node_type>& c,
      const value_type& alpha,
      const Stokhos::OrthogPolyApprox<ordinal_type, value_type, node_type>& a, 
      const Stokhos::OrthogPolyApprox<ordinal_type, value_type, node_type>& b,
      const value_type& beta);

  private:

    // Prohibit copying
    GMRESDivisionExpansionStrategy(
      const GMRESDivisionExpansionStrategy&);

    // Prohibit Assignment
    GMRESDivisionExpansionStrategy& operator=(
      const GMRESDivisionExpansionStrategy& b);

      ordinal_type GMRES(
	const Teuchos::SerialDenseMatrix<ordinal_type, value_type> & A, 
	Teuchos::SerialDenseMatrix<ordinal_type,value_type> & X, 
	const Teuchos::SerialDenseMatrix<ordinal_type,value_type> & B, 
	ordinal_type max_iter, 
	value_type tolerance, 
	ordinal_type prec_iter, 
	ordinal_type order, 
	ordinal_type dim,
	ordinal_type PrecNum, 
	const Teuchos::SerialDenseMatrix<ordinal_type, value_type>& M, 
	ordinal_type diag);

  protected:

    //! Basis
    Teuchos::RCP<const Stokhos::OrthogPolyBasis<ordinal_type, value_type> > basis;

    //! Short-hand for Cijk
    typedef Stokhos::Sparse3Tensor<ordinal_type, value_type> Cijk_type;

    //! Triple product
    Teuchos::RCP<const Cijk_type> Cijk;

    //! Dense matrices for linear system
    Teuchos::RCP< Teuchos::SerialDenseMatrix<ordinal_type,value_type> > A, X, B, M;
    
    //! Tolerance for GMRES

    ordinal_type prec_iter;

    value_type tol;

    ordinal_type PrecNum;

    ordinal_type max_it;

    ordinal_type linear;

    ordinal_type diag;

    ordinal_type equil;
   
    
  }; // class GMRESDivisionExpansionStrategy

} // namespace Stokhos

template <typename ordinal_type, typename value_type, typename node_type> 
Stokhos::GMRESDivisionExpansionStrategy<ordinal_type,value_type,node_type>::
GMRESDivisionExpansionStrategy(
  const Teuchos::RCP<const Stokhos::OrthogPolyBasis<ordinal_type, value_type> >& basis_,
  const Teuchos::RCP<const Stokhos::Sparse3Tensor<ordinal_type, value_type> >& Cijk_, 
  const ordinal_type prec_iter_, 
  const value_type tol_, 
  const ordinal_type PrecNum_, 
  const ordinal_type max_it_, 
  const ordinal_type linear_, 
  const ordinal_type diag_, 
  const ordinal_type equil_):
  basis(basis_),
  Cijk(Cijk_),
  prec_iter(prec_iter_),
  tol(tol_),
  PrecNum(PrecNum_), 
  max_it(max_it_),
  linear(linear_),
  diag(diag_),
  equil(equil_)
{
  ordinal_type sz = basis->size();
  A = Teuchos::rcp(new Teuchos::SerialDenseMatrix<ordinal_type,value_type>(
		     sz, sz));
  B = Teuchos::rcp(new Teuchos::SerialDenseMatrix<ordinal_type,value_type>(
		     sz, 1));
  X = Teuchos::rcp(new Teuchos::SerialDenseMatrix<ordinal_type,value_type>(
		     sz, 1));
  M = Teuchos::rcp(new Teuchos::SerialDenseMatrix<ordinal_type,value_type>(
                     sz, sz));

}


template <typename ordinal_type, typename value_type, typename node_type> 
void
Stokhos::GMRESDivisionExpansionStrategy<ordinal_type,value_type,node_type>::
divide(Stokhos::OrthogPolyApprox<ordinal_type, value_type, node_type>& c,
       const value_type& alpha,
       const Stokhos::OrthogPolyApprox<ordinal_type, value_type, node_type>& a, 
       const Stokhos::OrthogPolyApprox<ordinal_type, value_type, node_type>& b,
       const value_type& beta)
{
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
  TEUCHOS_FUNC_TIME_MONITOR("Stokhos::GMRESDivisionStrategy::divide()");
#endif

  ordinal_type sz = basis->size();
  ordinal_type pa = a.size();
  ordinal_type pb = b.size();
  ordinal_type pc;
  if (pb > 1)
    pc = sz;
  else
    pc = pa;
  if (c.size() != pc)
    c.resize(pc);

  const value_type* ca = a.coeff();
  const value_type* cb = b.coeff();
  value_type* cc = c.coeff();

  if (pb > 1) {
    // Compute A
    A->putScalar(0.0);
    typename Cijk_type::k_iterator k_begin = Cijk->k_begin();
    typename Cijk_type::k_iterator k_end = Cijk->k_end();
    if (pb < Cijk->num_k())
      k_end = Cijk->find_k(pb);
    value_type cijk;
    ordinal_type i,j,k;
    for (typename Cijk_type::k_iterator k_it=k_begin; k_it!=k_end; ++k_it) {
      k = index(k_it);
      for (typename Cijk_type::kj_iterator j_it = Cijk->j_begin(k_it); 
	   j_it != Cijk->j_end(k_it); ++j_it) {
	j = index(j_it);
	for (typename Cijk_type::kji_iterator i_it = Cijk->i_begin(j_it);
	     i_it  != Cijk->i_end(j_it); ++i_it) {
	  i = index(i_it);
	  cijk = value(i_it);
	  (*A)(i,j) += cijk*cb[k];
	}
      }
    }

    // Compute B
    B->putScalar(0.0);
    for (ordinal_type i=0; i<pa; i++)
      (*B)(i,0) = ca[i]*basis->norm_squared(i);

   Teuchos::SerialDenseMatrix<ordinal_type,value_type> D(sz, 1);
   //Equilibrate the linear system
   if (equil == 1){
     //Create diag mtx of max row entries
     for (ordinal_type i=0; i<sz; i++){
       Teuchos::SerialDenseMatrix<ordinal_type, value_type> r(Teuchos::View, *A, 1, sz, i, 0);
       D(i,0)=sqrt(r.normOne());
     }
     //Compute inv(D)*A*inv(D)
     for (ordinal_type i=0; i<sz; i++){
       for (ordinal_type j=0; j<sz; j++){
	 (*A)(i,j)=(*A)(i,j)/(D(i,0)*D(j,0));
       }
     }

     //Scale b by inv(D)
     for (ordinal_type i=0; i<sz; i++){
       (*B)(i,0)=(*B)(i,0)/D(i,0);
     }
     
   }
   
  if (linear == 1){
    //Compute M, the linear matrix to be used in the preconditioner
    pb = basis->dimension()+1;
    M->putScalar(0.0);
    if (pb < Cijk->num_k())
      k_end = Cijk->find_k(pb);
    for (typename Cijk_type::k_iterator k_it=k_begin; k_it!=k_end; ++k_it) {
      k = index(k_it);
      for ( typename Cijk_type::kj_iterator j_it = Cijk->j_begin(k_it);
	    j_it != Cijk->j_end(k_it); ++j_it) {
	j = index(j_it);
	for ( typename Cijk_type::kji_iterator i_it = Cijk->i_begin(j_it);
	      i_it  != Cijk->i_end(j_it); ++i_it) {
	  i = index(i_it);
	  cijk = value(i_it);
	  (*M)(i,j) += cijk*cb[k];
	}
      }	
    }
    
    //Scale M
    if (equil == 1){
      //Compute inv(D)*M*inv(D)
      for (ordinal_type i=0; i<sz; i++){
	for (ordinal_type j=0; j<sz; j++){
	  (*M)(i,j)=(*M)(i,j)/(D(i,0)*D(j,0));
	}
      }
    }
    
    
    // Compute X = A^{-1}*B  
    GMRES(*A,*X,*B, max_it, tol, prec_iter, basis->order(), basis->dimension(), PrecNum, *M, diag);
  }
  
  else{
    GMRES(*A,*X,*B, max_it, tol, prec_iter, basis->order(), basis->dimension(), PrecNum, *A, diag);
  }
  
  if (equil == 1 ) {
    //Rescale X 
    for (ordinal_type i=0; i<sz; i++){
      (*X)(i,0)=(*X)(i,0)/D(i,0);
    }
  }
  
  // Compute c
  for (ordinal_type i=0; i<pc; i++)
    cc[i] = alpha*(*X)(i,0) + beta*cc[i];
  }
  else {
    for (ordinal_type i=0; i<pc; i++)
      cc[i] = alpha*ca[i]/cb[0] + beta*cc[i];
  }
}
 

template <typename ordinal_type, typename value_type, typename node_type>
ordinal_type
Stokhos::GMRESDivisionExpansionStrategy<ordinal_type,value_type,node_type>::
GMRES(const Teuchos::SerialDenseMatrix<ordinal_type, value_type> & A, 
      Teuchos::SerialDenseMatrix<ordinal_type,value_type> & X, 
      const Teuchos::SerialDenseMatrix<ordinal_type,value_type> & B, 
      ordinal_type max_iter, 
      value_type tolerance, 
      ordinal_type prec_iter, 
      ordinal_type order, 
      ordinal_type dim, 
      ordinal_type PrecNum, 
      const Teuchos::SerialDenseMatrix<ordinal_type, value_type> & M, 
      ordinal_type diag)
{
  ordinal_type n = A.numRows();
  ordinal_type k = 1;
  value_type resid;
  Teuchos::SerialDenseMatrix<ordinal_type, value_type> P(n,n);
  Teuchos::SerialDenseMatrix<ordinal_type, value_type> Ax(n,1);
  Ax.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,1.0, A, X, 0.0);
  Teuchos::SerialDenseMatrix<ordinal_type, value_type> r0(Teuchos::Copy,B);
  r0-=Ax;
  resid=r0.normFrobenius();
  //define vector v=r/norm(r) where r=b-Ax
  Teuchos::SerialDenseMatrix<ordinal_type, value_type> v(n,1);
  r0.scale(1/resid);
  Teuchos::SerialDenseMatrix<ordinal_type, value_type> h(1,1);
  //Matrix of orthog basis vectors V
  Teuchos::SerialDenseMatrix<ordinal_type, value_type> V(n,1);
  //Set v=r0/norm(r0) to be 1st col of V
  for (ordinal_type i=0; i<n; i++){
    V(i,0)=r0(i,0);
  }
  //right hand side
  Teuchos::SerialDenseMatrix<ordinal_type, value_type> bb(1,1);
  bb(0,0)=resid;
  Teuchos::SerialDenseMatrix<ordinal_type, value_type> w(n,1);
  Teuchos::SerialDenseMatrix<ordinal_type, value_type> c;
  Teuchos::SerialDenseMatrix<ordinal_type, value_type> s;
  while (resid > tolerance && k < max_iter){
    h.reshape(k+1,k);
    //Arnoldi iteration(Gram-Schmidt )
    V.reshape(n,k+1);
    //set vk to be kth col of V
    Teuchos::SerialDenseMatrix<ordinal_type, value_type> vk(Teuchos::Copy, V, n,1,0,k-1);
    //Preconditioning step: solve Mz=vk
    Teuchos::SerialDenseMatrix<ordinal_type, value_type> z(vk);
    if (PrecNum == 1){
      Stokhos::DiagPreconditioner<ordinal_type, value_type> precond(M);
      precond.ApplyInverse(vk,z,prec_iter);
    }
    else if (PrecNum == 2){
      Stokhos::JacobiPreconditioner<ordinal_type, value_type> precond(M);
      precond.ApplyInverse(vk,z,2);
    }
    else if (PrecNum == 3){
      Stokhos::GSPreconditioner<ordinal_type, value_type> precond(M,1);
      precond.ApplyInverse(vk,z,1);
    }
    else if (PrecNum == 4){
      Stokhos::SchurPreconditioner<ordinal_type, value_type> precond(M, order, dim, diag);
      precond.ApplyInverse(vk,z,prec_iter);
    }

    w.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1, A, z, 0.0);
    Teuchos::SerialDenseMatrix<ordinal_type, value_type> vi(n,1);
    Teuchos::SerialDenseMatrix<ordinal_type, value_type> ip(1,1);
    for (ordinal_type i=0; i<k; i++){
      //set vi to be ith col of V
      Teuchos::SerialDenseMatrix<ordinal_type, value_type> vi(Teuchos::Copy, V, n,1,0,i);
      //Calculate inner product
      ip.multiply(Teuchos::TRANS, Teuchos::NO_TRANS, 1.0, vi, w, 0.0);
      h(i,k-1)= ip(0,0);
      //scale vi by h(i,k-1)
      vi.scale(ip(0,0));
      w-=vi;
    }
    h(k,k-1)=w.normFrobenius(); 
    w.scale(1.0/h(k,k-1));
    //add column vk+1=w to V
    for (ordinal_type i=0; i<n; i++){
      V(i,k)=w(i,0);
    }
    //Solve upper hessenberg least squares problem via Givens rotations
    //Compute previous Givens rotations
    for (ordinal_type i=0; i<k-1; i++){
      value_type q=c(i,0)*h(i,k-1)+s(i,0)*h(i+1,k-1);
      h(i+1,k-1)=-1*s(i,0)*h(i,k-1)+c(i,0)*h(i+1,k-1);
      h(i,k-1)=q;
      
    }
    //Compute next Givens rotations
    c.reshape(k,1);
    s.reshape(k,1);
    bb.reshape(k+1,1);
    value_type l = sqrt(h(k-1,k-1)*h(k-1,k-1)+h(k,k-1)*h(k,k-1));
    c(k-1,0)=h(k-1,k-1)/l;
    s(k-1,0)=h(k,k-1)/l;
    
    // Givens rotation on h and bb
    h(k-1,k-1)=l;
    h(k,k-1)=0;
    
    bb(k,0)=-s(k-1,0)*bb(k-1,0);
    bb(k-1,0)=c(k-1,0)*bb(k-1,0);
    
    //Determine residual    
    resid = fabs(bb(k,0));
    k++;
  }
  //Extract upper triangular square matrix
  bb.reshape(h.numRows()-1 ,1);
  //Solve linear system
  ordinal_type info;
  Teuchos::LAPACK<ordinal_type, value_type> lapack;
  lapack.TRTRS('U', 'N', 'N', h.numRows()-1, 1, h.values(), h.stride(), bb.values(), bb.stride(),&info);
  Teuchos::SerialDenseMatrix<ordinal_type, value_type> ans(X);
  V.reshape(n,k-1);
  ans.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, V, bb, 0.0);
  if (PrecNum == 1){
    Stokhos::DiagPreconditioner<ordinal_type, value_type> precond(M);
    precond.ApplyInverse(ans,ans,prec_iter);
  }
  else if (PrecNum == 2){
    Stokhos::JacobiPreconditioner<ordinal_type, value_type> precond(M);
    precond.ApplyInverse(ans,ans,2);
  }
  else if (PrecNum == 3){
    Stokhos::GSPreconditioner<ordinal_type, value_type> precond(M,1);
    precond.ApplyInverse(ans,ans,1);
  }
  else if (PrecNum == 4){
    Stokhos::SchurPreconditioner<ordinal_type, value_type> precond(M, order, dim, diag);
    precond.ApplyInverse(ans,ans,prec_iter);}
  X+=ans;
  
  //std::cout << "iteration count=  " << k-1 << std::endl;        
  
  return 0;
}

#endif // STOKHOS_DIVISION_EXPANSION_STRATEGY_HPP