This file is indexed.

/usr/include/trilinos/Stokhos_GaussPattersonLegendreBasisImp.hpp is in libtrilinos-stokhos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// $Id$ 
// $Source$ 
// @HEADER
// ***********************************************************************
// 
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
// 
// ***********************************************************************
// @HEADER

#ifdef HAVE_STOKHOS_DAKOTA
#include "sandia_rules.hpp"
#endif
#include "Teuchos_TestForException.hpp"

template <typename ordinal_type, typename value_type>
Stokhos::GaussPattersonLegendreBasis<ordinal_type, value_type>::
GaussPattersonLegendreBasis(ordinal_type p, bool normalize, bool isotropic_) :
  LegendreBasis<ordinal_type, value_type>(p, normalize),
  isotropic(isotropic_)
{
#ifdef HAVE_STOKHOS_DAKOTA
  this->setSparseGridGrowthRule(webbur::level_to_order_exp_gp);
#endif
}

template <typename ordinal_type, typename value_type>
Stokhos::GaussPattersonLegendreBasis<ordinal_type, value_type>::
GaussPattersonLegendreBasis(ordinal_type p, 
			    const GaussPattersonLegendreBasis& basis) :
  LegendreBasis<ordinal_type, value_type>(p, basis),
  isotropic(basis.isotropic)
{
}

template <typename ordinal_type, typename value_type>
Stokhos::GaussPattersonLegendreBasis<ordinal_type, value_type>::
~GaussPattersonLegendreBasis()
{
}

template <typename ordinal_type, typename value_type>
void
Stokhos::GaussPattersonLegendreBasis<ordinal_type,value_type>::
getQuadPoints(ordinal_type quad_order,
	      Teuchos::Array<value_type>& quad_points,
	      Teuchos::Array<value_type>& quad_weights,
	      Teuchos::Array< Teuchos::Array<value_type> >& quad_values) const
{
#ifdef HAVE_STOKHOS_DAKOTA
  // Gauss-Patterson points have the following structure 
  // (cf. http://people.sc.fsu.edu/~jburkardt/f_src/patterson_rule/patterson_rule.html):
  //  Level l  Num points n   Precision p
  //  -----------------------------------
  //    0        1                1
  //    1        3                5
  //    2        7                11
  //    3        15               23
  //    4        31               47
  //    5        63               95
  //    6        127              191
  //    7        255              383
  // Thus for l > 0, n = 2^{l+1}-1 and p = 3*2^l-1.  So for a given quadrature
  // order p, we find the smallest l s.t. 3*s^l-1 >= p and then compute the
  // number of points n from the above.  In this case, l = ceil(log2((p+1)/3))
  ordinal_type num_points;
  if (quad_order <= ordinal_type(1))
    num_points = 1;
  else {
    ordinal_type l = std::ceil(std::log((quad_order+1.0)/3.0)/std::log(2.0));
    num_points = (1 << (l+1)) - 1; // std::pow(2,l+1)-1;
  }
  
  quad_points.resize(num_points);
  quad_weights.resize(num_points);
  quad_values.resize(num_points);

  webbur::patterson_lookup(num_points, &quad_points[0], &quad_weights[0]);

  for (ordinal_type i=0; i<num_points; i++) {
    quad_weights[i] *= 0.5;  // scale to unit measure
    quad_values[i].resize(this->p+1);
    this->evaluateBases(quad_points[i], quad_values[i]);
  }

#else
  TEUCHOS_TEST_FOR_EXCEPTION(
    true, std::logic_error, "Clenshaw-Curtis requires TriKota to be enabled!");
#endif
}

template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::GaussPattersonLegendreBasis<ordinal_type,value_type>::
quadDegreeOfExactness(ordinal_type n) const
{
  // Based on the above structure, we find the largest l s.t. 2^{l+1}-1 <= n,
  // which is floor(log2(n+1)-1) and compute p = 3*2^l-1
  if (n == ordinal_type(1))
    return 1;
  ordinal_type l = std::floor(std::log(n+1.0)/std::log(2.0)-1.0);
  return (3 << l) - 1; // 3*std::pow(2,l)-1;
}

template <typename ordinal_type, typename value_type>
Teuchos::RCP<Stokhos::OneDOrthogPolyBasis<ordinal_type,value_type> > 
Stokhos::GaussPattersonLegendreBasis<ordinal_type,value_type>::
cloneWithOrder(ordinal_type p) const
{
  return 
    Teuchos::rcp(new Stokhos::GaussPattersonLegendreBasis<ordinal_type,value_type>(p,*this));
}

template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::GaussPattersonLegendreBasis<ordinal_type,value_type>::
coefficientGrowth(ordinal_type n) const
{
  // Gauss-Patterson rules have precision 3*2^l-1, which is odd.
  // Since discrete orthogonality requires integrating polynomials of
  // order 2*p, setting p = 3*2^{l-1}-1 will yield the largest p such that
  // 2*p <= 3*2^l-1
  if (n == 0) 
    return 0;
  return (3 << (n-1)) - 1; // 3*std::pow(2,n-1) - 1;
}

template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::GaussPattersonLegendreBasis<ordinal_type,value_type>::
pointGrowth(ordinal_type n) const
{
  return n;
}