/usr/include/trilinos/Stokhos_GaussPattersonLegendreBasisImp.hpp is in libtrilinos-stokhos-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | // $Id$
// $Source$
// @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
#ifdef HAVE_STOKHOS_DAKOTA
#include "sandia_rules.hpp"
#endif
#include "Teuchos_TestForException.hpp"
template <typename ordinal_type, typename value_type>
Stokhos::GaussPattersonLegendreBasis<ordinal_type, value_type>::
GaussPattersonLegendreBasis(ordinal_type p, bool normalize, bool isotropic_) :
LegendreBasis<ordinal_type, value_type>(p, normalize),
isotropic(isotropic_)
{
#ifdef HAVE_STOKHOS_DAKOTA
this->setSparseGridGrowthRule(webbur::level_to_order_exp_gp);
#endif
}
template <typename ordinal_type, typename value_type>
Stokhos::GaussPattersonLegendreBasis<ordinal_type, value_type>::
GaussPattersonLegendreBasis(ordinal_type p,
const GaussPattersonLegendreBasis& basis) :
LegendreBasis<ordinal_type, value_type>(p, basis),
isotropic(basis.isotropic)
{
}
template <typename ordinal_type, typename value_type>
Stokhos::GaussPattersonLegendreBasis<ordinal_type, value_type>::
~GaussPattersonLegendreBasis()
{
}
template <typename ordinal_type, typename value_type>
void
Stokhos::GaussPattersonLegendreBasis<ordinal_type,value_type>::
getQuadPoints(ordinal_type quad_order,
Teuchos::Array<value_type>& quad_points,
Teuchos::Array<value_type>& quad_weights,
Teuchos::Array< Teuchos::Array<value_type> >& quad_values) const
{
#ifdef HAVE_STOKHOS_DAKOTA
// Gauss-Patterson points have the following structure
// (cf. http://people.sc.fsu.edu/~jburkardt/f_src/patterson_rule/patterson_rule.html):
// Level l Num points n Precision p
// -----------------------------------
// 0 1 1
// 1 3 5
// 2 7 11
// 3 15 23
// 4 31 47
// 5 63 95
// 6 127 191
// 7 255 383
// Thus for l > 0, n = 2^{l+1}-1 and p = 3*2^l-1. So for a given quadrature
// order p, we find the smallest l s.t. 3*s^l-1 >= p and then compute the
// number of points n from the above. In this case, l = ceil(log2((p+1)/3))
ordinal_type num_points;
if (quad_order <= ordinal_type(1))
num_points = 1;
else {
ordinal_type l = std::ceil(std::log((quad_order+1.0)/3.0)/std::log(2.0));
num_points = (1 << (l+1)) - 1; // std::pow(2,l+1)-1;
}
quad_points.resize(num_points);
quad_weights.resize(num_points);
quad_values.resize(num_points);
webbur::patterson_lookup(num_points, &quad_points[0], &quad_weights[0]);
for (ordinal_type i=0; i<num_points; i++) {
quad_weights[i] *= 0.5; // scale to unit measure
quad_values[i].resize(this->p+1);
this->evaluateBases(quad_points[i], quad_values[i]);
}
#else
TEUCHOS_TEST_FOR_EXCEPTION(
true, std::logic_error, "Clenshaw-Curtis requires TriKota to be enabled!");
#endif
}
template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::GaussPattersonLegendreBasis<ordinal_type,value_type>::
quadDegreeOfExactness(ordinal_type n) const
{
// Based on the above structure, we find the largest l s.t. 2^{l+1}-1 <= n,
// which is floor(log2(n+1)-1) and compute p = 3*2^l-1
if (n == ordinal_type(1))
return 1;
ordinal_type l = std::floor(std::log(n+1.0)/std::log(2.0)-1.0);
return (3 << l) - 1; // 3*std::pow(2,l)-1;
}
template <typename ordinal_type, typename value_type>
Teuchos::RCP<Stokhos::OneDOrthogPolyBasis<ordinal_type,value_type> >
Stokhos::GaussPattersonLegendreBasis<ordinal_type,value_type>::
cloneWithOrder(ordinal_type p) const
{
return
Teuchos::rcp(new Stokhos::GaussPattersonLegendreBasis<ordinal_type,value_type>(p,*this));
}
template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::GaussPattersonLegendreBasis<ordinal_type,value_type>::
coefficientGrowth(ordinal_type n) const
{
// Gauss-Patterson rules have precision 3*2^l-1, which is odd.
// Since discrete orthogonality requires integrating polynomials of
// order 2*p, setting p = 3*2^{l-1}-1 will yield the largest p such that
// 2*p <= 3*2^l-1
if (n == 0)
return 0;
return (3 << (n-1)) - 1; // 3*std::pow(2,n-1) - 1;
}
template <typename ordinal_type, typename value_type>
ordinal_type
Stokhos::GaussPattersonLegendreBasis<ordinal_type,value_type>::
pointGrowth(ordinal_type n) const
{
return n;
}
|