This file is indexed.

/usr/include/trilinos/Teuchos_SerialBandDenseSolver.hpp is in libtrilinos-teuchos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
// @HEADER
// ***********************************************************************
//
//                    Teuchos: Common Tools Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef _TEUCHOS_SERIALBANDDENSESOLVER_HPP_
#define _TEUCHOS_SERIALBANDDENSESOLVER_HPP_
/// \file Teuchos_SerialBandDenseSolver.hpp
///
/// Declaration and definition of SerialBandDenseSolver,
/// a templated class for solving banded dense linear systems.

#include "Teuchos_CompObject.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_ConfigDefs.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialBandDenseMatrix.hpp"
#include "Teuchos_SerialDenseSolver.hpp"
#include "Teuchos_ScalarTraits.hpp"

#ifdef HAVE_TEUCHOSNUMERICS_EIGEN
#include "Eigen/Dense"
#endif

namespace Teuchos {

/*! \class SerialBandDenseSolver
  \brief A class for representing and solving banded dense linear systems.
  \tparam OrdinalType The index type used by the linear algebra implementation.
    This should always be \c int.
  \tparam ScalarType The type of entries in the matrix.

  \section Teuchos_SerialBandDenseSolver_Intro Introduction

  This class defines a banded dense matrix, which may have any number
  of rows or columns (not necessarily equal).  It's called "serial"
  because the matrix lives in a single memory space.  Thus, it's the
  kind of matrix that one might give to the BLAS or LAPACK, not a
  distributed matrix like one would give to ScaLAPACK.

  This class also has methods for computing the (banded) LU
  factorization of the matrix, and solving linear systems with the
  matrix.  We use instances of SerialDenseVector to represent the
  right-hand side b or the solution x in the linear system \f$Ax=b\f$.
  The instance of this class used store the banded matrix must contain
  KL extra superdiagonals to store the L and U factors (see details
  below).

  Users have the option to do equilibration before factoring the matrix.
  This may improve accuracy when solving ill-conditioned problems.

  \section Teuchos_SerialBandDenseSolver_LAPACK SerialBandDenseSolver and LAPACK

  Teuchos' LAPACK class wraps LAPACK's LU factorizations, including
  the banded factorizations.  It thus gives access to most of the same
  functionality as SerialBandDenseSolver.  The main difference is that
  SerialBandDenseSolver offers a higher level of abstraction.  It
  hides the details of which LAPACK routines to call.  Furthermore, if
  you have built Teuchos with support for the third-party library
  Eigen, SerialBandDenseSolver lets you solve linear systems for
  <tt>ScalarType</tt> other than the four supported by the LAPACK
  library.

  \section Teuchos_SerialBandDenseSolver_Construct Constructing SerialBandDenseSolver objects

  There is a single Teuchos::SerialBandDenseSolver constructor.
  However, the matrix, right hand side and solution vectors must be
  set prior to executing most methods in this class.

  \subsection Teuchos_SerialBandDenseSolver_Construct_Setting Setting vectors used for linear solves

  The matrix A, the left hand side X and the right hand side B (when
  solving AX = B, for X), can be set by appropriate set methods.  Each
  of these three objects must be a SerialDenseMatrix or a
  SerialDenseVector object.  The set methods are as follows:
  - setMatrix(): Sets the matrix
  - setVectors() - Sets the left and right hand side vector(s)

  \subsection Teuchos_SerialBandDenseSolver_Construct_Format Format of the matrix A

  The SerialBandDenseMatrix must contain KL extra superdiagonals to store the L and U factors, where KL
  is the upper bandwidth. Consider using the non-member conversion routines generalToBanded and bandedToGeneral if the
  full SerialDenseMatrix is already in storage. However, it is more efficient simply to construct the
  SerialBandDenseMatrix with the desired parameters and use the provided matrix access operators so
  that the full rectangular matrix need not be stored. The conversion routine generalToBanded has a flag to store
  the input Teuchos::SerialDenseMatrix in banded format with KL extra superdiagonals so this class can use it. Again,
  it is more efficient to simply construct a Teuchos::SerialBandDenseMatrix object with KL extra superdiagonals than are
  needed for the matrix data and fill the matrix using the matrix access operators.

  See the documentation of Teuchos::SerialBandDenseMatrix for further details on the storage format.

  \section Teuchos_SerialBandDenseSolver_Util Vector and Utility Functions

  Once a Teuchos::SerialBandDenseSolver is constructed, several mathematical functions can be applied to
  the object.  Specifically:
  <ul>
  <li> Conversion between storage formats
  <li> Factorizations
  <li> Solves
  <li> Condition estimates
  <li> Equilibration
  <li> Norms
  </ul>

  \section Teuchos_SerialBandDenseSolver_Strategies Strategies for Solving Linear Systems

  In many cases, linear systems can be accurately solved by simply computing the LU factorization
  of the matrix and then performing a forward back solve with a given set of right hand side vectors.  However,
  in some instances, the factorization may be very poorly conditioned and this simple approach may not work.  In
  these situations, equilibration and iterative refinement may improve the accuracy, or prevent a breakdown in
  the factorization.

  SerialBandDenseSolver will use equilibration with the factorization if, once the object
  is constructed and \e before it is factored, you call the function factorWithEquilibration(true) to force
  equilibration to be used.  If you are uncertain if equilibration should be used, you may call the function
  shouldEquilibrate() which will return true if equilibration could possibly help.  shouldEquilibrate() uses
  guidelines specified in the LAPACK User Guide, namely if SCOND < 0.1 and AMAX < Underflow or AMAX > Overflow, to
  determine if equilibration \e might be useful.

  SerialBandDenseSolver will use iterative refinement after a forward/back solve if you call
  solveToRefinedSolution(true).  It will also compute forward and backward error estimates if you call
  estimateSolutionErrors(true).  Access to the forward (back) error estimates is available via FERR() (BERR()).

  Examples using SerialBandDenseSolver can be found in the Teuchos test directories.
*/

  template<typename OrdinalType, typename ScalarType>
  class SerialBandDenseSolver : public CompObject, public Object, public BLAS<OrdinalType, ScalarType>,
                                public LAPACK<OrdinalType, ScalarType>
  {

  public:

    typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
#ifdef HAVE_TEUCHOSNUMERICS_EIGEN
    typedef typename Eigen::Matrix<ScalarType,Eigen::Dynamic,Eigen::Dynamic,Eigen::ColMajor> EigenMatrix;
    typedef typename Eigen::internal::BandMatrix<ScalarType,Eigen::Dynamic,Eigen::Dynamic,Eigen::ColMajor> EigenBandMatrix;
    typedef typename Eigen::Matrix<ScalarType,Eigen::Dynamic,1> EigenVector;
    typedef typename Eigen::InnerStride<Eigen::Dynamic> EigenInnerStride;
    typedef typename Eigen::OuterStride<Eigen::Dynamic> EigenOuterStride;
    typedef typename Eigen::Map<EigenVector,0,EigenInnerStride > EigenVectorMap;
    typedef typename Eigen::Map<const EigenVector,0,EigenInnerStride > EigenConstVectorMap;
    typedef typename Eigen::Map<EigenMatrix,0,EigenOuterStride > EigenMatrixMap;
    typedef typename Eigen::Map<const EigenMatrix,0,EigenOuterStride > EigenConstMatrixMap;
    typedef typename Eigen::PermutationMatrix<Eigen::Dynamic,Eigen::Dynamic,OrdinalType> EigenPermutationMatrix;
    typedef typename Eigen::Array<OrdinalType,Eigen::Dynamic,1> EigenOrdinalArray;
    typedef typename Eigen::Map<EigenOrdinalArray> EigenOrdinalArrayMap;
    typedef typename Eigen::Array<ScalarType,Eigen::Dynamic,1> EigenScalarArray;
    typedef typename Eigen::Map<EigenScalarArray> EigenScalarArrayMap;
#endif

    //! @name Constructor/Destructor Methods
    //@{

    //! Default constructor; matrix should be set using setMatrix(), LHS and RHS set with setVectors().
    SerialBandDenseSolver();

    //! SerialBandDenseSolver destructor.
    virtual ~SerialBandDenseSolver();

    //@}
    //! @name Set Methods
    //@{

    //! Sets the pointer for coefficient matrix
    int setMatrix(const RCP<SerialBandDenseMatrix<OrdinalType, ScalarType> >& AB);

    //! Sets the pointers for left and right hand side vector(s).
    /*! Row dimension of X must match column dimension of matrix A, row dimension of B
      must match row dimension of A.  X and B must have the same dimensions.
    */
    int setVectors(const RCP<SerialDenseMatrix<OrdinalType, ScalarType> >& X,
                   const RCP<SerialDenseMatrix<OrdinalType, ScalarType> >& B);

    //@}
    //! @name Strategy Modifying Methods
    //@{

    /// Set whether or not to equilibrate just before the matrix factorization.
    /// This function must be called before the factorization is performed.
    void factorWithEquilibration(bool flag) {equilibrate_ = flag; return;}

    /// If \c flag is true, causes all subsequent function calls to work with the transpose of \e this matrix, otherwise not.
    ///
    /// \note This interface will not work correctly for complex-valued linear systems, use solveWithTransposeFlag().
    void solveWithTranspose(bool flag) {transpose_ = flag; if (flag) TRANS_ = Teuchos::TRANS; else TRANS_ = Teuchos::NO_TRANS; return;}

    /// All subsequent function calls will work with the transpose-type set by this method (\c Teuchos::NO_TRANS, \c Teuchos::TRANS, and \c Teuchos::CONJ_TRANS).
    /// \note This interface will allow correct behavior for complex-valued linear systems, solveWithTranspose() will not.
    void solveWithTransposeFlag(Teuchos::ETransp trans) {TRANS_ = trans; if (trans != Teuchos::NO_TRANS) {  transpose_ = true; } }

    //! Set whether or not to use iterative refinement to improve solutions to linear systems.
    void solveToRefinedSolution(bool flag) {refineSolution_ = flag; return;}

    //! Causes all solves to estimate the forward and backward solution error.
    /*! Error estimates will be in the arrays FERR and BERR, resp, after the solve step is complete.
      These arrays are accessible via the FERR() and BERR() access functions.
    */
    void estimateSolutionErrors(bool flag);
    //@}

    //! @name Factor/Solve Methods
    //@{

    //! Computes the in-place LU factorization of the matrix using the LAPACK routine \e _GBTRF.
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int factor();

    //! Computes the solution X to AX = B for the \e this matrix and the B provided to SetVectors()..
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int solve();

    //! Computes the scaling vector S(i) = 1/sqrt(A(i,i)) of the \e this matrix.
    /*!
      \return Integer error code, set to 0 if successful. Otherwise returns the LAPACK error code INFO.
    */
    int computeEquilibrateScaling();

    //! Equilibrates the \e this matrix.
    /*!
      \return Integer error code, set to 0 if successful. Otherwise returns the LAPACK error code INFO.
    */
    int equilibrateMatrix();

    //! Equilibrates the current RHS.
    /*!
      \return Integer error code, set to 0 if successful. Otherwise returns the LAPACK error code INFO.
    */
    int equilibrateRHS();

    //! Apply Iterative Refinement.
    /*!
      \return Integer error code, set to 0 if successful. Otherwise returns the LAPACK error code INFO.
    */
    int applyRefinement();

    //! Unscales the solution vectors if equilibration was used to solve the system.
    /*!
      \return Integer error code, set to 0 if successful. Otherwise returns the LAPACK error code INFO.
    */
    int unequilibrateLHS();

    //! Returns the reciprocal of the 1-norm condition number of the \e this matrix.
    /*!
      \param Value Out
      On return contains the reciprocal of the 1-norm condition number of the \e this matrix.

      \return Integer error code, set to 0 if successful. Otherwise returns the LAPACK error code INFO.
    */
     int reciprocalConditionEstimate(MagnitudeType & Value);
    //@}

    //! @name Query methods
    //@{

    //! Returns true if transpose of \e this matrix has and will be used.
    bool transpose() {return(transpose_);}

    //! Returns true if matrix is factored (factor available via AF() and LDAF()).
    bool factored() {return(factored_);}

    //! Returns true if factor is equilibrated (factor available via AF() and LDAF()).
    bool equilibratedA() {return(equilibratedA_);}

    //! Returns true if RHS is equilibrated (RHS available via B() and LDB()).
    bool equilibratedB() {return(equilibratedB_);}

    //! Returns true if the LAPACK general rules for equilibration suggest you should equilibrate the system.
     bool shouldEquilibrate() {computeEquilibrateScaling(); return(shouldEquilibrate_);}

    //! Returns true if forward and backward error estimated have been computed (available via FERR() and BERR()).
    bool solutionErrorsEstimated() {return(solutionErrorsEstimated_);}

    //! Returns true if the condition number of the \e this matrix has been computed (value available via ReciprocalConditionEstimate()).
    bool reciprocalConditionEstimated() {return(reciprocalConditionEstimated_);}

    //! Returns true if the current set of vectors has been solved.
    bool solved() {return(solved_);}

    //! Returns true if the current set of vectors has been refined.
    bool solutionRefined() {return(solutionRefined_);}
    //@}

    //! @name Data Accessor methods
    //@{

    //! Returns pointer to current matrix.
    RCP<SerialBandDenseMatrix<OrdinalType, ScalarType> > getMatrix()  const {return(Matrix_);}

    //! Returns pointer to factored matrix (assuming factorization has been performed).
    RCP<SerialBandDenseMatrix<OrdinalType, ScalarType> > getFactoredMatrix()  const {return(Factor_);}

    //! Returns pointer to current LHS.
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > getLHS() const {return(LHS_);}

    //! Returns pointer to current RHS.
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > getRHS() const {return(RHS_);}

    //! Returns row dimension of system.
    OrdinalType numRows()  const {return(M_);}

    //! Returns column dimension of system.
    OrdinalType numCols()  const {return(N_);}

    //! Returns lower bandwidth of system.
    OrdinalType numLower()  const {return(KL_);}

    //! Returns upper bandwidth of system.
    OrdinalType numUpper()  const {return(KU_);}

    //! Returns pointer to pivot vector (if factorization has been computed), zero otherwise.
    std::vector<OrdinalType> IPIV()  const {return(IPIV_);}

    //! Returns the 1-Norm of the \e this matrix (returns -1 if not yet computed).
    MagnitudeType ANORM()  const {return(ANORM_);}

    //! Returns the reciprocal of the condition number of the \e this matrix (returns -1 if not yet computed).
    MagnitudeType RCOND()  const {return(RCOND_);}

    //! Ratio of smallest to largest row scale factors for the \e this matrix (returns -1 if not yet computed).
    /*! If ROWCND() is >= 0.1 and AMAX() is not close to overflow or underflow, then equilibration is not needed.
     */
    MagnitudeType ROWCND()  const {return(ROWCND_);}

    //! Ratio of smallest to largest column scale factors for the \e this matrix (returns -1 if not yet computed).
    /*! If COLCND() is >= 0.1 then equilibration is not needed.
     */
    MagnitudeType COLCND()  const {return(COLCND_);}

    //! Returns the absolute value of the largest entry of the \e this matrix (returns -1 if not yet computed).
    MagnitudeType AMAX()  const {return(AMAX_);}

    //! Returns a pointer to the forward error estimates computed by LAPACK.
    std::vector<MagnitudeType> FERR()  const {return(FERR_);}

    //! Returns a pointer to the backward error estimates computed by LAPACK.
    std::vector<MagnitudeType> BERR()  const {return(BERR_);}

    //! Returns a pointer to the row scaling vector used for equilibration.
    std::vector<MagnitudeType> R()  const {return(R_);}

    //! Returns a pointer to the column scale vector used for equilibration.
    std::vector<MagnitudeType> C()  const {return(C_);}
    //@}

    //! @name I/O methods
    //@{
    //! Print service methods; defines behavior of ostream << operator.
    void Print(std::ostream& os) const;
    //@}
  protected:

    void allocateWORK() { LWORK_ = 3*N_; WORK_.resize( LWORK_ ); return;}
    void resetMatrix();
    void resetVectors();


    bool equilibrate_;
    bool shouldEquilibrate_;
    bool equilibratedA_;
    bool equilibratedB_;
    bool transpose_;
    bool factored_;
    bool estimateSolutionErrors_;
    bool solutionErrorsEstimated_;
    bool solved_;
    bool reciprocalConditionEstimated_;
    bool refineSolution_;
    bool solutionRefined_;

    Teuchos::ETransp TRANS_;

    OrdinalType M_;
    OrdinalType N_;
    OrdinalType KL_;
    OrdinalType KU_;
    OrdinalType Min_MN_;
    OrdinalType LDA_;
    OrdinalType LDAF_;
    OrdinalType INFO_;
    OrdinalType LWORK_;

    std::vector<OrdinalType> IPIV_;
    std::vector<int> IWORK_;

    MagnitudeType ANORM_;
    MagnitudeType RCOND_;
    MagnitudeType ROWCND_;
    MagnitudeType COLCND_;
    MagnitudeType AMAX_;

    RCP<SerialBandDenseMatrix<OrdinalType, ScalarType> > Matrix_;
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > LHS_;
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > RHS_;
    RCP<SerialBandDenseMatrix<OrdinalType, ScalarType> > Factor_;

    ScalarType * A_;
    ScalarType * AF_;
    std::vector<MagnitudeType> FERR_;
    std::vector<MagnitudeType> BERR_;
    std::vector<ScalarType> WORK_;
    std::vector<MagnitudeType> R_;
    std::vector<MagnitudeType> C_;
#ifdef HAVE_TEUCHOSNUMERICS_EIGEN
    Eigen::PartialPivLU<EigenMatrix> lu_;
#endif

  private:

    // SerialBandDenseSolver copy constructor (put here because we don't want user access)
    SerialBandDenseSolver(const SerialBandDenseSolver<OrdinalType, ScalarType>& Source);
    SerialBandDenseSolver & operator=(const SerialBandDenseSolver<OrdinalType, ScalarType>& Source);

  };

  // Helper traits to distinguish work arrays for real and complex-valued datatypes.
  using namespace details;

//=============================================================================

template<typename OrdinalType, typename ScalarType>
SerialBandDenseSolver<OrdinalType,ScalarType>::SerialBandDenseSolver()
  : CompObject(),
    equilibrate_(false),
    shouldEquilibrate_(false),
    equilibratedA_(false),
    equilibratedB_(false),
    transpose_(false),
    factored_(false),
    estimateSolutionErrors_(false),
    solutionErrorsEstimated_(false),
    solved_(false),
    reciprocalConditionEstimated_(false),
    refineSolution_(false),
    solutionRefined_(false),
    TRANS_(Teuchos::NO_TRANS),
    M_(0),
    N_(0),
    KL_(0),
    KU_(0),
    Min_MN_(0),
    LDA_(0),
    LDAF_(0),
    INFO_(0),
    LWORK_(0),
    ANORM_(0.0),
    RCOND_(ScalarTraits<MagnitudeType>::zero()),
    ROWCND_(ScalarTraits<MagnitudeType>::zero()),
    COLCND_(ScalarTraits<MagnitudeType>::zero()),
    AMAX_(ScalarTraits<MagnitudeType>::zero()),
    A_(NULL),
    AF_(NULL)
{
  resetMatrix();
}
//=============================================================================

template<typename OrdinalType, typename ScalarType>
SerialBandDenseSolver<OrdinalType,ScalarType>::~SerialBandDenseSolver()
{}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
void SerialBandDenseSolver<OrdinalType,ScalarType>::resetVectors()
{
  LHS_ = Teuchos::null;
  RHS_ = Teuchos::null;
  reciprocalConditionEstimated_ = false;
  solutionRefined_ = false;
  solved_ = false;
  solutionErrorsEstimated_ = false;
  equilibratedB_ = false;
}
//=============================================================================

template<typename OrdinalType, typename ScalarType>
void SerialBandDenseSolver<OrdinalType,ScalarType>::resetMatrix()
{
  resetVectors();
  equilibratedA_ = false;
  factored_ = false;
  M_ = 0;
  N_ = 0;
  KL_ = 0;
  KU_ = 0;
  Min_MN_ = 0;
  LDA_ = 0;
  LDAF_ = 0;
  RCOND_ = -ScalarTraits<MagnitudeType>::one();
  ROWCND_ = -ScalarTraits<MagnitudeType>::one();
  COLCND_ = -ScalarTraits<MagnitudeType>::one();
  AMAX_ = -ScalarTraits<MagnitudeType>::one();
  A_ = 0;
  AF_ = 0;
  INFO_ = 0;
  LWORK_ = 0;
  R_.resize(0);
  C_.resize(0);
}
//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialBandDenseSolver<OrdinalType,ScalarType>::setMatrix(const RCP<SerialBandDenseMatrix<OrdinalType,ScalarType> >& AB)
{

  OrdinalType m = AB->numRows();
  OrdinalType n = AB->numCols();
  OrdinalType kl = AB->lowerBandwidth();
  OrdinalType ku = AB->upperBandwidth();

  // Check that the new matrix is consistent.
  TEUCHOS_TEST_FOR_EXCEPTION(AB->values()==0, std::invalid_argument,
                     "SerialBandDenseSolver<T>::setMatrix: A is an empty SerialBandDenseMatrix<T>!");

  resetMatrix();
  Matrix_ = AB;
  Factor_ = AB;
  M_ = m;
  N_ = n;
  KL_ = kl;
  KU_ = ku-kl;
  Min_MN_ = TEUCHOS_MIN(M_,N_);
  LDA_ = AB->stride();
  LDAF_ = LDA_;
  A_ = AB->values();
  AF_ = AB->values();

  return(0);
}
//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialBandDenseSolver<OrdinalType,ScalarType>::setVectors(const RCP<SerialDenseMatrix<OrdinalType,ScalarType> >& X,
                                                           const RCP<SerialDenseMatrix<OrdinalType,ScalarType> >& B)
{
  // Check that these new vectors are consistent.
  TEUCHOS_TEST_FOR_EXCEPTION(B->numRows()!=X->numRows() || B->numCols() != X->numCols(), std::invalid_argument,
                     "SerialBandDenseSolver<T>::setVectors: X and B are not the same size!");
  TEUCHOS_TEST_FOR_EXCEPTION(B->values()==0, std::invalid_argument,
                     "SerialBandDenseSolver<T>::setVectors: B is an empty SerialDenseMatrix<T>!");
  TEUCHOS_TEST_FOR_EXCEPTION(X->values()==0, std::invalid_argument,
                     "SerialBandDenseSolver<T>::setVectors: X is an empty SerialDenseMatrix<T>!");
  TEUCHOS_TEST_FOR_EXCEPTION(B->stride()<1, std::invalid_argument,
                     "SerialBandDenseSolver<T>::setVectors: B has an invalid stride!");
  TEUCHOS_TEST_FOR_EXCEPTION(X->stride()<1, std::invalid_argument,
                     "SerialBandDenseSolver<T>::setVectors: X has an invalid stride!");

  resetVectors();
  LHS_ = X;
  RHS_ = B;
  return(0);
}
//=============================================================================

template<typename OrdinalType, typename ScalarType>
void SerialBandDenseSolver<OrdinalType,ScalarType>::estimateSolutionErrors(bool flag)
{
  estimateSolutionErrors_ = flag;

  // If the errors are estimated, this implies that the solution must be refined
  refineSolution_ = refineSolution_ || flag;
}
//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialBandDenseSolver<OrdinalType,ScalarType>::factor() {

  if (factored()) return(0); // Already factored

  ANORM_ = Matrix_->normOne(); // Compute 1-Norm of A

  // If we want to refine the solution, then the factor must
  // be stored separatedly from the original matrix

  if (A_ == AF_)
    if (refineSolution_ ) {
      Factor_ = rcp( new SerialBandDenseMatrix<OrdinalType,ScalarType>(*Matrix_) );
      AF_ = Factor_->values();
      LDAF_ = Factor_->stride();
    }

  int ierr = 0;
  if (equilibrate_) ierr = equilibrateMatrix();

  if (ierr!=0) return(ierr);

  if (IPIV_.size()==0) IPIV_.resize( N_ ); // Allocated Pivot vector if not already done.

  INFO_ = 0;

#ifdef HAVE_TEUCHOSNUMERICS_EIGEN
  EigenMatrixMap aMap( AF_+KL_, KL_+KU_+1, N_, EigenOuterStride(LDAF_) );
  EigenMatrix fullMatrix(M_, N_);
  for (OrdinalType j=0; j<N_; j++) {
    for (OrdinalType i=TEUCHOS_MAX(0,j-KU_); i<=TEUCHOS_MIN(M_-1, j+KL_); i++) {
      fullMatrix(i,j) = aMap(KU_+i-j, j);
    }
  }

  EigenPermutationMatrix p;
  EigenOrdinalArray ind;
  EigenOrdinalArrayMap ipivMap( &IPIV_[0], Min_MN_ );

  lu_.compute(fullMatrix);
  p = lu_.permutationP();
  ind = p.indices();

  for (OrdinalType i=0; i<ipivMap.innerSize(); i++) {
    ipivMap(i) = ind(i);
  }

#else
  this->GBTRF(M_, N_, KL_, KU_, AF_, LDAF_, &IPIV_[0], &INFO_);
#endif

  factored_ = true;

  return(INFO_);
}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialBandDenseSolver<OrdinalType,ScalarType>::solve() {

  // If the user want the matrix to be equilibrated or wants a refined solution, we will
  // call the X interface.
  // Otherwise, if the matrix is already factored we will call the TRS interface.
  // Otherwise, if the matrix is unfactored we will call the SV interface.

  int ierr = 0;
  if (equilibrate_) {
    ierr = equilibrateRHS();
    equilibratedB_ = true;
  }
  if (ierr != 0) return(ierr);  // Can't equilibrate B, so return.

  TEUCHOS_TEST_FOR_EXCEPTION( (equilibratedA_ && !equilibratedB_) || (!equilibratedA_ && equilibratedB_) ,
                     std::logic_error, "SerialBandDenseSolver<T>::solve: Matrix and vectors must be similarly scaled!");
  TEUCHOS_TEST_FOR_EXCEPTION( RHS_==Teuchos::null, std::invalid_argument,
                     "SerialBandDenseSolver<T>::solve: No right-hand side vector (RHS) has been set for the linear system!");
  TEUCHOS_TEST_FOR_EXCEPTION( LHS_==Teuchos::null, std::invalid_argument,
                     "SerialBandDenseSolver<T>::solve: No solution vector (LHS) has been set for the linear system!");

  if (shouldEquilibrate() && !equilibratedA_)
    std::cout << "WARNING!  SerialBandDenseSolver<T>::solve: System should be equilibrated!" << std::endl;

  if (!factored()) factor(); // Matrix must be factored

  if (RHS_->values()!=LHS_->values()) {
    (*LHS_) = (*RHS_); // Copy B to X if needed
  }
  INFO_ = 0;

#ifdef HAVE_TEUCHOSNUMERICS_EIGEN
    EigenMatrixMap rhsMap( RHS_->values(), RHS_->numRows(), RHS_->numCols(), EigenOuterStride(RHS_->stride()) );
    EigenMatrixMap lhsMap( LHS_->values(), LHS_->numRows(), LHS_->numCols(), EigenOuterStride(LHS_->stride()) );
    if ( TRANS_ == Teuchos::NO_TRANS ) {
      lhsMap = lu_.solve(rhsMap);
    } else if ( TRANS_ == Teuchos::TRANS ) {
      lu_.matrixLU().template triangularView<Eigen::Upper>().transpose().solveInPlace(lhsMap);
      lu_.matrixLU().template triangularView<Eigen::UnitLower>().transpose().solveInPlace(lhsMap);
      EigenMatrix x = lu_.permutationP().transpose() * lhsMap;
      lhsMap = x;
    } else {
      lu_.matrixLU().template triangularView<Eigen::Upper>().adjoint().solveInPlace(lhsMap);
      lu_.matrixLU().template triangularView<Eigen::UnitLower>().adjoint().solveInPlace(lhsMap);
      EigenMatrix x = lu_.permutationP().transpose() * lhsMap;
      lhsMap = x;
    }
#else
  this->GBTRS(ETranspChar[TRANS_], N_, KL_, KU_, RHS_->numCols(), AF_, LDAF_, &IPIV_[0], LHS_->values(), LHS_->stride(), &INFO_);
#endif

  if (INFO_!=0) return(INFO_);
  solved_ = true;

  int ierr1=0;
  if (refineSolution_) ierr1 = applyRefinement();
  if (ierr1!=0)
    return(ierr1);

  if (equilibrate_) ierr1 = unequilibrateLHS();

  return(ierr1);
}
//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialBandDenseSolver<OrdinalType,ScalarType>::applyRefinement()
{
  TEUCHOS_TEST_FOR_EXCEPTION(!solved(), std::logic_error,
                     "SerialBandDenseSolver<T>::applyRefinement: Must have an existing solution!");
  TEUCHOS_TEST_FOR_EXCEPTION(A_==AF_, std::logic_error,
                     "SerialBandDenseSolver<T>::applyRefinement: Cannot apply refinement if no original copy of A!");

#ifdef HAVE_TEUCHOSNUMERICS_EIGEN
  // Implement templated GERFS or use Eigen.
  return (-1);
#else

  OrdinalType NRHS = RHS_->numCols();
  FERR_.resize( NRHS );
  BERR_.resize( NRHS );
  allocateWORK();

  INFO_ = 0;
  std::vector<typename details::lapack_traits<ScalarType>::iwork_type> GBRFS_WORK( N_ );
  this->GBRFS(ETranspChar[TRANS_], N_, KL_, KU_, NRHS, A_+KL_, LDA_, AF_, LDAF_, &IPIV_[0],
              RHS_->values(), RHS_->stride(), LHS_->values(), LHS_->stride(),
              &FERR_[0], &BERR_[0], &WORK_[0], &GBRFS_WORK[0], &INFO_);

  solutionErrorsEstimated_ = true;
  reciprocalConditionEstimated_ = true;
  solutionRefined_ = true;

  return(INFO_);
#endif
}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialBandDenseSolver<OrdinalType,ScalarType>::computeEquilibrateScaling()
{
  if (R_.size()!=0) return(0); // Already computed

  R_.resize( M_ );
  C_.resize( N_ );

  INFO_ = 0;
  this->GBEQU (M_, N_, KL_, KU_, AF_+KL_, LDAF_, &R_[0], &C_[0], &ROWCND_, &COLCND_, &AMAX_, &INFO_);

  if (COLCND_<0.1*ScalarTraits<MagnitudeType>::one() ||
      ROWCND_<0.1*ScalarTraits<MagnitudeType>::one() ||
      AMAX_ < ScalarTraits<ScalarType>::rmin() || AMAX_ > ScalarTraits<ScalarType>::rmax() )
    shouldEquilibrate_ = true;

  return(INFO_);
}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialBandDenseSolver<OrdinalType,ScalarType>::equilibrateMatrix()
{
  OrdinalType i, j;
  int ierr = 0;

  if (equilibratedA_) return(0); // Already done.
  if (R_.size()==0) ierr = computeEquilibrateScaling(); // Compute R and C if needed.
  if (ierr!=0) return(ierr);     // If return value is not zero, then can't equilibrate.

  if (A_==AF_) {

    ScalarType * ptr;
    for (j=0; j<N_; j++) {
      ptr = A_ + KL_ + j*LDA_ + TEUCHOS_MAX(KU_-j, 0);
      ScalarType s1 = C_[j];
      for (i=TEUCHOS_MAX(0,j-KU_); i<=TEUCHOS_MIN(M_-1,j+KL_); i++) {
        *ptr = *ptr*s1*R_[i];
        ptr++;
      }
    }
  } else {

    ScalarType * ptr;
    ScalarType * ptrL;
    ScalarType * ptrU;
    for (j=0; j<N_; j++) {
      ptr = A_ + KL_ + j*LDA_ + TEUCHOS_MAX(KU_-j, 0);
      ScalarType s1 = C_[j];
      for (i=TEUCHOS_MAX(0,j-KU_); i<=TEUCHOS_MIN(M_-1,j+KL_); i++) {
        *ptr = *ptr*s1*R_[i];
        ptr++;
      }
    }
    for (j=0; j<N_; j++) {
      ptrU = AF_ + j*LDAF_ + TEUCHOS_MAX(KL_+KU_-j, 0);
      ptrL = AF_ + KL_ + KU_ + 1 + j*LDAF_;
      ScalarType s1 = C_[j];
      for (i=TEUCHOS_MAX(0,j-(KL_+KU_)); i<=TEUCHOS_MIN(M_-1,j); i++) {
        *ptrU = *ptrU*s1*R_[i];
        ptrU++;
      }
      for (i=TEUCHOS_MAX(0,j); i<=TEUCHOS_MIN(M_-1,j+KL_); i++) {
        *ptrL = *ptrL*s1*R_[i];
        ptrL++;
      }
    }
  }

  equilibratedA_ = true;

  return(0);
}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialBandDenseSolver<OrdinalType,ScalarType>::equilibrateRHS()
{
  OrdinalType i, j;
  int ierr = 0;

  if (equilibratedB_) return(0); // Already done.
  if (R_.size()==0) ierr = computeEquilibrateScaling(); // Compute R and C if needed.
  if (ierr!=0) return(ierr);     // Can't count on R and C being computed.

  MagnitudeType * R_tmp = &R_[0];
  if (transpose_) R_tmp = &C_[0];

  OrdinalType LDB = RHS_->stride(), NRHS = RHS_->numCols();
  ScalarType * B = RHS_->values();
  ScalarType * ptr;
  for (j=0; j<NRHS; j++) {
    ptr = B + j*LDB;
    for (i=0; i<M_; i++) {
      *ptr = *ptr*R_tmp[i];
      ptr++;
    }
  }

  equilibratedB_ = true;

  return(0);
}


//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialBandDenseSolver<OrdinalType,ScalarType>::unequilibrateLHS()
{
  OrdinalType i, j;

  if (!equilibratedB_) return(0); // Nothing to do

  MagnitudeType * C_tmp = &C_[0];
  if (transpose_) C_tmp = &R_[0];

  OrdinalType LDX = LHS_->stride(), NLHS = LHS_->numCols();
  ScalarType * X = LHS_->values();
  ScalarType * ptr;
  for (j=0; j<NLHS; j++) {
    ptr = X + j*LDX;
    for (i=0; i<N_; i++) {
      *ptr = *ptr*C_tmp[i];
      ptr++;
    }
  }

  return(0);
}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialBandDenseSolver<OrdinalType,ScalarType>::reciprocalConditionEstimate(MagnitudeType & Value)
{
#ifdef HAVE_TEUCHOSNUMERICS_EIGEN
  // Implement templated GECON or use Eigen. Eigen currently doesn't have a condition estimation function.
  return (-1);
#else

  if (reciprocalConditionEstimated()) {
    Value = RCOND_;
    return(0); // Already computed, just return it.
  }

  if ( ANORM_<ScalarTraits<MagnitudeType>::zero() ) ANORM_ = Matrix_->normOne();

  int ierr = 0;
  if (!factored()) ierr = factor(); // Need matrix factored.
  if (ierr!=0) return(ierr);

  allocateWORK();

  // We will assume a one-norm condition number
  INFO_ = 0;
  std::vector<typename details::lapack_traits<ScalarType>::iwork_type> GBCON_WORK( N_ );
  this->GBCON( '1', N_, KL_, KU_, AF_, LDAF_, &IPIV_[0], ANORM_, &RCOND_, &WORK_[0], &GBCON_WORK[0], &INFO_);
  reciprocalConditionEstimated_ = true;
  Value = RCOND_;

  return(INFO_);
#endif
}
//=============================================================================

template<typename OrdinalType, typename ScalarType>
void SerialBandDenseSolver<OrdinalType,ScalarType>::Print(std::ostream& os) const {

  if (Matrix_!=Teuchos::null) os << "Solver Matrix"          << std::endl << *Matrix_ << std::endl;
  if (Factor_!=Teuchos::null) os << "Solver Factored Matrix" << std::endl << *Factor_ << std::endl;
  if (LHS_   !=Teuchos::null) os << "Solver LHS"             << std::endl << *LHS_    << std::endl;
  if (RHS_   !=Teuchos::null) os << "Solver RHS"             << std::endl << *RHS_    << std::endl;

}

//=============================================================================


//=============================================================================


} // namespace Teuchos

#endif /* _TEUCHOS_SERIALBANDDENSESOLVER_HPP_ */