This file is indexed.

/usr/include/trilinos/Teuchos_SerialQRDenseSolver.hpp is in libtrilinos-teuchos-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
// @HEADER
// ***********************************************************************
//
//                    Teuchos: Common Tools Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef _TEUCHOS_SERIALQRDENSESOLVER_HPP_
#define _TEUCHOS_SERIALQRDENSESOLVER_HPP_
/*! \file Teuchos_SerialQRDenseSolver.hpp
  \brief Templated class for solving dense linear problems.
*/

#include "Teuchos_CompObject.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_ConfigDefs.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseSolver.hpp"
#include "Teuchos_ScalarTraits.hpp"

#ifdef HAVE_TEUCHOSNUMERICS_EIGEN
#include "Eigen/Dense"
#endif

/*! \class Teuchos::SerialQRDenseSolver
  \brief A class for solving dense linear problems.

  The Teuchos::SerialQRDenseSolver class enables the definition, in terms of Teuchos::SerialDenseMatrix
  and Teuchos::SerialDenseVector objects, of a dense linear problem, followed by the solution of that
  problem via the most sophisticated techniques available in LAPACK.

  The Teuchos::SerialQRDenseSolver class is intended to provide full-featured support for solving linear
  problems for general dense rectangular (or square) matrices.  It is written on top of BLAS and LAPACK
  and thus has excellent performance and numerical capabilities.  Using this class, one can either perform
  simple factorizations and solves or apply all the tricks available in LAPACK to get the best possible
  solution for very ill-conditioned problems.

  <b>Teuchos::SerialQRDenseSolver vs. Teuchos::LAPACK</b>

  The Teuchos::LAPACK class provides access to most of the same functionality as Teuchos::SerialQRDenseSolver.
  The primary difference is that Teuchos::LAPACK is a "thin" layer on top of LAPACK and Teuchos::SerialQRDenseSolver
  attempts to provide easy access to the more sophisticated aspects of solving dense linear and eigensystems.
  <ul>
  <li> When you should use Teuchos::LAPACK:  If you are simply looking for a convenient wrapper around
  the Fortran LAPACK routines and you have a well-conditioned problem, you should probably use Teuchos::LAPACK directly.
  <li> When you should use Teuchos::SerialQRDenseSolver: If you want to (or potentially want to) solve
  ill-conditioned problems or want to work with a more object-oriented interface, you should probably use
  Teuchos::SerialQRDenseSolver.
  </ul>

  <b>Constructing Teuchos::SerialQRDenseSolver Objects</b>

  There is a single Teuchos::SerialQRDenseSolver constructor.   However, the matrix, right hand side and solution
  vectors must be set prior to executing most methods in this class.

  <b>Setting vectors used for linear solves</b>

  The matrix A, the left hand side X and the right hand side B (when solving AX = B, for X), can be set by appropriate set
  methods.  Each of these three objects must be an Teuchos::SerialDenseMatrix or and Teuchos::SerialDenseVector object.  The
  set methods are as follows:
  <ul>
  <li> setMatrix()  - Sets the matrix.
  <li> setVectors() - Sets the left and right hand side vector(s).
  </ul>

  <b>Vector and Utility Functions</b>

  Once a Teuchos::SerialQRDenseSolver is constructed, several mathematical functions can be applied to
  the object.  Specifically:
  <ul>
  <li> Factorizations.
  <li> Solves.
  <li> Equilibration.
  <li> Norms.
  </ul>

  <b>Strategies for Solving Linear Systems</b>
  In many cases, linear least squares systems can be accurately solved by simply computing the QR factorization
  of the matrix and then performing a forward back solve with a given set of right hand side vectors.  However,
  in some instances, the factorization may be very poorly conditioned and this simple approach may not work.  In
  these situations, equilibration and iterative refinement may improve the accuracy, or prevent a breakdown in
  the factorization.

  Teuchos::SerialQRDenseSolver will use equilibration with the factorization if, once the object
  is constructed and \e before it is factored, you call the function factorWithEquilibration(true) to force
  equilibration to be used.  If you are uncertain if equilibration should be used, you may call the function
  shouldEquilibrate() which will return true if equilibration could possibly help.  shouldEquilibrate() uses
  guidelines specified in the LAPACK User Guide to determine if equilibration \e might be useful.

  Examples using Teuchos::SerialQRDenseSolver can be found in the Teuchos test directories.
*/

namespace Teuchos {

  template<typename OrdinalType, typename ScalarType>
  class SerialQRDenseSolver : public CompObject, public Object, public BLAS<OrdinalType, ScalarType>,
                              public LAPACK<OrdinalType, ScalarType>
  {

  public:

    typedef typename ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
#ifdef HAVE_TEUCHOSNUMERICS_EIGEN
    typedef typename Eigen::Matrix<ScalarType,Eigen::Dynamic,Eigen::Dynamic,Eigen::ColMajor> EigenMatrix;
    typedef typename Eigen::Matrix<ScalarType,Eigen::Dynamic,1> EigenVector;
    typedef typename Eigen::InnerStride<Eigen::Dynamic> EigenInnerStride;
    typedef typename Eigen::OuterStride<Eigen::Dynamic> EigenOuterStride;
    typedef typename Eigen::Map<EigenVector,0,EigenInnerStride > EigenVectorMap;
    typedef typename Eigen::Map<const EigenVector,0,EigenInnerStride > EigenConstVectorMap;
    typedef typename Eigen::Map<EigenMatrix,0,EigenOuterStride > EigenMatrixMap;
    typedef typename Eigen::Map<const EigenMatrix,0,EigenOuterStride > EigenConstMatrixMap;
    typedef typename Eigen::PermutationMatrix<Eigen::Dynamic,Eigen::Dynamic,OrdinalType> EigenPermutationMatrix;
    typedef typename Eigen::Array<OrdinalType,Eigen::Dynamic,1> EigenOrdinalArray;
    typedef typename Eigen::Map<EigenOrdinalArray> EigenOrdinalArrayMap;
    typedef typename Eigen::Array<ScalarType,Eigen::Dynamic,1> EigenScalarArray;
    typedef typename Eigen::Map<EigenScalarArray> EigenScalarArrayMap;
#endif

    //! @name Constructor/Destructor Methods
    //@{
    //! Default constructor; matrix should be set using setMatrix(), LHS and RHS set with setVectors().
    SerialQRDenseSolver();

    //! SerialQRDenseSolver destructor.
    virtual ~SerialQRDenseSolver();
    //@}

    //! @name Set Methods
    //@{

    //! Sets the pointers for coefficient matrix
    /*! Row dimension of A must be greater than or equal to the column dimension of A.
    */
    int setMatrix(const RCP<SerialDenseMatrix<OrdinalType, ScalarType> >& A);

    //! Sets the pointers for left and right hand side vector(s).
    /*! Row dimension of X must match column dimension of matrix A, row dimension of B
      must match row dimension of A.
    */
    int setVectors(const RCP<SerialDenseMatrix<OrdinalType, ScalarType> >& X,
                   const RCP<SerialDenseMatrix<OrdinalType, ScalarType> >& B);
    //@}

    //! @name Strategy Modifying Methods
    //@{

    //! Causes equilibration to be called just before the matrix factorization as part of the call to \c factor.
    /*! \note This method must be called before the factorization is performed, otherwise it will have no effect.
   */
    void factorWithEquilibration(bool flag) {equilibrate_ = flag; return;}

    //! If \c flag is true, causes all subsequent function calls to work with the adjoint of \e this matrix, otherwise not.
    void solveWithTranspose(bool flag) {transpose_ = flag; if (flag) TRANS_ = Teuchos::CONJ_TRANS; else TRANS_ = Teuchos::NO_TRANS; return;}

    //! All subsequent function calls will work with the transpose-type set by this method (\c Teuchos::NO_TRANS or Teuchos::CONJ_TRANS).
    void solveWithTransposeFlag(Teuchos::ETransp trans) {TRANS_ = trans; if (trans != Teuchos::NO_TRANS) {  transpose_ = true; } }

    //@}

    //! @name Factor/Solve/Invert Methods
    //@{

    //! Computes the in-place QR factorization of the matrix using the LAPACK routine \e _GETRF or the Eigen class \e HouseholderQR
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int factor();

    //! Computes the solution X to AX = B for the \e this matrix and the B provided to SetVectors()..
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int solve();

    //! Determines if \e this matrix should be scaled.
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int computeEquilibrateScaling();

    //! Equilibrates the \e this matrix.
    /*!
      \note This method will be called automatically in solve() method if factorWithEquilibration( true ) is called.
      \return Integer error code, set to 0 if successful.
    */
    int equilibrateMatrix();

    //! Equilibrates the current RHS.
    /*!
      \note This method will be called automatically in solve() method if factorWithEquilibration( true ) is called.
      \return Integer error code, set to 0 if successful.
    */
    int equilibrateRHS();

    //! Unscales the solution vectors if equilibration was used to solve the system.
    /*!
      \note This method will be called automatically in solve() method if factorWithEquilibration( true ) is called.
      \return Integer error code, set to 0 if successful.
    */
    int unequilibrateLHS();

    //! Explicitly forms the unitary matrix Q.
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int formQ();

    //! Explicitly forms the upper triangular matrix R.
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int formR();

    //! Left multiply the input matrix by the unitary matrix Q or its adjoint.
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int multiplyQ (ETransp transq, SerialDenseMatrix<OrdinalType, ScalarType> &C);

    //! Solve input matrix on the left with the upper triangular matrix R or its adjoint.
    /*!
      \return Integer error code, set to 0 if successful.
    */
    int solveR (ETransp transr, SerialDenseMatrix<OrdinalType, ScalarType> &C);
    //@}

    //! @name Query methods
    //@{

    //! Returns true if adjoint of \e this matrix has and will be used.
    bool transpose() {return(transpose_);}

    //! Returns true if matrix is factored (factor available via getFactoredMatrix()).
    bool factored() {return(factored_);}

    //! Returns true if factor is equilibrated (factor available via getFactoredMatrix()).
    bool equilibratedA() {return(equilibratedA_);}

    //! Returns true if RHS is equilibrated (RHS available via getRHS()).
    bool equilibratedB() {return(equilibratedB_);}

    //! Returns true if the LAPACK general rules for equilibration suggest you should equilibrate the system.
    bool shouldEquilibrate() {computeEquilibrateScaling(); return(shouldEquilibrate_);}

    //! Returns true if the current set of vectors has been solved.
    bool solved() {return(solved_);}

    //! Returns true if Q has been formed explicitly.
    bool formedQ() {return(formedQ_);}

    //! Returns true if R has been formed explicitly.
    bool formedR() {return(formedR_);}

    //@}

    //! @name Data Accessor methods
    //@{

    //! Returns pointer to current matrix.
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > getMatrix()  const {return(Matrix_);}

    //! Returns pointer to factored matrix (assuming factorization has been performed).
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > getFactoredMatrix()  const {return(Factor_);}

    //! Returns pointer to Q (assuming factorization has been performed).
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > getQ()  const {return(FactorQ_);}

    //! Returns pointer to R (assuming factorization has been performed).
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > getR()  const {return(FactorR_);}

    //! Returns pointer to current LHS.
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > getLHS() const {return(LHS_);}

    //! Returns pointer to current RHS.
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > getRHS() const {return(RHS_);}

    //! Returns row dimension of system.
    OrdinalType numRows()  const {return(M_);}

    //! Returns column dimension of system.
    OrdinalType numCols()  const {return(N_);}

    //! Returns pointer to pivot vector (if factorization has been computed), zero otherwise.
    std::vector<ScalarType> tau()  const {return(TAU_);}

    //! Returns the absolute value of the largest element of \e this matrix (returns -1 if not yet computed).
    MagnitudeType ANORM()  const {return(ANORM_);}

    //@}

    //! @name I/O methods
    //@{
    //! Print service methods; defines behavior of ostream << operator.
    void Print(std::ostream& os) const;
    //@}
  protected:

    void allocateWORK() { LWORK_ = 4*N_; WORK_.resize( LWORK_ ); return;}
    void resetMatrix();
    void resetVectors();


    bool equilibrate_;
    bool shouldEquilibrate_;
    bool equilibratedA_;
    bool equilibratedB_;
    OrdinalType equilibrationModeA_;
    OrdinalType equilibrationModeB_;
    bool transpose_;
    bool factored_;
    bool solved_;
    bool matrixIsZero_;
    bool formedQ_;
    bool formedR_;

    Teuchos::ETransp TRANS_;

    OrdinalType M_;
    OrdinalType N_;
    OrdinalType Min_MN_;
    OrdinalType LDA_;
    OrdinalType LDAF_;
    OrdinalType LDQ_;
    OrdinalType LDR_;
    OrdinalType INFO_;
    OrdinalType LWORK_;

    std::vector<ScalarType> TAU_;

    MagnitudeType ANORM_;
    MagnitudeType BNORM_;

    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > Matrix_;
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > LHS_;
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > TMP_;
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > RHS_;
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > Factor_;
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > FactorQ_;
    RCP<SerialDenseMatrix<OrdinalType, ScalarType> > FactorR_;

    ScalarType * A_;
    ScalarType * AF_;
    ScalarType * Q_;
    ScalarType * R_;
    std::vector<ScalarType> WORK_;
#ifdef HAVE_TEUCHOSNUMERICS_EIGEN
    Eigen::HouseholderQR<EigenMatrix> qr_;
#endif

  private:
    // SerialQRDenseSolver copy constructor (put here because we don't want user access)

    SerialQRDenseSolver(const SerialQRDenseSolver<OrdinalType, ScalarType>& Source);
    SerialQRDenseSolver & operator=(const SerialQRDenseSolver<OrdinalType, ScalarType>& Source);

  };

  // Helper traits to distinguish work arrays for real and complex-valued datatypes.
  using namespace details;

//=============================================================================

template<typename OrdinalType, typename ScalarType>
SerialQRDenseSolver<OrdinalType,ScalarType>::SerialQRDenseSolver()
  : CompObject(),
    equilibrate_(false),
    shouldEquilibrate_(false),
    equilibratedA_(false),
    equilibratedB_(false),
    equilibrationModeA_(0),
    equilibrationModeB_(0),
    transpose_(false),
    factored_(false),
    solved_(false),
    matrixIsZero_(false),
    formedQ_(false),
    formedR_(false),
    TRANS_(Teuchos::NO_TRANS),
    M_(0),
    N_(0),
    Min_MN_(0),
    LDA_(0),
    LDAF_(0),
    LDQ_(0),
    LDR_(0),
    INFO_(0),
    LWORK_(0),
    ANORM_(ScalarTraits<MagnitudeType>::zero()),
    BNORM_(ScalarTraits<MagnitudeType>::zero()),
    A_(0),
    AF_(0),
    Q_(0),
    R_(0)
{
  resetMatrix();
}
//=============================================================================

template<typename OrdinalType, typename ScalarType>
SerialQRDenseSolver<OrdinalType,ScalarType>::~SerialQRDenseSolver()
{}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
void SerialQRDenseSolver<OrdinalType,ScalarType>::resetVectors()
{
  LHS_ = Teuchos::null;
  TMP_ = Teuchos::null;
  RHS_ = Teuchos::null;
  solved_ = false;
  equilibratedB_ = false;
}
//=============================================================================

template<typename OrdinalType, typename ScalarType>
void SerialQRDenseSolver<OrdinalType,ScalarType>::resetMatrix()
{
  resetVectors();
  equilibratedA_ = false;
  equilibrationModeA_ = 0;
  equilibrationModeB_ = 0;
  factored_ = false;
  matrixIsZero_ = false;
  formedQ_ = false;
  formedR_ = false;
  M_ = 0;
  N_ = 0;
  Min_MN_ = 0;
  LDA_ = 0;
  LDAF_ = 0;
  LDQ_ = 0;
  LDR_ = 0;
  ANORM_ = -ScalarTraits<MagnitudeType>::one();
  BNORM_ = -ScalarTraits<MagnitudeType>::one();
  A_ = 0;
  AF_ = 0;
  Q_ = 0;
  R_ = 0;
  INFO_ = 0;
  LWORK_ = 0;
}
//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialQRDenseSolver<OrdinalType,ScalarType>::setMatrix(const RCP<SerialDenseMatrix<OrdinalType,ScalarType> >& A)
{
  TEUCHOS_TEST_FOR_EXCEPTION(A->numRows() < A->numCols(), std::invalid_argument,
                     "SerialQRDenseSolver<T>::setMatrix: the matrix A must have A.numRows() >= A.numCols()!");

  resetMatrix();
  Matrix_ = A;
  Factor_ = A;
  FactorQ_ = A;
  FactorR_ = A;
  M_ = A->numRows();
  N_ = A->numCols();
  Min_MN_ = TEUCHOS_MIN(M_,N_);
  LDA_ = A->stride();
  LDAF_ = LDA_;
  LDQ_ = LDA_;
  LDR_ = N_;
  A_ = A->values();
  AF_ = A->values();
  Q_ = A->values();
  R_ = A->values();

  return(0);
}
//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialQRDenseSolver<OrdinalType,ScalarType>::setVectors(const RCP<SerialDenseMatrix<OrdinalType,ScalarType> >& X,
                                                           const RCP<SerialDenseMatrix<OrdinalType,ScalarType> >& B)
{
  // Check that these new vectors are consistent
  TEUCHOS_TEST_FOR_EXCEPTION(B->numCols() != X->numCols(), std::invalid_argument,
                     "SerialQRDenseSolver<T>::setVectors: X and B have different numbers of columns!");
  TEUCHOS_TEST_FOR_EXCEPTION(B->values()==0, std::invalid_argument,
                     "SerialQRDenseSolver<T>::setVectors: B is an empty SerialDenseMatrix<T>!");
  TEUCHOS_TEST_FOR_EXCEPTION(X->values()==0, std::invalid_argument,
                     "SerialQRDenseSolver<T>::setVectors: X is an empty SerialDenseMatrix<T>!");
  TEUCHOS_TEST_FOR_EXCEPTION(B->stride()<1, std::invalid_argument,
                     "SerialQRDenseSolver<T>::setVectors: B has an invalid stride!");
  TEUCHOS_TEST_FOR_EXCEPTION(X->stride()<1, std::invalid_argument,
                     "SerialQRDenseSolver<T>::setVectors: X has an invalid stride!");

  resetVectors();
  LHS_ = X;
  RHS_ = B;

  return(0);
}
//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialQRDenseSolver<OrdinalType,ScalarType>::factor() {

  if (factored()) return(0);

  // Equilibrate matrix if necessary
  int ierr = 0;
  if (equilibrate_) ierr = equilibrateMatrix();
  if (ierr!=0) return(ierr);

  allocateWORK();
  if ((int)TAU_.size()!=Min_MN_) TAU_.resize( Min_MN_ );

  INFO_ = 0;

  // Factor
#ifdef HAVE_TEUCHOSNUMERICS_EIGEN
  EigenMatrixMap aMap( AF_, M_, N_, EigenOuterStride(LDAF_) );
  EigenScalarArray tau;
  EigenScalarArrayMap tauMap(&TAU_[0],TEUCHOS_MIN(M_,N_));
  qr_.compute(aMap);
  tau = qr_.hCoeffs();
  for (OrdinalType i=0; i<tauMap.innerSize(); i++) {
    tauMap(i) = tau(i);
  }
  EigenMatrix qrMat = qr_.matrixQR();
  for (OrdinalType j=0; j<aMap.outerSize(); j++) {
    for (OrdinalType i=0; i<aMap.innerSize(); i++) {
      aMap(i,j) = qrMat(i,j);
    }
  }
#else
  this->GEQRF(M_, N_, AF_, LDAF_, &TAU_[0], &WORK_[0], LWORK_, &INFO_);
#endif

  factored_ = true;

  return(INFO_);
}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialQRDenseSolver<OrdinalType,ScalarType>::solve() {

  // Check if the matrix is zero
  if (matrixIsZero_) {
    LHS_->putScalar(ScalarTraits<ScalarType>::zero());
    return(0);
  }

  // Equilibrate RHS if necessary
  int ierr = 0;
  if (equilibrate_) {
    ierr = equilibrateRHS();
    equilibratedB_ = true;
  }
  if (ierr != 0) return(ierr);

  TEUCHOS_TEST_FOR_EXCEPTION( (equilibratedA_ && !equilibratedB_) || (!equilibratedA_ && equilibratedB_) ,
                     std::logic_error, "SerialQRDenseSolver<T>::solve: Matrix and vectors must be similarly scaled!");
  TEUCHOS_TEST_FOR_EXCEPTION( RHS_==Teuchos::null, std::invalid_argument,
                     "SerialQRDenseSolver<T>::solve: No right-hand side vector (RHS) has been set for the linear system!");
  TEUCHOS_TEST_FOR_EXCEPTION( LHS_==Teuchos::null, std::invalid_argument,
                     "SerialQRDenseSolver<T>::solve: No solution vector (LHS) has been set for the linear system!");
  if ( TRANS_ == Teuchos::NO_TRANS ) {
    TEUCHOS_TEST_FOR_EXCEPTION( LHS_->numRows() != N_, std::invalid_argument,
                     "SerialQRDenseSolver<T>::solve: No transpose: must have LHS_->numRows() = N_");
  } else {
    TEUCHOS_TEST_FOR_EXCEPTION( LHS_->numRows() != M_, std::invalid_argument,
                     "SerialQRDenseSolver<T>::solve: Transpose: must have LHS_->numRows() = M_");
  }

  if (shouldEquilibrate() && !equilibratedA_)
    std::cout << "WARNING!  SerialQRDenseSolver<T>::solve: System should be equilibrated!" << std::endl;

  // Matrix must be factored
  if (!factored()) factor();

  TMP_ = rcp( new SerialDenseMatrix<OrdinalType,ScalarType>(M_, RHS_->numCols()) );
  for (OrdinalType j=0; j<RHS_->numCols(); j++) {
    for (OrdinalType i=0; i<RHS_->numRows(); i++) {
      (*TMP_)(i,j) = (*RHS_)(i,j);
    }
  }

  INFO_ = 0;

  // Solve
  if ( TRANS_ == Teuchos::NO_TRANS ) {

    // Solve A lhs = rhs
    this->multiplyQ( Teuchos::CONJ_TRANS, *TMP_ );
    this->solveR( Teuchos::NO_TRANS, *TMP_ );

  } else {

    // Solve A**H lhs = rhs
    this->solveR( Teuchos::CONJ_TRANS, *TMP_ );
    for (OrdinalType j = 0; j < RHS_->numCols(); j++ ) {
      for (OrdinalType i = N_; i < M_; i++ ) {
        (*TMP_)(i, j) = ScalarTraits<ScalarType>::zero();
      }
    }
    this->multiplyQ( Teuchos::NO_TRANS, *TMP_ );

  }
  for (OrdinalType j = 0; j < LHS_->numCols(); j++ ) {
    for (OrdinalType i = 0; i < LHS_->numRows(); i++ ) {
      (*LHS_)(i, j) = (*TMP_)(i,j);
    }
  }

  solved_ = true;

  // Unequilibrate LHS if necessary
  if (equilibrate_) {
    ierr = unequilibrateLHS();
  }
  if (ierr != 0) {
    return ierr;
  }

  return INFO_;
}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialQRDenseSolver<OrdinalType,ScalarType>::computeEquilibrateScaling()
{
  MagnitudeType safeMin = ScalarTraits<ScalarType>::sfmin();
  MagnitudeType prec = ScalarTraits<ScalarType>::prec();
  ScalarType sZero = ScalarTraits<ScalarType>::zero();
  ScalarType sOne  = ScalarTraits<ScalarType>::one();
  MagnitudeType mZero = ScalarTraits<ScalarType>::magnitude(sZero);

  MagnitudeType smlnum = ScalarTraits<ScalarType>::magnitude(safeMin/prec);
  MagnitudeType bignum = ScalarTraits<ScalarType>::magnitude(sOne/smlnum);

  // Compute maximum absolute value of matrix entries
  OrdinalType i, j;
  MagnitudeType anorm = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::zero());
  for (j = 0; j < N_; j++) {
    for (i = 0; i < M_; i++) {
      anorm = TEUCHOS_MAX( anorm, ScalarTraits<ScalarType>::magnitude((*Matrix_)(i,j)) );
    }
  }

  ANORM_ = anorm;

  if (ANORM_ > mZero && ANORM_ < smlnum) {
    // Scale matrix norm up to smlnum
    shouldEquilibrate_ = true;
  } else if (ANORM_ > bignum) {
    // Scale matrix norm down to bignum
    shouldEquilibrate_ = true;
  } else if (ANORM_ == mZero) {
    // Matrix all zero. Return zero solution
    matrixIsZero_ = true;
  }

  return(0);
}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialQRDenseSolver<OrdinalType,ScalarType>::equilibrateMatrix()
{
  if (equilibratedA_) return(0);

  MagnitudeType safeMin = ScalarTraits<ScalarType>::sfmin();
  MagnitudeType prec = ScalarTraits<ScalarType>::prec();
  ScalarType sZero = ScalarTraits<ScalarType>::zero();
  ScalarType sOne  = ScalarTraits<ScalarType>::one();
  MagnitudeType mZero = ScalarTraits<ScalarType>::magnitude(sZero);

  MagnitudeType smlnum = ScalarTraits<ScalarType>::magnitude(safeMin/prec);
  MagnitudeType bignum = ScalarTraits<ScalarType>::magnitude(sOne/smlnum);
  OrdinalType BW = 0;

  // Compute maximum absolute value of matrix entries
  OrdinalType i, j;
  MagnitudeType anorm = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::zero());
  for (j = 0; j < N_; j++) {
    for (i = 0; i < M_; i++) {
      anorm = TEUCHOS_MAX( anorm, ScalarTraits<ScalarType>::magnitude((*Matrix_)(i,j)) );
    }
  }

  ANORM_ = anorm;
  int ierr1 = 0;
  if (ANORM_ > mZero && ANORM_ < smlnum) {
    // Scale matrix norm up to smlnum
    this->LASCL(Teuchos::ETypeChar[Teuchos::FULL], BW, BW, ANORM_, smlnum, M_, N_, A_, LDA_, &INFO_);
    equilibrationModeA_ = 1;
  } else if (ANORM_ > bignum) {
    // Scale matrix norm down to bignum
    this->LASCL(Teuchos::ETypeChar[Teuchos::FULL], BW, BW, ANORM_, bignum, M_, N_, A_, LDA_, &INFO_);
    equilibrationModeA_ = 2;
  } else if (ANORM_ == mZero) {
    // Matrix all zero. Return zero solution
    matrixIsZero_ = true;
  }

  equilibratedA_ = true;

  return(ierr1);
}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialQRDenseSolver<OrdinalType,ScalarType>::equilibrateRHS()
{
  if (equilibratedB_) return(0);

  MagnitudeType safeMin = ScalarTraits<ScalarType>::sfmin();
  MagnitudeType prec = ScalarTraits<ScalarType>::prec();
  ScalarType sZero = ScalarTraits<ScalarType>::zero();
  ScalarType sOne  = ScalarTraits<ScalarType>::one();
  MagnitudeType mZero = ScalarTraits<ScalarType>::magnitude(sZero);

  MagnitudeType smlnum = ScalarTraits<ScalarType>::magnitude(safeMin/prec);
  MagnitudeType bignum = ScalarTraits<ScalarType>::magnitude(sOne/smlnum);
  OrdinalType BW = 0;

  // Compute maximum absolute value of rhs entries
  OrdinalType i, j;
  MagnitudeType bnorm = ScalarTraits<ScalarType>::magnitude(ScalarTraits<ScalarType>::zero());
  for (j = 0; j <RHS_->numCols(); j++) {
    for (i = 0; i < RHS_->numRows(); i++) {
      bnorm = TEUCHOS_MAX( bnorm, ScalarTraits<ScalarType>::magnitude((*RHS_)(i,j)) );
    }
  }

  BNORM_ = bnorm;

  int ierr1 = 0;
  if (BNORM_ > mZero && BNORM_ < smlnum) {
    // Scale RHS norm up to smlnum
    this->LASCL(Teuchos::ETypeChar[Teuchos::FULL], BW, BW, BNORM_, smlnum, RHS_->numRows(), RHS_->numCols(),
                RHS_->values(), RHS_->stride(), &INFO_);
    equilibrationModeB_ = 1;
  } else if (BNORM_ > bignum) {
    // Scale RHS norm down to bignum
    this->LASCL(Teuchos::ETypeChar[Teuchos::FULL], BW, BW, BNORM_, bignum, RHS_->numRows(), RHS_->numCols(),
                RHS_->values(), RHS_->stride(), &INFO_);
    equilibrationModeB_ = 2;
  }

  equilibratedB_ = true;

  return(ierr1);
}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialQRDenseSolver<OrdinalType,ScalarType>::unequilibrateLHS()
{
  if (!equilibratedB_) return(0);

  MagnitudeType safeMin = ScalarTraits<ScalarType>::sfmin();
  MagnitudeType prec = ScalarTraits<ScalarType>::prec();
  ScalarType sZero = ScalarTraits<ScalarType>::zero();
  ScalarType sOne  = ScalarTraits<ScalarType>::one();
  MagnitudeType mZero = ScalarTraits<ScalarType>::magnitude(sZero);
  (void) mZero; // Silence "unused variable" compiler warning.

  MagnitudeType smlnum = ScalarTraits<ScalarType>::magnitude(safeMin/prec);
  MagnitudeType bignum = ScalarTraits<ScalarType>::magnitude(sOne/smlnum);
  OrdinalType BW = 0;

  int ierr1 = 0;
  if (equilibrationModeA_ == 1) {
    this->LASCL(Teuchos::ETypeChar[Teuchos::FULL], BW, BW, ANORM_, smlnum, LHS_->numRows(), LHS_->numCols(),
                LHS_->values(), LHS_->stride(), &INFO_);
  } else if (equilibrationModeA_ == 2) {
    this->LASCL(Teuchos::ETypeChar[Teuchos::FULL], BW, BW, ANORM_, bignum, LHS_->numRows(), LHS_->numCols(),
                LHS_->values(), LHS_->stride(), &INFO_);
  }
  if (equilibrationModeB_ == 1) {
    this->LASCL(Teuchos::ETypeChar[Teuchos::FULL], BW, BW, smlnum, BNORM_, LHS_->numRows(), LHS_->numCols(),
                LHS_->values(), LHS_->stride(), &INFO_);
  } else if (equilibrationModeB_ == 2) {
    this->LASCL(Teuchos::ETypeChar[Teuchos::FULL], BW, BW, bignum, BNORM_, LHS_->numRows(), LHS_->numCols(),
                LHS_->values(), LHS_->stride(), &INFO_);
  }

  return(ierr1);
}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialQRDenseSolver<OrdinalType,ScalarType>::formQ() {

  // Matrix must be factored first
  if (!factored()) factor();

  // Store Q separately from factored matrix
  if (AF_ == Q_) {
    FactorQ_ = rcp( new SerialDenseMatrix<OrdinalType,ScalarType>(*Factor_) );
    Q_ = FactorQ_->values();
    LDQ_ = FactorQ_->stride();
  }

  INFO_ = 0;

  // Form Q
#ifdef HAVE_TEUCHOSNUMERICS_EIGEN
  EigenMatrixMap qMap( Q_, M_, N_, EigenOuterStride(LDQ_) );
  EigenMatrix qMat = qr_.householderQ();
  for (OrdinalType j=0; j<qMap.outerSize(); j++) {
    for (OrdinalType i=0; i<qMap.innerSize(); i++) {
      qMap(i,j) = qMat(i,j);
    }
  }
#else
  this->UNGQR(M_, N_, N_, Q_, LDQ_, &TAU_[0], &WORK_[0], LWORK_, &INFO_);
#endif

  if (INFO_!=0) return(INFO_);

  formedQ_ = true;

  return(INFO_);
}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
int SerialQRDenseSolver<OrdinalType,ScalarType>::formR() {

  // Matrix must be factored first
  if (!factored()) factor();

  // Store R separately from factored matrix
  if (AF_ == R_) {
    FactorR_ = rcp( new SerialDenseMatrix<OrdinalType,ScalarType>(N_, N_) );
    R_ = FactorR_->values();
    LDR_ = FactorR_->stride();
  }

  // Form R
  for (OrdinalType j=0; j<N_; j++) {
    for (OrdinalType i=0; i<=j; i++) {
      (*FactorR_)(i,j) = (*Factor_)(i,j);
    }
  }

  formedR_ = true;

  return(0);
}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
int  SerialQRDenseSolver<OrdinalType, ScalarType>::multiplyQ(ETransp transq, SerialDenseMatrix<OrdinalType, ScalarType> &C)
{

  // Check that the matrices are consistent.
  TEUCHOS_TEST_FOR_EXCEPTION(C.numRows()!=M_, std::invalid_argument,
                     "SerialQRDenseSolver<T>::multiplyQ: C.numRows() != M_!");
  TEUCHOS_TEST_FOR_EXCEPTION(C.values()==0, std::invalid_argument,
                     "SerialQRDenseSolver<T>::multiplyQ: C is an empty SerialDenseMatrix<T>!");

  // Matrix must be factored
  if (!factored()) factor();

  INFO_ = 0;

  // Multiply
#ifdef HAVE_TEUCHOSNUMERICS_EIGEN
  EigenMatrixMap cMap( C.values(), C.numRows(), C.numCols(), EigenOuterStride(C.stride()) );
  if ( transq == Teuchos::NO_TRANS ) {
    // C = Q * C
    cMap = qr_.householderQ() * cMap;
  } else {
    // C = Q**H * C
    cMap = qr_.householderQ().adjoint() * cMap;
    for (OrdinalType j = 0; j < C.numCols(); j++) {
      for (OrdinalType i = N_; i < C.numRows(); i++ ) {
        cMap(i, j) = ScalarTraits<ScalarType>::zero();
      }
    }
  }
#else
  Teuchos::ETransp NO_TRANS = Teuchos::NO_TRANS;
  Teuchos::ETransp TRANS = (Teuchos::ScalarTraits<ScalarType>::isComplex) ? Teuchos::CONJ_TRANS : Teuchos::TRANS;
  Teuchos::ESide SIDE = Teuchos::LEFT_SIDE;

  if ( transq == Teuchos::NO_TRANS ) {

    // C = Q * C
    this->UNMQR(ESideChar[SIDE], ETranspChar[NO_TRANS], M_, C.numCols(), N_, AF_, LDAF_,
                &TAU_[0], C.values(), C.stride(), &WORK_[0], LWORK_, &INFO_);

  } else {

    // C = Q**H * C
    this->UNMQR(ESideChar[SIDE], ETranspChar[TRANS], M_, C.numCols(), N_, AF_, LDAF_,
                &TAU_[0], C.values(), C.stride(), &WORK_[0], LWORK_, &INFO_);

    for (OrdinalType j = 0; j < C.numCols(); j++) {
      for (OrdinalType i = N_; i < C.numRows(); i++ ) {
        C(i, j) = ScalarTraits<ScalarType>::zero();
      }
    }
  }
#endif

  return(INFO_);

}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
int  SerialQRDenseSolver<OrdinalType, ScalarType>::solveR(ETransp transr, SerialDenseMatrix<OrdinalType, ScalarType> &C)
{

  // Check that the matrices are consistent.
  TEUCHOS_TEST_FOR_EXCEPTION(C.numRows()<N_ || C.numRows()>M_, std::invalid_argument,
                     "SerialQRDenseSolver<T>::solveR: must have N_ < C.numRows() < M_!");
  TEUCHOS_TEST_FOR_EXCEPTION(C.values()==0, std::invalid_argument,
                     "SerialQRDenseSolver<T>::solveR: C is an empty SerialDenseMatrix<T>!");

  // Matrix must be factored
  if (!factored()) factor();

  INFO_ = 0;

  // Solve
#ifdef HAVE_TEUCHOSNUMERICS_EIGEN
  EigenMatrixMap cMap( C.values(), N_, C.numCols(), EigenOuterStride(C.stride()) );
  // Check for singularity first like TRTRS
  for (OrdinalType j=0; j<N_; j++) {
    if ((qr_.matrixQR())(j,j) == ScalarTraits<ScalarType>::zero()) {
      INFO_ = j+1;
      return(INFO_);
    }
  }
  if ( transr == Teuchos::NO_TRANS ) {
    // C = R \ C
    qr_.matrixQR().topRows(N_).template triangularView<Eigen::Upper>().solveInPlace(cMap);
  } else {
    // C = R**H \ C
    qr_.matrixQR().topRows(N_).template triangularView<Eigen::Upper>().adjoint().solveInPlace(cMap);
  }
#else
  Teuchos::ETransp NO_TRANS = Teuchos::NO_TRANS;
  Teuchos::ETransp TRANS = (Teuchos::ScalarTraits<ScalarType>::isComplex) ? Teuchos::CONJ_TRANS : Teuchos::TRANS;
  Teuchos::EUplo UPLO = Teuchos::UPPER_TRI;
  Teuchos::EDiag DIAG = Teuchos::NON_UNIT_DIAG;

  ScalarType* RMAT = (formedR_) ? R_ : AF_;
  OrdinalType LDRMAT = (formedR_) ? LDR_ : LDAF_;

  if ( transr == Teuchos::NO_TRANS ) {

    // C = R \ C
    this->TRTRS(EUploChar[UPLO], ETranspChar[NO_TRANS], EDiagChar[DIAG], N_, C.numCols(),
                RMAT, LDRMAT, C.values(), C.stride(), &INFO_);

  } else {

    // C = R**H \ C
    this->TRTRS(EUploChar[UPLO], ETranspChar[TRANS], EDiagChar[DIAG], N_, C.numCols(),
                RMAT, LDRMAT, C.values(), C.stride(), &INFO_);

  }
#endif

  return(INFO_);

}

//=============================================================================

template<typename OrdinalType, typename ScalarType>
void SerialQRDenseSolver<OrdinalType,ScalarType>::Print(std::ostream& os) const {

  if (Matrix_!=Teuchos::null) os << "Solver Matrix"          << std::endl << *Matrix_ << std::endl;
  if (Factor_!=Teuchos::null) os << "Solver Factored Matrix" << std::endl << *Factor_ << std::endl;
  if (Q_!=Teuchos::null) os << "Solver Factor Q" << std::endl << *Q_ << std::endl;
  if (LHS_   !=Teuchos::null) os << "Solver LHS"             << std::endl << *LHS_    << std::endl;
  if (RHS_   !=Teuchos::null) os << "Solver RHS"             << std::endl << *RHS_    << std::endl;

}

} // namespace Teuchos

#endif /* _TEUCHOS_SERIALQRDENSESOLVER_HPP_ */