/usr/include/trilinos/TbbTsqr_TbbParallelTsqr.hpp is in libtrilinos-tpetra-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __TSQR_TBB_TbbParallelTsqr_hpp
#define __TSQR_TBB_TbbParallelTsqr_hpp
#include <tbb/tbb.h>
#include <tbb/task_scheduler_init.h>
#include <TbbTsqr_FactorTask.hpp>
#include <TbbTsqr_ApplyTask.hpp>
#include <TbbTsqr_ExplicitQTask.hpp>
#include <TbbTsqr_RevealRankTask.hpp>
#include <TbbTsqr_CacheBlockTask.hpp>
#include <TbbTsqr_UnCacheBlockTask.hpp>
#include <TbbTsqr_FillWithZerosTask.hpp>
#include <Tsqr_ApplyType.hpp>
#include <Teuchos_ScalarTraits.hpp>
#include <algorithm>
#include <limits>
namespace TSQR {
namespace TBB {
/// \class TbbParallelTsqr
/// \brief Parallel implementation of \c TbbTsqr.
/// \author Mark Hoemmen
///
/// This class implements the functionality of \c TbbTsqr.
/// It is not meant to be seen by users of \c TbbTsqr.
///
/// The third template parameter, TimerType, allows different
/// timer implementations. TbbParallelTsqr times each task's
/// invocations of \c SequentialTsqr::factor() and \c
/// SequentialTsqr::apply(). \c TrivialTimer is a "timer" that
/// does nothing, in case you don't want to invoke timers.
template<class LocalOrdinal, class Scalar, class TimerType>
class TbbParallelTsqr {
private:
typedef MatView<LocalOrdinal, Scalar> mat_view_type;
typedef ConstMatView<LocalOrdinal, Scalar> const_mat_view_type;
typedef std::pair<mat_view_type, mat_view_type> split_t;
typedef std::pair<const_mat_view_type, const_mat_view_type> const_split_t;
typedef std::pair<const_mat_view_type, mat_view_type> top_blocks_t;
typedef std::vector<top_blocks_t> array_top_blocks_t;
template<class MatrixViewType>
MatrixViewType
top_block_helper (const size_t P_first,
const size_t P_last,
const MatrixViewType& C,
const bool contiguous_cache_blocks) const
{
if (P_first > P_last)
throw std::logic_error ("P_first > P_last");
else if (P_first == P_last)
return seq_.top_block (C, contiguous_cache_blocks);
else
{
typedef std::pair<MatrixViewType, MatrixViewType> split_type;
// Divide [P_first, P_last] into two intervals: [P_first,
// P_mid] and [P_mid+1, P_last]. Recurse on the first
// interval [P_first, P_mid].
const size_t P_mid = (P_first + P_last) / 2;
split_type C_split = partitioner_.split (C, P_first, P_mid, P_last,
contiguous_cache_blocks);
// The partitioner may decide that the current block C has
// too few rows to be worth splitting. In that case,
// C_split.first should be the same block as C, and
// C_split.second (the bottom block) will be empty. We
// deal with this in the same way as the base case
// (P_first == P_last) above.
if (C_split.second.empty() || C_split.second.nrows() == 0)
return seq_.top_block (C_split.first, contiguous_cache_blocks);
else
return top_block_helper (P_first, P_mid, C_split.first,
contiguous_cache_blocks);
}
}
public:
typedef Scalar scalar_type;
typedef typename Teuchos::ScalarTraits< Scalar >::magnitudeType magnitude_type;
typedef LocalOrdinal ordinal_type;
/// Whether or not this QR factorization produces an R factor
/// with all nonnegative diagonal entries.
static bool QR_produces_R_factor_with_nonnegative_diagonal() {
typedef Combine<LocalOrdinal, Scalar> combine_type;
//typedef LAPACK<LocalOrdinal, Scalar> lapack_type;
const bool combineMakesNonnegDiag =
combine_type::QR_produces_R_factor_with_nonnegative_diagonal ();
//const bool lapackMakesNonnegDiag =
// lapack_type::QR_produces_R_factor_with_nonnegative_diagonal ();
const bool lapackMakesNonnegDiag = false;
return combineMakesNonnegDiag && lapackMakesNonnegDiag;
}
/// \typedef SeqOutput
/// \brief Results of SequentialTsqr for each core.
typedef typename SequentialTsqr<LocalOrdinal, Scalar>::FactorOutput SeqOutput;
/// \typedef ParOutput
/// \brief Array of numTasks_ "local tau arrays" from parallel TSQR.
///
/// (Local Q factors are stored in place.)
typedef std::vector<std::vector<Scalar> > ParOutput;
/// \typedef FactorOutput
/// \brief Partial representation of the Q factor.
///
/// The \c factor() method returns a pair: the results of
/// SequentialTsqr for data on each core, and the results of
/// combining the data on the cores.
typedef typename std::pair<std::vector<SeqOutput>, ParOutput> FactorOutput;
/// \brief Constructor.
///
/// \param numTasks [in] Number of parallel tasks to use in the
/// factorization. This should be >= the number of cores with
/// which Intel TBB was initialized.
/// \param cacheSizeHint [in] Cache size hint in bytes. Zero
/// means that TSQR will pick a reasonable nonzero default.
TbbParallelTsqr (const size_t numTasks = 1,
const size_t cacheSizeHint = 0) :
seq_ (cacheSizeHint),
min_seq_factor_timing_ (std::numeric_limits<double>::max()),
max_seq_factor_timing_ (std::numeric_limits<double>::min()),
min_seq_apply_timing_ (std::numeric_limits<double>::max()),
max_seq_apply_timing_ (std::numeric_limits<double>::min())
{
if (numTasks < 1)
numTasks_ = 1; // default is no parallelism
else
numTasks_ = numTasks;
}
/// \brief Constructor (that takes a parameter list).
///
/// \param plist [in/out] On input: list of parameters. On
/// output: missing parameters are filled in with default
/// values.
///
/// For a list of accepted parameters and thei documentation,
/// see the parameter list returned by \c getValidParameters().
TbbParallelTsqr (const Teuchos::RCP<Teuchos::ParameterList>& plist) :
seq_ (plist), // SequentialTsqr has a plist-accepting constructor.
numTasks_ (1), // Set a safe default for now.
min_seq_factor_timing_ (std::numeric_limits<double>::max()),
max_seq_factor_timing_ (std::numeric_limits<double>::min()),
min_seq_apply_timing_ (std::numeric_limits<double>::max()),
max_seq_apply_timing_ (std::numeric_limits<double>::min())
{
if (! plist.is_null()) {
const int defaultNumTasks = 1; // A reasonable safe default value.
int numTasks = plist->get ("Num Tasks", defaultNumTasks);
if (numTasks < 1) { // Default is no parallelism.
plist->set ("Num Tasks", defaultNumTasks);
}
numTasks_ = numTasks;
}
}
Teuchos::RCP<const Teuchos::ParameterList>
getValidParameters () const
{
using Teuchos::ParameterList;
using Teuchos::parameterList;
using Teuchos::RCP;
// TbbTsqr recursively divides the tall skinny matrix on the
// node into TBB tasks. Each task works on a block row. The
// TBB task scheduler ensures that oversubscribing TBB tasks
// won't oversubscribe cores, so it's OK if
// default_num_threads() is too many. For example, TBB might
// say default_num_threads() is the number of cores on the
// node, but the TBB task scheduler might have been
// initialized with the number of cores per NUMA region, for
// hybrid MPI + TBB parallelism.
const int numTasks =
tbb::task_scheduler_init::default_num_threads();
const size_t cacheSizeHint = 0;
const size_t sizeOfScalar = sizeof(Scalar);
RCP<ParameterList> params = parameterList ("NodeTsqr");
params->set ("Num Tasks", numTasks,
"Number of tasks to use in the intranode parallel part "
"TSQR. There is little/no performance penalty for mild "
"oversubscription, but a potential performance penalty "
"for undersubscription.");
params->set ("Cache Size Hint", cacheSizeHint,
"Cache size hint in bytes (as a size_t) to use for "
"intranode TSQR. If zero, TSQR will pick a reasonable "
"default. See the documentation of SequentialTsqr for "
"a discussion of how to tune this parameter.");
params->set ("Size of Scalar", sizeOfScalar);
return params;
}
void
setParameterList (const Teuchos::RCP<Teuchos::ParameterList>& plist)
{
seq_.setParameterList (plist);
if (! plist.is_null()) {
const int defaultNumCores = 1; // A reasonable safe default value.
int numTasks = plist->get ("Num Tasks", defaultNumCores);
if (numTasks < 1) { // Default is no parallelism.
plist->set ("Num Tasks", defaultNumCores);
}
numTasks_ = numTasks;
}
}
/// \brief Number of tasks that TSQR will use to solve the problem.
///
/// This is the number of subproblems into which to divide the
/// main problem, in order to solve it in parallel.
size_t ntasks() const { return numTasks_; }
/// \brief Cache size hint (in bytes) used for the factorization.
///
/// This may be different from the corresponding constructor
/// argument, because TSQR may revise unreasonable suggestions
/// into reasonable values.
size_t cache_size_hint() const { return seq_.cache_size_hint(); }
//! Fastest time over all tasks of the last SequentialTsqr::factor() call.
double
min_seq_factor_timing () const { return min_seq_factor_timing_; }
//! Slowest time over all tasks of the last SequentialTsqr::factor() call.
double
max_seq_factor_timing () const { return max_seq_factor_timing_; }
//! Fastest time over all tasks of the last SequentialTsqr::apply() call.
double
min_seq_apply_timing () const { return min_seq_apply_timing_; }
//! Slowest time over all tasks of the last SequentialTsqr::apply() call.
double
max_seq_apply_timing () const { return max_seq_apply_timing_; }
FactorOutput
factor (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar A[],
const LocalOrdinal lda,
Scalar R[],
const LocalOrdinal ldr,
const bool contiguous_cache_blocks) const
{
using tbb::task;
mat_view_type A_view (nrows, ncols, A, lda);
// A_top will be modified in place by exactly one task, to
// indicate the partition from which we may extract the R
// factor after finishing the factorization.
mat_view_type A_top;
std::vector<SeqOutput> seq_output (ntasks());
ParOutput par_output (ntasks(), std::vector<Scalar>(ncols));
if (ntasks() < 1)
{
if (! A_view.empty())
throw std::logic_error("Zero subproblems, but A not empty!");
else // Return empty results
return std::make_pair (seq_output, par_output);
}
double my_seq_timing = double(0);
double min_seq_timing = double(0);
double max_seq_timing = double(0);
try {
typedef FactorTask<LocalOrdinal, Scalar, TimerType> factor_task_t;
// When the root task completes, A_top will be set to the
// topmost partition of A. We can then extract the R factor
// from A_top.
factor_task_t& root_task = *new( task::allocate_root() )
factor_task_t(0, ntasks()-1, A_view, &A_top, seq_output,
par_output, seq_, my_seq_timing, min_seq_timing,
max_seq_timing, contiguous_cache_blocks);
task::spawn_root_and_wait (root_task);
} catch (tbb::captured_exception& ex) {
// TBB can't guarantee on all systems that an exception
// thrown in another thread will have its type correctly
// propagated to this thread. If it can't, then it captures
// the exception as a tbb:captured_exception, and propagates
// it to here. It may be able to propagate the exception,
// though, so be prepared for that. We deal with the latter
// case by allowing the exception to propagate.
std::ostringstream os;
os << "Intel TBB caught an exception, while computing the QR factor"
"ization of a matrix A. Unfortunately, its type information was "
"lost, because the exception was thrown in another thread. Its "
"\"what()\" function returns the following string: " << ex.what();
throw std::runtime_error (os.str());
}
// Copy the R factor out of A_top into R.
seq_.extract_R (A_top.nrows(), A_top.ncols(), A_top.get(),
A_top.lda(), R, ldr, contiguous_cache_blocks);
// Save the timings for future reference
if (min_seq_timing < min_seq_factor_timing_)
min_seq_factor_timing_ = min_seq_timing;
if (max_seq_timing > max_seq_factor_timing_)
max_seq_factor_timing_ = max_seq_timing;
return std::make_pair (seq_output, par_output);
}
void
apply (const ApplyType& apply_type,
const LocalOrdinal nrows,
const LocalOrdinal ncols_Q,
const Scalar Q[],
const LocalOrdinal ldq,
const FactorOutput& factor_output,
const LocalOrdinal ncols_C,
Scalar C[],
const LocalOrdinal ldc,
const bool contiguous_cache_blocks) const
{
using tbb::task;
if (apply_type.transposed())
throw std::logic_error ("Applying Q^T and Q^H not implemented");
const_mat_view_type Q_view (nrows, ncols_Q, Q, ldq);
mat_view_type C_view (nrows, ncols_C, C, ldc);
if (! apply_type.transposed())
{
array_top_blocks_t top_blocks (ntasks());
build_partition_array (0, ntasks()-1, top_blocks, Q_view,
C_view, contiguous_cache_blocks);
double my_seq_timing = 0.0;
double min_seq_timing = 0.0;
double max_seq_timing = 0.0;
try {
typedef ApplyTask<LocalOrdinal, Scalar, TimerType> apply_task_t;
apply_task_t& root_task =
*new( task::allocate_root() )
apply_task_t (0, ntasks()-1, Q_view, C_view, top_blocks,
factor_output, seq_, my_seq_timing,
min_seq_timing, max_seq_timing,
contiguous_cache_blocks);
task::spawn_root_and_wait (root_task);
} catch (tbb::captured_exception& ex) {
std::ostringstream os;
os << "Intel TBB caught an exception, while applying a Q factor "
"computed previously by factor() to the matrix C. Unfortunate"
"ly, its type information was lost, because the exception was "
"thrown in another thread. Its \"what()\" function returns th"
"e following string: " << ex.what();
throw std::runtime_error (os.str());
}
// Save the timings for future reference
if (min_seq_timing < min_seq_apply_timing_)
min_seq_apply_timing_ = min_seq_timing;
if (max_seq_timing > max_seq_apply_timing_)
max_seq_apply_timing_ = max_seq_timing;
}
}
void
explicit_Q (const LocalOrdinal nrows,
const LocalOrdinal ncols_Q_in,
const Scalar Q_in[],
const LocalOrdinal ldq_in,
const FactorOutput& factor_output,
const LocalOrdinal ncols_Q_out,
Scalar Q_out[],
const LocalOrdinal ldq_out,
const bool contiguous_cache_blocks) const
{
using tbb::task;
mat_view_type Q_out_view (nrows, ncols_Q_out, Q_out, ldq_out);
try {
typedef ExplicitQTask< LocalOrdinal, Scalar > explicit_Q_task_t;
explicit_Q_task_t& root_task = *new( task::allocate_root() )
explicit_Q_task_t (0, ntasks()-1, Q_out_view, seq_,
contiguous_cache_blocks);
task::spawn_root_and_wait (root_task);
} catch (tbb::captured_exception& ex) {
std::ostringstream os;
os << "Intel TBB caught an exception, while preparing to compute"
" the explicit Q factor from a QR factorization computed previ"
"ously by factor(). Unfortunately, its type information was l"
"ost, because the exception was thrown in another thread. Its"
" \"what()\" function returns the following string: "
<< ex.what();
throw std::runtime_error (os.str());
}
apply (ApplyType::NoTranspose,
nrows, ncols_Q_in, Q_in, ldq_in, factor_output,
ncols_Q_out, Q_out, ldq_out,
contiguous_cache_blocks);
}
/// \brief Compute Q*B
///
/// Compute matrix-matrix product Q*B, where Q is nrows by ncols
/// and B is ncols by ncols. Respect cache blocks of Q.
void
Q_times_B (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar Q[],
const LocalOrdinal ldq,
const Scalar B[],
const LocalOrdinal ldb,
const bool contiguous_cache_blocks) const
{
// Compute Q := Q*B in parallel. This works much like
// cache_block() (which see), in that each thread's instance
// does not need to communicate with the others.
try {
using tbb::task;
typedef RevealRankTask<LocalOrdinal, Scalar> rrtask_type;
mat_view_type Q_view (nrows, ncols, Q, ldq);
const_mat_view_type B_view (ncols, ncols, B, ldb);
rrtask_type& root_task = *new( task::allocate_root() )
rrtask_type (0, ntasks()-1, Q_view, B_view, seq_,
contiguous_cache_blocks);
task::spawn_root_and_wait (root_task);
} catch (tbb::captured_exception& ex) {
std::ostringstream os;
os << "Intel TBB caught an exception, while computing Q := Q*U. "
"Unfortunately, its type information was lost, because the "
"exception was thrown in another thread. Its \"what()\" function "
"returns the following string: " << ex.what();
throw std::runtime_error (os.str());
}
}
/// Compute SVD \f$R = U \Sigma V^*\f$, not in place. Use the
/// resulting singular values to compute the numerical rank of R,
/// with respect to the relative tolerance tol. If R is full
/// rank, return without modifying R. If R is not full rank,
/// overwrite R with \f$\Sigma \cdot V^*\f$.
///
/// \return Numerical rank of R: 0 <= rank <= ncols.
LocalOrdinal
reveal_R_rank (const LocalOrdinal ncols,
Scalar R[],
const LocalOrdinal ldr,
Scalar U[],
const LocalOrdinal ldu,
const magnitude_type tol) const
{
return seq_.reveal_R_rank (ncols, R, ldr, U, ldu, tol);
}
/// \brief Rank-revealing decomposition
///
/// Using the R factor from factor() and the explicit Q factor
/// from explicit_Q(), compute the SVD of R (\f$R = U \Sigma
/// V^*\f$). R. If R is full rank (with respect to the given
/// relative tolerance tol), don't change Q or R. Otherwise,
/// compute \f$Q := Q \cdot U\f$ and \f$R := \Sigma V^*\f$ in
/// place (the latter may be no longer upper triangular).
///
/// \return Rank \f$r\f$ of R: \f$ 0 \leq r \leq ncols\f$.
///
LocalOrdinal
reveal_rank (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar Q[],
const LocalOrdinal ldq,
Scalar R[],
const LocalOrdinal ldr,
const magnitude_type tol,
const bool contiguous_cache_blocks = false) const
{
// Take the easy exit if available.
if (ncols == 0)
return 0;
Matrix<LocalOrdinal, Scalar> U (ncols, ncols, Scalar(0));
const LocalOrdinal rank =
reveal_R_rank (ncols, R, ldr, U.get(), U.ldu(), tol);
if (rank < ncols)
{
// If R is not full rank: reveal_R_rank() already computed
// the SVD \f$R = U \Sigma V^*\f$ of (the input) R, and
// overwrote R with \f$\Sigma V^*\f$. Now, we compute \f$Q
// := Q \cdot U\f$, respecting cache blocks of Q.
Q_times_B (nrows, ncols, Q, ldq, U.get(), U.lda(),
contiguous_cache_blocks);
}
return rank;
}
void
cache_block (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar A_out[],
const Scalar A_in[],
const LocalOrdinal lda_in) const
{
using tbb::task;
const_mat_view_type A_in_view (nrows, ncols, A_in, lda_in);
// A_out won't have leading dimension lda_in, but that's OK,
// as long as all the routines are told that A_out is
// cache-blocked.
mat_view_type A_out_view (nrows, ncols, A_out, lda_in);
try {
typedef CacheBlockTask< LocalOrdinal, Scalar > cache_block_task_t;
cache_block_task_t& root_task = *new( task::allocate_root() )
cache_block_task_t (0, ntasks()-1, A_out_view, A_in_view, seq_);
task::spawn_root_and_wait (root_task);
} catch (tbb::captured_exception& ex) {
std::ostringstream os;
os << "Intel TBB caught an exception, while cache-blocking a mat"
"rix. Unfortunately, its type information was lost, because t"
"he exception was thrown in another thread. Its \"what()\" fu"
"nction returns the following string: " << ex.what();
throw std::runtime_error (os.str());
}
}
void
un_cache_block (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar A_out[],
const LocalOrdinal lda_out,
const Scalar A_in[]) const
{
using tbb::task;
// A_in doesn't have leading dimension lda_out, but that's OK,
// as long as all the routines are told that A_in is cache-
// blocked.
const_mat_view_type A_in_view (nrows, ncols, A_in, lda_out);
mat_view_type A_out_view (nrows, ncols, A_out, lda_out);
try {
typedef UnCacheBlockTask< LocalOrdinal, Scalar > un_cache_block_task_t;
un_cache_block_task_t& root_task = *new( task::allocate_root() )
un_cache_block_task_t (0, ntasks()-1, A_out_view, A_in_view, seq_);
task::spawn_root_and_wait (root_task);
} catch (tbb::captured_exception& ex) {
std::ostringstream os;
os << "Intel TBB caught an exception, while un-cache-blocking a "
"matrix. Unfortunately, its type information was lost, becaus"
"e the exception was thrown in another thread. Its \"what()\""
" function returns the following string: " << ex.what();
throw std::runtime_error (os.str());
}
}
template< class MatrixViewType >
MatrixViewType
top_block (const MatrixViewType& C,
const bool contiguous_cache_blocks = false) const
{
return top_block_helper (0, ntasks()-1, C, contiguous_cache_blocks);
}
void
fill_with_zeros (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar C[],
const LocalOrdinal ldc,
const bool contiguous_cache_blocks) const
{
using tbb::task;
mat_view_type C_view (nrows, ncols, C, ldc);
try {
typedef FillWithZerosTask< LocalOrdinal, Scalar > fill_task_t;
fill_task_t& root_task = *new( task::allocate_root() )
fill_task_t (0, ntasks()-1, C_view, seq_, contiguous_cache_blocks);
task::spawn_root_and_wait (root_task);
} catch (tbb::captured_exception& ex) {
std::ostringstream os;
os << "Intel TBB caught an exception, while un-cache-blocking a "
"matrix. Unfortunately, its type information was lost, becaus"
"e the exception was thrown in another thread. Its \"what()\""
" function returns the following string: " << ex.what();
throw std::runtime_error (os.str());
}
}
private:
size_t numTasks_;
TSQR::SequentialTsqr<LocalOrdinal, Scalar> seq_;
TSQR::Combine<LocalOrdinal, Scalar> combine_;
Partitioner<LocalOrdinal, Scalar> partitioner_;
mutable double min_seq_factor_timing_;
mutable double max_seq_factor_timing_;
mutable double min_seq_apply_timing_;
mutable double max_seq_apply_timing_;
void
build_partition_array (const size_t P_first,
const size_t P_last,
array_top_blocks_t& top_blocks,
const_mat_view_type& Q,
mat_view_type& C,
const bool contiguous_cache_blocks = false) const
{
if (P_first > P_last) {
return;
}
else if (P_first == P_last) {
const_mat_view_type Q_top = seq_.top_block (Q, contiguous_cache_blocks);
mat_view_type C_top = seq_.top_block (C, contiguous_cache_blocks);
top_blocks[P_first] =
std::make_pair (const_mat_view_type (Q_top.ncols(), Q_top.ncols(),
Q_top.get(), Q_top.lda()),
mat_view_type (C_top.ncols(), C_top.ncols(),
C_top.get(), C_top.lda()));
}
else {
// Recurse on two intervals: [P_first, P_mid] and [P_mid+1, P_last]
const size_t P_mid = (P_first + P_last) / 2;
const_split_t Q_split =
partitioner_.split (Q, P_first, P_mid, P_last,
contiguous_cache_blocks);
split_t C_split =
partitioner_.split (C, P_first, P_mid, P_last,
contiguous_cache_blocks);
// The partitioner may decide that the current blocks Q
// and C have too few rows to be worth splitting. (The
// partitioner should split both Q and C in the same way.)
// In that case, Q_split.first should be the same block as
// Q, and Q_split.second (the bottom block) will be empty.
// Ditto for C_split. We deal with this in the same way
// as the base case (P_first == P_last) above.
if (Q_split.second.empty() || Q_split.second.nrows() == 0) {
const_mat_view_type Q_top =
seq_.top_block (Q, contiguous_cache_blocks);
mat_view_type C_top = seq_.top_block (C, contiguous_cache_blocks);
top_blocks[P_first] =
std::make_pair (const_mat_view_type (Q_top.ncols(), Q_top.ncols(),
Q_top.get(), Q_top.lda()),
mat_view_type (C_top.ncols(), C_top.ncols(),
C_top.get(), C_top.lda()));
}
else {
build_partition_array (P_first, P_mid, top_blocks,
Q_split.first, C_split.first,
contiguous_cache_blocks);
build_partition_array (P_mid+1, P_last, top_blocks,
Q_split.second, C_split.second,
contiguous_cache_blocks);
}
}
}
};
} // namespace TBB
} // namespace TSQR
#endif // __TSQR_TBB_TbbParallelTsqr_hpp
|