This file is indexed.

/usr/include/trilinos/TbbTsqr_TbbParallelTsqr.hpp is in libtrilinos-tpetra-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __TSQR_TBB_TbbParallelTsqr_hpp
#define __TSQR_TBB_TbbParallelTsqr_hpp

#include <tbb/tbb.h>
#include <tbb/task_scheduler_init.h>

#include <TbbTsqr_FactorTask.hpp>
#include <TbbTsqr_ApplyTask.hpp>
#include <TbbTsqr_ExplicitQTask.hpp>
#include <TbbTsqr_RevealRankTask.hpp>
#include <TbbTsqr_CacheBlockTask.hpp>
#include <TbbTsqr_UnCacheBlockTask.hpp>
#include <TbbTsqr_FillWithZerosTask.hpp>

#include <Tsqr_ApplyType.hpp>
#include <Teuchos_ScalarTraits.hpp>

#include <algorithm>
#include <limits>


namespace TSQR {
  namespace TBB {

    /// \class TbbParallelTsqr
    /// \brief Parallel implementation of \c TbbTsqr.
    /// \author Mark Hoemmen
    ///
    /// This class implements the functionality of \c TbbTsqr.
    /// It is not meant to be seen by users of \c TbbTsqr.
    ///
    /// The third template parameter, TimerType, allows different
    /// timer implementations.  TbbParallelTsqr times each task's
    /// invocations of \c SequentialTsqr::factor() and \c
    /// SequentialTsqr::apply().  \c TrivialTimer is a "timer" that
    /// does nothing, in case you don't want to invoke timers.
    template<class LocalOrdinal, class Scalar, class TimerType>
    class TbbParallelTsqr {
    private:
      typedef MatView<LocalOrdinal, Scalar> mat_view_type;
      typedef ConstMatView<LocalOrdinal, Scalar> const_mat_view_type;
      typedef std::pair<mat_view_type, mat_view_type> split_t;
      typedef std::pair<const_mat_view_type, const_mat_view_type> const_split_t;
      typedef std::pair<const_mat_view_type, mat_view_type> top_blocks_t;
      typedef std::vector<top_blocks_t> array_top_blocks_t;

      template<class MatrixViewType>
      MatrixViewType
      top_block_helper (const size_t P_first,
                        const size_t P_last,
                        const MatrixViewType& C,
                        const bool contiguous_cache_blocks) const
      {
        if (P_first > P_last)
          throw std::logic_error ("P_first > P_last");
        else if (P_first == P_last)
          return seq_.top_block (C, contiguous_cache_blocks);
        else
          {
            typedef std::pair<MatrixViewType, MatrixViewType> split_type;

            // Divide [P_first, P_last] into two intervals: [P_first,
            // P_mid] and [P_mid+1, P_last].  Recurse on the first
            // interval [P_first, P_mid].
            const size_t P_mid = (P_first + P_last) / 2;
            split_type C_split = partitioner_.split (C, P_first, P_mid, P_last,
                                                     contiguous_cache_blocks);
            // The partitioner may decide that the current block C has
            // too few rows to be worth splitting.  In that case,
            // C_split.first should be the same block as C, and
            // C_split.second (the bottom block) will be empty.  We
            // deal with this in the same way as the base case
            // (P_first == P_last) above.
            if (C_split.second.empty() || C_split.second.nrows() == 0)
              return seq_.top_block (C_split.first, contiguous_cache_blocks);
            else
              return top_block_helper (P_first, P_mid, C_split.first,
                                       contiguous_cache_blocks);
          }
      }

    public:
      typedef Scalar scalar_type;
      typedef typename Teuchos::ScalarTraits< Scalar >::magnitudeType magnitude_type;
      typedef LocalOrdinal ordinal_type;

      /// Whether or not this QR factorization produces an R factor
      /// with all nonnegative diagonal entries.
      static bool QR_produces_R_factor_with_nonnegative_diagonal() {
        typedef Combine<LocalOrdinal, Scalar> combine_type;
        //typedef LAPACK<LocalOrdinal, Scalar> lapack_type;

        const bool combineMakesNonnegDiag =
          combine_type::QR_produces_R_factor_with_nonnegative_diagonal ();
        //const bool lapackMakesNonnegDiag =
        //  lapack_type::QR_produces_R_factor_with_nonnegative_diagonal ();
        const bool lapackMakesNonnegDiag = false;
        return combineMakesNonnegDiag && lapackMakesNonnegDiag;
      }

      /// \typedef SeqOutput
      /// \brief Results of SequentialTsqr for each core.
      typedef typename SequentialTsqr<LocalOrdinal, Scalar>::FactorOutput SeqOutput;

      /// \typedef ParOutput
      /// \brief Array of numTasks_ "local tau arrays" from parallel TSQR.
      ///
      /// (Local Q factors are stored in place.)
      typedef std::vector<std::vector<Scalar> > ParOutput;

      /// \typedef FactorOutput
      /// \brief Partial representation of the Q factor.
      ///
      /// The \c factor() method returns a pair: the results of
      /// SequentialTsqr for data on each core, and the results of
      /// combining the data on the cores.
      typedef typename std::pair<std::vector<SeqOutput>, ParOutput> FactorOutput;

      /// \brief Constructor.
      ///
      /// \param numTasks [in] Number of parallel tasks to use in the
      ///   factorization.  This should be >= the number of cores with
      ///   which Intel TBB was initialized.
      /// \param cacheSizeHint [in] Cache size hint in bytes.  Zero
      ///   means that TSQR will pick a reasonable nonzero default.
      TbbParallelTsqr (const size_t numTasks = 1,
                       const size_t cacheSizeHint = 0) :
        seq_ (cacheSizeHint),
        min_seq_factor_timing_ (std::numeric_limits<double>::max()),
        max_seq_factor_timing_ (std::numeric_limits<double>::min()),
        min_seq_apply_timing_ (std::numeric_limits<double>::max()),
        max_seq_apply_timing_ (std::numeric_limits<double>::min())
      {
        if (numTasks < 1)
          numTasks_ = 1; // default is no parallelism
        else
          numTasks_ = numTasks;
      }

      /// \brief Constructor (that takes a parameter list).
      ///
      /// \param plist [in/out] On input: list of parameters.  On
      ///   output: missing parameters are filled in with default
      ///   values.
      ///
      /// For a list of accepted parameters and thei documentation,
      /// see the parameter list returned by \c getValidParameters().
      TbbParallelTsqr (const Teuchos::RCP<Teuchos::ParameterList>& plist) :
        seq_ (plist), // SequentialTsqr has a plist-accepting constructor.
        numTasks_ (1),  // Set a safe default for now.
        min_seq_factor_timing_ (std::numeric_limits<double>::max()),
        max_seq_factor_timing_ (std::numeric_limits<double>::min()),
        min_seq_apply_timing_ (std::numeric_limits<double>::max()),
        max_seq_apply_timing_ (std::numeric_limits<double>::min())
      {
        if (! plist.is_null()) {
          const int defaultNumTasks = 1; // A reasonable safe default value.
          int numTasks = plist->get ("Num Tasks", defaultNumTasks);
          if (numTasks < 1) { // Default is no parallelism.
            plist->set ("Num Tasks", defaultNumTasks);
          }
          numTasks_ = numTasks;
        }
      }

      Teuchos::RCP<const Teuchos::ParameterList>
      getValidParameters () const
      {
        using Teuchos::ParameterList;
        using Teuchos::parameterList;
        using Teuchos::RCP;

        // TbbTsqr recursively divides the tall skinny matrix on the
        // node into TBB tasks.  Each task works on a block row.  The
        // TBB task scheduler ensures that oversubscribing TBB tasks
        // won't oversubscribe cores, so it's OK if
        // default_num_threads() is too many.  For example, TBB might
        // say default_num_threads() is the number of cores on the
        // node, but the TBB task scheduler might have been
        // initialized with the number of cores per NUMA region, for
        // hybrid MPI + TBB parallelism.
        const int numTasks =
          tbb::task_scheduler_init::default_num_threads();
        const size_t cacheSizeHint = 0;
        const size_t sizeOfScalar = sizeof(Scalar);

        RCP<ParameterList> params = parameterList ("NodeTsqr");
        params->set ("Num Tasks", numTasks,
                     "Number of tasks to use in the intranode parallel part "
                     "TSQR.  There is little/no performance penalty for mild "
                     "oversubscription, but a potential performance penalty "
                     "for undersubscription.");
        params->set ("Cache Size Hint", cacheSizeHint,
                    "Cache size hint in bytes (as a size_t) to use for "
                    "intranode TSQR.  If zero, TSQR will pick a reasonable "
                    "default.  See the documentation of SequentialTsqr for "
                     "a discussion of how to tune this parameter.");
        params->set ("Size of Scalar", sizeOfScalar);

        return params;
      }

      void
      setParameterList (const Teuchos::RCP<Teuchos::ParameterList>& plist)
      {
        seq_.setParameterList (plist);

        if (! plist.is_null()) {
          const int defaultNumCores = 1; // A reasonable safe default value.
          int numTasks = plist->get ("Num Tasks", defaultNumCores);
          if (numTasks < 1) { // Default is no parallelism.
            plist->set ("Num Tasks", defaultNumCores);
          }
          numTasks_ = numTasks;
        }
      }

      /// \brief Number of tasks that TSQR will use to solve the problem.
      ///
      /// This is the number of subproblems into which to divide the
      /// main problem, in order to solve it in parallel.
      size_t ntasks() const { return numTasks_; }

      /// \brief Cache size hint (in bytes) used for the factorization.
      ///
      /// This may be different from the corresponding constructor
      /// argument, because TSQR may revise unreasonable suggestions
      /// into reasonable values.
      size_t cache_size_hint() const { return seq_.cache_size_hint(); }

      //! Fastest time over all tasks of the last SequentialTsqr::factor() call.
      double
      min_seq_factor_timing () const { return min_seq_factor_timing_; }
      //! Slowest time over all tasks of the last SequentialTsqr::factor() call.
      double
      max_seq_factor_timing () const { return max_seq_factor_timing_; }
      //! Fastest time over all tasks of the last SequentialTsqr::apply() call.
      double
      min_seq_apply_timing () const { return min_seq_apply_timing_; }
      //! Slowest time over all tasks of the last SequentialTsqr::apply() call.
      double
      max_seq_apply_timing () const { return max_seq_apply_timing_; }

      FactorOutput
      factor (const LocalOrdinal nrows,
              const LocalOrdinal ncols,
              Scalar A[],
              const LocalOrdinal lda,
              Scalar R[],
              const LocalOrdinal ldr,
              const bool contiguous_cache_blocks) const
      {
        using tbb::task;

        mat_view_type A_view (nrows, ncols, A, lda);
        // A_top will be modified in place by exactly one task, to
        // indicate the partition from which we may extract the R
        // factor after finishing the factorization.
        mat_view_type A_top;

        std::vector<SeqOutput> seq_output (ntasks());
        ParOutput par_output (ntasks(), std::vector<Scalar>(ncols));
        if (ntasks() < 1)
          {
            if (! A_view.empty())
              throw std::logic_error("Zero subproblems, but A not empty!");
            else // Return empty results
              return std::make_pair (seq_output, par_output);
          }

        double my_seq_timing = double(0);
        double min_seq_timing = double(0);
        double max_seq_timing = double(0);
        try {
          typedef FactorTask<LocalOrdinal, Scalar, TimerType> factor_task_t;

          // When the root task completes, A_top will be set to the
          // topmost partition of A.  We can then extract the R factor
          // from A_top.
          factor_task_t& root_task = *new( task::allocate_root() )
            factor_task_t(0, ntasks()-1, A_view, &A_top, seq_output,
                          par_output, seq_, my_seq_timing, min_seq_timing,
                          max_seq_timing, contiguous_cache_blocks);
          task::spawn_root_and_wait (root_task);
        } catch (tbb::captured_exception& ex) {
          // TBB can't guarantee on all systems that an exception
          // thrown in another thread will have its type correctly
          // propagated to this thread.  If it can't, then it captures
          // the exception as a tbb:captured_exception, and propagates
          // it to here.  It may be able to propagate the exception,
          // though, so be prepared for that.  We deal with the latter
          // case by allowing the exception to propagate.
          std::ostringstream os;
          os << "Intel TBB caught an exception, while computing the QR factor"
            "ization of a matrix A.  Unfortunately, its type information was "
            "lost, because the exception was thrown in another thread.  Its "
            "\"what()\" function returns the following string: " << ex.what();
          throw std::runtime_error (os.str());
        }

        // Copy the R factor out of A_top into R.
        seq_.extract_R (A_top.nrows(), A_top.ncols(), A_top.get(),
                        A_top.lda(), R, ldr, contiguous_cache_blocks);

        // Save the timings for future reference
        if (min_seq_timing < min_seq_factor_timing_)
          min_seq_factor_timing_ = min_seq_timing;
        if (max_seq_timing > max_seq_factor_timing_)
          max_seq_factor_timing_ = max_seq_timing;

        return std::make_pair (seq_output, par_output);
      }

      void
      apply (const ApplyType& apply_type,
             const LocalOrdinal nrows,
             const LocalOrdinal ncols_Q,
             const Scalar Q[],
             const LocalOrdinal ldq,
             const FactorOutput& factor_output,
             const LocalOrdinal ncols_C,
             Scalar C[],
             const LocalOrdinal ldc,
             const bool contiguous_cache_blocks) const
      {
        using tbb::task;

        if (apply_type.transposed())
          throw std::logic_error ("Applying Q^T and Q^H not implemented");

        const_mat_view_type Q_view (nrows, ncols_Q, Q, ldq);
        mat_view_type C_view (nrows, ncols_C, C, ldc);
        if (! apply_type.transposed())
          {
            array_top_blocks_t top_blocks (ntasks());
            build_partition_array (0, ntasks()-1, top_blocks, Q_view,
                                   C_view, contiguous_cache_blocks);
            double my_seq_timing = 0.0;
            double min_seq_timing = 0.0;
            double max_seq_timing = 0.0;
            try {
              typedef ApplyTask<LocalOrdinal, Scalar, TimerType> apply_task_t;
              apply_task_t& root_task =
                *new( task::allocate_root() )
                apply_task_t (0, ntasks()-1, Q_view, C_view, top_blocks,
                              factor_output, seq_, my_seq_timing,
                              min_seq_timing, max_seq_timing,
                              contiguous_cache_blocks);
              task::spawn_root_and_wait (root_task);
            } catch (tbb::captured_exception& ex) {
              std::ostringstream os;
              os << "Intel TBB caught an exception, while applying a Q factor "
                "computed previously by factor() to the matrix C.  Unfortunate"
                "ly, its type information was lost, because the exception was "
                "thrown in another thread.  Its \"what()\" function returns th"
                "e following string: " << ex.what();
              throw std::runtime_error (os.str());
            }

            // Save the timings for future reference
            if (min_seq_timing < min_seq_apply_timing_)
              min_seq_apply_timing_ = min_seq_timing;
            if (max_seq_timing > max_seq_apply_timing_)
              max_seq_apply_timing_ = max_seq_timing;
          }
      }


      void
      explicit_Q (const LocalOrdinal nrows,
                  const LocalOrdinal ncols_Q_in,
                  const Scalar Q_in[],
                  const LocalOrdinal ldq_in,
                  const FactorOutput& factor_output,
                  const LocalOrdinal ncols_Q_out,
                  Scalar Q_out[],
                  const LocalOrdinal ldq_out,
                  const bool contiguous_cache_blocks) const
      {
        using tbb::task;

        mat_view_type Q_out_view (nrows, ncols_Q_out, Q_out, ldq_out);
        try {
          typedef ExplicitQTask< LocalOrdinal, Scalar > explicit_Q_task_t;
          explicit_Q_task_t& root_task = *new( task::allocate_root() )
            explicit_Q_task_t (0, ntasks()-1, Q_out_view, seq_,
                               contiguous_cache_blocks);
          task::spawn_root_and_wait (root_task);
        } catch (tbb::captured_exception& ex) {
          std::ostringstream os;
          os << "Intel TBB caught an exception, while preparing to compute"
            " the explicit Q factor from a QR factorization computed previ"
            "ously by factor().  Unfortunately, its type information was l"
            "ost, because the exception was thrown in another thread.  Its"
            " \"what()\" function returns the following string: "
             << ex.what();
          throw std::runtime_error (os.str());
        }
        apply (ApplyType::NoTranspose,
               nrows, ncols_Q_in, Q_in, ldq_in, factor_output,
               ncols_Q_out, Q_out, ldq_out,
               contiguous_cache_blocks);
      }

      /// \brief Compute Q*B
      ///
      /// Compute matrix-matrix product Q*B, where Q is nrows by ncols
      /// and B is ncols by ncols.  Respect cache blocks of Q.
      void
      Q_times_B (const LocalOrdinal nrows,
                 const LocalOrdinal ncols,
                 Scalar Q[],
                 const LocalOrdinal ldq,
                 const Scalar B[],
                 const LocalOrdinal ldb,
                 const bool contiguous_cache_blocks) const
      {
        // Compute Q := Q*B in parallel.  This works much like
        // cache_block() (which see), in that each thread's instance
        // does not need to communicate with the others.
        try {
          using tbb::task;
          typedef RevealRankTask<LocalOrdinal, Scalar> rrtask_type;

          mat_view_type Q_view (nrows, ncols, Q, ldq);
          const_mat_view_type B_view (ncols, ncols, B, ldb);

          rrtask_type& root_task = *new( task::allocate_root() )
            rrtask_type (0, ntasks()-1, Q_view, B_view, seq_,
                         contiguous_cache_blocks);
          task::spawn_root_and_wait (root_task);
        } catch (tbb::captured_exception& ex) {
          std::ostringstream os;
          os << "Intel TBB caught an exception, while computing Q := Q*U.  "
            "Unfortunately, its type information was lost, because the "
            "exception was thrown in another thread.  Its \"what()\" function "
            "returns the following string: " << ex.what();
          throw std::runtime_error (os.str());
        }
      }


      /// Compute SVD \f$R = U \Sigma V^*\f$, not in place.  Use the
      /// resulting singular values to compute the numerical rank of R,
      /// with respect to the relative tolerance tol.  If R is full
      /// rank, return without modifying R.  If R is not full rank,
      /// overwrite R with \f$\Sigma \cdot V^*\f$.
      ///
      /// \return Numerical rank of R: 0 <= rank <= ncols.
      LocalOrdinal
      reveal_R_rank (const LocalOrdinal ncols,
                     Scalar R[],
                     const LocalOrdinal ldr,
                     Scalar U[],
                     const LocalOrdinal ldu,
                     const magnitude_type tol) const
      {
        return seq_.reveal_R_rank (ncols, R, ldr, U, ldu, tol);
      }

      /// \brief Rank-revealing decomposition
      ///
      /// Using the R factor from factor() and the explicit Q factor
      /// from explicit_Q(), compute the SVD of R (\f$R = U \Sigma
      /// V^*\f$).  R.  If R is full rank (with respect to the given
      /// relative tolerance tol), don't change Q or R.  Otherwise,
      /// compute \f$Q := Q \cdot U\f$ and \f$R := \Sigma V^*\f$ in
      /// place (the latter may be no longer upper triangular).
      ///
      /// \return Rank \f$r\f$ of R: \f$ 0 \leq r \leq ncols\f$.
      ///
      LocalOrdinal
      reveal_rank (const LocalOrdinal nrows,
                   const LocalOrdinal ncols,
                   Scalar Q[],
                   const LocalOrdinal ldq,
                   Scalar R[],
                   const LocalOrdinal ldr,
                   const magnitude_type tol,
                   const bool contiguous_cache_blocks = false) const
      {
        // Take the easy exit if available.
        if (ncols == 0)
          return 0;

        Matrix<LocalOrdinal, Scalar> U (ncols, ncols, Scalar(0));
        const LocalOrdinal rank =
          reveal_R_rank (ncols, R, ldr, U.get(), U.ldu(), tol);

        if (rank < ncols)
          {
            // If R is not full rank: reveal_R_rank() already computed
            // the SVD \f$R = U \Sigma V^*\f$ of (the input) R, and
            // overwrote R with \f$\Sigma V^*\f$.  Now, we compute \f$Q
            // := Q \cdot U\f$, respecting cache blocks of Q.
            Q_times_B (nrows, ncols, Q, ldq, U.get(), U.lda(),
                       contiguous_cache_blocks);
          }
        return rank;
      }

      void
      cache_block (const LocalOrdinal nrows,
                   const LocalOrdinal ncols,
                   Scalar A_out[],
                   const Scalar A_in[],
                   const LocalOrdinal lda_in) const
      {
        using tbb::task;

        const_mat_view_type A_in_view (nrows, ncols, A_in, lda_in);
        // A_out won't have leading dimension lda_in, but that's OK,
        // as long as all the routines are told that A_out is
        // cache-blocked.
        mat_view_type A_out_view (nrows, ncols, A_out, lda_in);
        try {
          typedef CacheBlockTask< LocalOrdinal, Scalar > cache_block_task_t;
          cache_block_task_t& root_task = *new( task::allocate_root() )
            cache_block_task_t (0, ntasks()-1, A_out_view, A_in_view, seq_);
          task::spawn_root_and_wait (root_task);
        } catch (tbb::captured_exception& ex) {
          std::ostringstream os;
          os << "Intel TBB caught an exception, while cache-blocking a mat"
            "rix.  Unfortunately, its type information was lost, because t"
            "he exception was thrown in another thread.  Its \"what()\" fu"
            "nction returns the following string: " << ex.what();
          throw std::runtime_error (os.str());
        }
      }

      void
      un_cache_block (const LocalOrdinal nrows,
                      const LocalOrdinal ncols,
                      Scalar A_out[],
                      const LocalOrdinal lda_out,
                      const Scalar A_in[]) const
      {
        using tbb::task;

        // A_in doesn't have leading dimension lda_out, but that's OK,
        // as long as all the routines are told that A_in is cache-
        // blocked.
        const_mat_view_type A_in_view (nrows, ncols, A_in, lda_out);
        mat_view_type A_out_view (nrows, ncols, A_out, lda_out);
        try {
          typedef UnCacheBlockTask< LocalOrdinal, Scalar > un_cache_block_task_t;
          un_cache_block_task_t& root_task = *new( task::allocate_root() )
            un_cache_block_task_t (0, ntasks()-1, A_out_view, A_in_view, seq_);
          task::spawn_root_and_wait (root_task);
        } catch (tbb::captured_exception& ex) {
          std::ostringstream os;
          os << "Intel TBB caught an exception, while un-cache-blocking a "
            "matrix.  Unfortunately, its type information was lost, becaus"
            "e the exception was thrown in another thread.  Its \"what()\""
            " function returns the following string: " << ex.what();
          throw std::runtime_error (os.str());
        }
      }

      template< class MatrixViewType >
      MatrixViewType
      top_block (const MatrixViewType& C,
                 const bool contiguous_cache_blocks = false) const
      {
        return top_block_helper (0, ntasks()-1, C, contiguous_cache_blocks);
      }

      void
      fill_with_zeros (const LocalOrdinal nrows,
                       const LocalOrdinal ncols,
                       Scalar C[],
                       const LocalOrdinal ldc,
                       const bool contiguous_cache_blocks) const
      {
        using tbb::task;
        mat_view_type C_view (nrows, ncols, C, ldc);

        try {
          typedef FillWithZerosTask< LocalOrdinal, Scalar > fill_task_t;
          fill_task_t& root_task = *new( task::allocate_root() )
            fill_task_t (0, ntasks()-1, C_view, seq_, contiguous_cache_blocks);
          task::spawn_root_and_wait (root_task);
        } catch (tbb::captured_exception& ex) {
          std::ostringstream os;
          os << "Intel TBB caught an exception, while un-cache-blocking a "
            "matrix.  Unfortunately, its type information was lost, becaus"
            "e the exception was thrown in another thread.  Its \"what()\""
            " function returns the following string: " << ex.what();
          throw std::runtime_error (os.str());
        }
      }

    private:
      size_t numTasks_;
      TSQR::SequentialTsqr<LocalOrdinal, Scalar> seq_;
      TSQR::Combine<LocalOrdinal, Scalar> combine_;
      Partitioner<LocalOrdinal, Scalar> partitioner_;

      mutable double min_seq_factor_timing_;
      mutable double max_seq_factor_timing_;
      mutable double min_seq_apply_timing_;
      mutable double max_seq_apply_timing_;

      void
      build_partition_array (const size_t P_first,
                             const size_t P_last,
                             array_top_blocks_t& top_blocks,
                             const_mat_view_type& Q,
                             mat_view_type& C,
                             const bool contiguous_cache_blocks = false) const
      {
        if (P_first > P_last) {
          return;
        }
        else if (P_first == P_last) {
          const_mat_view_type Q_top = seq_.top_block (Q, contiguous_cache_blocks);
          mat_view_type C_top = seq_.top_block (C, contiguous_cache_blocks);
          top_blocks[P_first] =
            std::make_pair (const_mat_view_type (Q_top.ncols(), Q_top.ncols(),
                                                 Q_top.get(), Q_top.lda()),
                            mat_view_type (C_top.ncols(), C_top.ncols(),
                                           C_top.get(), C_top.lda()));
        }
        else {
          // Recurse on two intervals: [P_first, P_mid] and [P_mid+1, P_last]
          const size_t P_mid = (P_first + P_last) / 2;
          const_split_t Q_split =
            partitioner_.split (Q, P_first, P_mid, P_last,
                                contiguous_cache_blocks);
          split_t C_split =
            partitioner_.split (C, P_first, P_mid, P_last,
                                contiguous_cache_blocks);
          // The partitioner may decide that the current blocks Q
          // and C have too few rows to be worth splitting.  (The
          // partitioner should split both Q and C in the same way.)
          // In that case, Q_split.first should be the same block as
          // Q, and Q_split.second (the bottom block) will be empty.
          // Ditto for C_split.  We deal with this in the same way
          // as the base case (P_first == P_last) above.
          if (Q_split.second.empty() || Q_split.second.nrows() == 0) {
            const_mat_view_type Q_top =
              seq_.top_block (Q, contiguous_cache_blocks);
            mat_view_type C_top = seq_.top_block (C, contiguous_cache_blocks);
            top_blocks[P_first] =
              std::make_pair (const_mat_view_type (Q_top.ncols(), Q_top.ncols(),
                                                   Q_top.get(), Q_top.lda()),
                              mat_view_type (C_top.ncols(), C_top.ncols(),
                                             C_top.get(), C_top.lda()));
          }
          else {
            build_partition_array (P_first, P_mid, top_blocks,
                                   Q_split.first, C_split.first,
                                   contiguous_cache_blocks);
            build_partition_array (P_mid+1, P_last, top_blocks,
                                   Q_split.second, C_split.second,
                                   contiguous_cache_blocks);
          }
        }
      }
    };
  } // namespace TBB
} // namespace TSQR

#endif // __TSQR_TBB_TbbParallelTsqr_hpp