/usr/include/trilinos/Tpetra_Details_Merge.hpp is in libtrilinos-tpetra-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 | // @HEADER
// ***********************************************************************
//
// Tpetra: Templated Linear Algebra Services Package
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef TPETRA_DETAILS_MERGE_HPP
#define TPETRA_DETAILS_MERGE_HPP
#include "TpetraCore_config.h"
#include "Teuchos_TestForException.hpp"
#include <algorithm> // std::sort
#include <utility> // std::pair, std::make_pair
#include <stdexcept>
namespace Tpetra {
namespace Details {
/// \brief Count the number of column indices that can be merged into
/// the current row, assuming that both the current row's indices
/// and the input indices are unsorted.
///
/// Neither the current row's entries, nor the input, are sorted.
/// Return the number of input entries that can be merged into the
/// current row. Don't actually merge them. 'numCurInds' corresponds
/// to 'midPos' in mergeUnsortedIndices.
///
/// The current indices are NOT allowed to have repeats, but the input
/// indices ARE allowed to have repeats. (The whole point of these
/// methods is to keep the current entries without repeats -- "merged
/// in.") Repeats in the input are counted separately with respect to
/// merges.
///
/// The unsorted case is bad for asymptotics, but the asymptotics only
/// show up with dense or nearly dense rows, which are bad for other
/// reasons.
template<class OrdinalType, class IndexType>
IndexType
countMergeUnsortedIndices (const OrdinalType curInds[],
const IndexType numCurInds,
const OrdinalType inputInds[],
const IndexType numInputInds)
{
IndexType mergeCount = 0;
if (numCurInds <= numInputInds) {
// More input than current entries, so iterate linearly over
// input and scan current entries repeatedly.
for (IndexType inPos = 0; inPos < numInputInds; ++inPos) {
const OrdinalType inVal = inputInds[inPos];
for (IndexType curPos = 0; curPos < numCurInds; ++curPos) {
if (curInds[curPos] == inVal) {
++mergeCount;
}
}
}
}
else { // numCurInds > numInputInds
// More current entries than input, so iterate linearly over
// current entries and scan input repeatedly.
for (IndexType curPos = 0; curPos < numCurInds; ++curPos) {
const OrdinalType curVal = curInds[curPos];
for (IndexType inPos = 0; inPos < numInputInds; ++inPos) {
if (inputInds[inPos] == curVal) {
++mergeCount;
}
}
}
}
#ifdef HAVE_TPETRA_DEBUG
TEUCHOS_TEST_FOR_EXCEPTION
(mergeCount > numInputInds, std::logic_error, "mergeCount = " <<
mergeCount << " > numInputInds = " << numInputInds << ".");
#endif // HAVE_TPETRA_DEBUG
return mergeCount;
}
/// \brief Count the number of column indices that can be merged into
/// the current row, assuming that both the current row's indices
/// and the input indices are sorted.
///
/// Both the current row's entries and the input are sorted.
/// Return the number of input entries that can be merged into the
/// current row. Don't actually merge them. 'numCurInds'
/// corresponds to 'midPos' in mergeSortedIndices.
///
/// The current indices are NOT allowed to have repeats, but the input
/// indices ARE allowed to have repeats. (The whole point of these
/// methods is to keep the current entries without repeats -- "merged
/// in.") Repeats in the input are counted separately with respect to
/// merges.
///
/// The sorted case is good for asymptotics, but imposes an order
/// on the entries of each row. Sometimes users don't want that.
template<class OrdinalType, class IndexType>
IndexType
countMergeSortedIndices (const OrdinalType curInds[],
const IndexType numCurInds,
const OrdinalType inputInds[],
const IndexType numInputInds)
{
// Only count possible merges; don't merge yet. If the row
// doesn't have enough space, we want to return without side
// effects.
IndexType curPos = 0;
IndexType inPos = 0;
IndexType mergeCount = 0;
while (inPos < numInputInds && curPos < numCurInds) {
const OrdinalType inVal = inputInds[inPos];
const OrdinalType curVal = curInds[curPos];
if (curVal == inVal) { // can merge
++mergeCount;
++inPos; // go on to next input
} else if (curVal < inVal) {
++curPos; // go on to next row entry
} else { // curVal > inVal
++inPos; // can't merge it ever, since row entries sorted
}
}
#ifdef HAVE_TPETRA_DEBUG
TEUCHOS_TEST_FOR_EXCEPTION
(inPos > numInputInds, std::logic_error, "inPos = " << inPos <<
" > numInputInds = " << numInputInds << ".");
TEUCHOS_TEST_FOR_EXCEPTION
(curPos > numCurInds, std::logic_error, "curPos = " << curPos <<
" > numCurInds = " << numCurInds << ".");
TEUCHOS_TEST_FOR_EXCEPTION
(mergeCount > numInputInds, std::logic_error, "mergeCount = " <<
mergeCount << " > numInputInds = " << numInputInds << ".");
#endif // HAVE_TPETRA_DEBUG
// At this point, 2 situations are possible:
//
// 1. inPos == numInputInds: We looked at all inputs. Some
// (mergeCount of them) could have been merged.
// 2. inPos < numInputInds: We didn't get to look at all inputs.
// Since the inputs are sorted, we know that those inputs we
// didn't examine weren't mergeable.
//
// Either way, mergeCount gives the number of mergeable inputs.
return mergeCount;
}
/// \brief Attempt to merge the input indices into the current row's
/// column indices, assuming that both the current row's indices and
/// the input indices are sorted.
///
/// Both the current row's entries and the input are sorted. If and
/// only if the current row has enough space for the input (after
/// merging), merge the input with the current row.
///
/// Assume that both curInds and inputInds are sorted.
/// Current indices: curInds[0 .. midPos-1].
/// Extra space at end: curInds[midPos .. endPos-1]
/// Input indices to merge in: inputInds[0 .. numInputInds].
/// Any of those could be empty.
///
/// If the merge succeeded, return true and the new number of entries
/// in the row. Else, return false and the new number of entries in
/// the row required to fit the input.
///
/// The sorted case is good for asymptotics, but imposes an order on
/// the entries of each row. Sometimes users don't want that.
template<class OrdinalType, class IndexType>
std::pair<bool, IndexType>
mergeSortedIndices (OrdinalType curInds[],
const IndexType midPos,
const IndexType endPos,
const OrdinalType inputInds[],
const IndexType numInputInds)
{
// Optimize for the following cases, in decreasing order of
// optimization concern:
//
// a. Current row has allocated space but no entries
// b. All input indices already in the graph
//
// If the row has insufficient space for a merge, don't do
// anything! Just return an upper bound on the number of extra
// entries required to fit everything. This imposes extra cost,
// but correctly supports the count, allocate, fill, compute
// pattern. (If some entries were merged in and others weren't,
// how would you know which got merged in? CrsGraph insert is
// idempotent, but CrsMatrix insert does a += on the value and
// is therefore not idempotent.)
if (midPos == 0) {
// Current row has no entries, but may have preallocated space.
if (endPos >= numInputInds) {
// Sufficient space for new entries; copy directly.
for (IndexType k = 0; k < numInputInds; ++k) {
curInds[k] = inputInds[k];
}
std::sort (curInds, curInds + numInputInds);
return std::make_pair (true, numInputInds);
}
else { // not enough space
return std::make_pair (false, numInputInds);
}
}
else { // current row contains indices, requiring merge
// Only count possible merges; don't merge yet. If the row
// doesn't have enough space, we want to return without side
// effects.
const IndexType mergeCount =
countMergeSortedIndices<OrdinalType, IndexType> (curInds, midPos,
inputInds,
numInputInds);
const IndexType extraSpaceNeeded = numInputInds - mergeCount;
const IndexType newRowLen = midPos + extraSpaceNeeded;
if (newRowLen > endPos) {
return std::make_pair (false, newRowLen);
}
else { // we have enough space; merge in
IndexType curPos = 0;
IndexType inPos = 0;
IndexType newPos = midPos;
while (inPos < numInputInds && curPos < midPos) {
const OrdinalType inVal = inputInds[inPos];
const OrdinalType curVal = curInds[curPos];
if (curVal == inVal) { // can merge
++inPos; // merge and go on to next input
} else if (curVal < inVal) {
++curPos; // go on to next row entry
} else { // curVal > inVal
// The input doesn't exist in the row.
// Copy it to the end; we'll sort it in later.
curInds[newPos] = inVal;
++newPos;
++inPos; // move on to next input
}
}
// If any inputs remain, and the current row has space for them,
// then copy them in. We'll sort them later.
for (; inPos < numInputInds && newPos < newRowLen; ++inPos, ++newPos) {
curInds[newPos] = inputInds[inPos];
}
#ifdef HAVE_TPETRA_DEBUG
TEUCHOS_TEST_FOR_EXCEPTION
(newPos != newRowLen, std::logic_error, "mergeSortedIndices: newPos = "
<< newPos << " != newRowLen = " << newRowLen << " = " << midPos <<
" + " << extraSpaceNeeded << ". Please report this bug to the Tpetra "
"developers.");
#endif // HAVE_TPETRA_DEBUG
if (newPos != midPos) { // new entries at end; sort them in
// FIXME (mfh 03 Jan 2016) Rather than sorting, it would
// be faster (linear time) just to iterate backwards
// through the current entries, pushing them over to make
// room for unmerged input. However, I'm not so worried
// about the asymptotics here, because dense rows in a
// sparse matrix are ungood anyway.
std::sort (curInds, curInds + newPos);
}
return std::make_pair (true, newPos);
}
}
}
/// \brief Attempt to merge the input indices into the current row's
/// column indices, assuming that both the current row's indices and
/// the input indices are unsorted.
///
/// Neither the current row's entries nor the input are sorted. If
/// and only if the current row has enough space for the input (after
/// merging), merge the input with the current row.
///
/// Assume that neither curInds nor inputInds are sorted.
/// Current indices: curInds[0 .. midPos-1].
/// Extra space at end: curInds[midPos .. endPos-1]
/// Input indices to merge in: inputInds[0 .. numInputInds].
/// Any of those could be empty.
///
/// If the merge succeeded, return true and the new number of entries
/// in the row. Else, return false and the new number of entries in
/// the row required to fit the input.
///
/// The unsorted case is bad for asymptotics, but the asymptotics only
/// show up with dense or nearly dense rows, which are bad for other
/// reasons.
template<class OrdinalType, class IndexType>
std::pair<bool, IndexType>
mergeUnsortedIndices (OrdinalType curInds[],
const IndexType midPos,
const IndexType endPos,
const OrdinalType inputInds[],
const IndexType numInputInds)
{
// Optimize for the following cases, in decreasing order of
// optimization concern:
//
// a. Current row has allocated space but no entries
// b. All input indices already in the graph
//
// If the row has insufficient space for a merge, don't do
// anything! Just return an upper bound on the number of extra
// entries required to fit everything. This imposes extra cost,
// but correctly supports the count, allocate, fill, compute
// pattern. (If some entries were merged in and others weren't,
// how would you know which got merged in? CrsGraph insert is
// idempotent, but CrsMatrix insert does a += on the value and
// is therefore not idempotent.)
if (midPos == 0) {
// Current row has no entries, but may have preallocated space.
if (endPos >= numInputInds) {
// Sufficient space for new entries; copy directly.
for (IndexType k = 0; k < numInputInds; ++k) {
curInds[k] = inputInds[k];
}
return std::make_pair (true, numInputInds);
}
else { // not enough space
return std::make_pair (false, numInputInds);
}
}
else { // current row contains indices, requiring merge
// Only count possible merges; don't merge yet. If the row
// doesn't have enough space, we want to return without side
// effects.
const IndexType mergeCount =
countMergeUnsortedIndices<OrdinalType, IndexType> (curInds, midPos,
inputInds,
numInputInds);
const IndexType extraSpaceNeeded = numInputInds - mergeCount;
const IndexType newRowLen = midPos + extraSpaceNeeded;
if (newRowLen > endPos) {
return std::make_pair (false, newRowLen);
}
else { // we have enough space; merge in
// Iterate linearly over input. Scan current entries
// repeatedly. Add new entries at end.
IndexType newPos = midPos;
for (IndexType inPos = 0; inPos < numInputInds; ++inPos) {
const OrdinalType inVal = inputInds[inPos];
bool merged = false;
for (IndexType curPos = 0; curPos < midPos; ++curPos) {
if (curInds[curPos] == inVal) {
merged = true;
}
}
if (! merged) {
curInds[newPos] = inVal;
++newPos;
}
}
return std::make_pair (true, newPos);
}
}
}
/// \brief Attempt to merge the input indices and values into the
/// current row's column indices and corresponding values, assuming
/// that both the current row's indices and the input indices are
/// unsorted.
///
/// Neither the current row's entries nor the input are sorted. If
/// and only if the current row has enough space for the input (after
/// merging), merge the input with the current row.
///
/// Assume that neither curInds nor inputInds are sorted.
/// Current indices: curInds[0 .. midPos-1].
/// Current values: curVals[0 .. midPos-1].
/// Extra space for indices at end: curInds[midPos .. endPos-1].
/// Extra space for values at end: curVals[midPos .. endPos-1].
/// Input indices to merge in: inputInds[0 .. numInputInds].
/// Input values to merge in: inputVals[0 .. numInputInds].
///
/// If the merge succeeded, return true and the new number of entries
/// in the row. Else, return false and the new number of entries in
/// the row required to fit the input.
///
/// The unsorted case is bad for asymptotics, but the asymptotics only
/// show up with dense or nearly dense rows, which are bad for other
/// reasons.
template<class OrdinalType, class ValueType, class IndexType>
std::pair<bool, IndexType>
mergeUnsortedIndicesAndValues (OrdinalType curInds[],
ValueType curVals[],
const IndexType midPos,
const IndexType endPos,
const OrdinalType inputInds[],
const ValueType inputVals[],
const IndexType numInputInds)
{
// Optimize for the following cases, in decreasing order of
// optimization concern:
//
// a. Current row has allocated space but no entries
// b. All input indices already in the graph
//
// If the row has insufficient space for a merge, don't do
// anything! Just return an upper bound on the number of extra
// entries required to fit everything. This imposes extra cost,
// but correctly supports the count, allocate, fill, compute
// pattern. (If some entries were merged in and others weren't,
// how would you know which got merged in? CrsGraph insert is
// idempotent, but CrsMatrix insert does a += on the value and
// is therefore not idempotent.)
if (midPos == 0) {
// Current row has no entries, but may have preallocated space.
if (endPos >= numInputInds) {
// Sufficient space for new entries; copy directly.
for (IndexType k = 0; k < numInputInds; ++k) {
curInds[k] = inputInds[k];
curVals[k] = inputVals[k];
}
return std::make_pair (true, numInputInds);
}
else { // not enough space
return std::make_pair (false, numInputInds);
}
}
else { // current row contains indices, requiring merge
// Only count possible merges; don't merge yet. If the row
// doesn't have enough space, we want to return without side
// effects.
const IndexType mergeCount =
countMergeUnsortedIndices<OrdinalType, IndexType> (curInds, midPos,
inputInds,
numInputInds);
const IndexType extraSpaceNeeded = numInputInds - mergeCount;
const IndexType newRowLen = midPos + extraSpaceNeeded;
if (newRowLen > endPos) {
return std::make_pair (false, newRowLen);
}
else { // we have enough space; merge in
// Iterate linearly over input. Scan current entries
// repeatedly. Add new entries at end.
IndexType newPos = midPos;
for (IndexType inPos = 0; inPos < numInputInds; ++inPos) {
const OrdinalType inInd = inputInds[inPos];
bool merged = false;
for (IndexType curPos = 0; curPos < midPos; ++curPos) {
if (curInds[curPos] == inInd) {
merged = true;
curVals[curPos] += inputVals[inPos];
}
}
if (! merged) {
curInds[newPos] = inInd;
curVals[newPos] = inputVals[inPos];
++newPos;
}
}
return std::make_pair (true, newPos);
}
}
}
} // namespace Details
} // namespace Tpetra
#endif // TPETRA_DETAILS_MERGE_HPP
|