This file is indexed.

/usr/include/trilinos/Tpetra_Experimental_BlockView.hpp is in libtrilinos-tpetra-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
// @HEADER
// ***********************************************************************
//
//          Tpetra: Templated Linear Algebra Services Package
//                 Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef TPETRA_EXPERIMENTAL_BLOCKVIEW_HPP
#define TPETRA_EXPERIMENTAL_BLOCKVIEW_HPP

/// \file Tpetra_Experimental_BlockView.hpp
/// \brief Linear algebra kernels for small dense matrices and vectors
///
/// This file declares and defines generic computational kernels for
/// small dense linear algebra operations, with matrices and vectors
/// stored as Kokkos::View.  The operations are meant as helpers for
/// Tpetra::Experimental::BlockCrsMatrix.

#include "TpetraCore_config.h"
#include "Kokkos_ArithTraits.hpp"
#include "Kokkos_Complex.hpp"

namespace Tpetra {

/// \brief Namespace for new Tpetra features that are not ready for
///   public release, but are ready for evaluation by friendly expert
///   users.
///
/// \warning Expect header files, classes, functions, and other
///   interfaces to change or disappear.  Anything in this namespace
///   is under active development and evaluation.  Documentation may
///   be sparse or not exist yet.  Generally, unit tests will exist,
///   but coverage may be lacking.  If you understand these caveats
///   and accept them, please feel free to take a look inside and try
///   things out.
namespace Experimental {

namespace Impl {

/// \brief Implementation of Tpetra's ABSMAX CombineMode for the small
///   dense blocks in BlockCrsMatrix, or the small dense vectors in
///   BlockMultiVector and BlockVector.
///
/// This is the "generic" version that we don't implement.
/// We actually implement versions for ViewType rank 1 or rank 2.
template<class ViewType1,
         class ViewType2,
         const int rank1 = ViewType1::rank>
struct AbsMax {
  static KOKKOS_INLINE_FUNCTION void
  run (const ViewType2& Y, const ViewType1& X);
};

/// \brief Implementation of Tpetra's ABSMAX CombineMode for the small
///   dense blocks in BlockCrsMatrix.
///
/// Tpetra uses this operation to implement the ABSMAX CombineMode.
template<class ViewType1,
         class ViewType2>
struct AbsMax<ViewType1, ViewType2, 2> {
  /// \brief <tt>(*this)(i,j) := max(abs((*this)(i,j)), abs(X(i,j)))</tt>
  ///   for all (i,j).
  static KOKKOS_INLINE_FUNCTION void
  run (const ViewType2& Y, const ViewType1& X)
  {
    static_assert (static_cast<int> (ViewType1::rank) == static_cast<int> (ViewType2::rank),
                   "AbsMax: ViewType1 and ViewType2 must have the same rank.");
    typedef typename std::remove_reference<decltype (Y(0,0)) >::type STY;
    static_assert(! std::is_const<STY>::value,
      "AbsMax: The type of each entry of Y must be nonconst.");
    typedef typename std::decay<decltype (X(0,0)) >::type STX;
    static_assert(  std::is_same<STX, STY>::value,
      "AbsMax: The type of each entry of X and Y must be the same.");
    typedef Kokkos::Details::ArithTraits<STY> KAT;

    const int numCols = Y.dimension_1 ();
    const int numRows = Y.dimension_0 ();
    for (int j = 0; j < numCols; ++j) {
      for (int i = 0; i < numRows; ++i) {
        STY& Y_ij = Y(i,j); // use ref here to avoid 2nd op() call on Y
        const STX X_ij = X(i,j);
        // NOTE: no std::max (not a CUDA __device__ function); must
        // cast back up to complex.
        const auto Y_ij_abs = KAT::abs (Y_ij);
        const auto X_ij_abs = KAT::abs (X_ij);
        Y_ij = (Y_ij_abs >= X_ij_abs) ?
          static_cast<STY> (Y_ij_abs) :
          static_cast<STY> (X_ij_abs);
      }
    }
  }
};

/// \brief Implementation of Tpetra's ABSMAX CombineMode for the small
///   dense vectors in BlockMultiVector and BlockVector.
///
/// Tpetra uses this operation to implement the ABSMAX CombineMode.
template<class ViewType1,
         class ViewType2>
struct AbsMax<ViewType1, ViewType2, 1> {
  /// \brief <tt>(*this)(i) := max(abs((*this)(i)), abs(X(i)))</tt>
  ///   for all i.
  static KOKKOS_INLINE_FUNCTION void
  run (const ViewType2& Y, const ViewType1& X)
  {
    static_assert (static_cast<int> (ViewType1::rank) == static_cast<int> (ViewType2::rank),
                   "AbsMax: ViewType1 and ViewType2 must have the same rank.");

    typedef typename std::remove_reference<decltype (Y(0)) >::type STY;
    static_assert(! std::is_const<STY>::value,
      "AbsMax: The type of each entry of Y must be nonconst.");
    typedef typename std::remove_const<typename std::remove_reference<decltype (X(0)) >::type>::type STX;
    static_assert(  std::is_same<STX, STY>::value,
      "AbsMax: The type of each entry of X and Y must be the same.");
    typedef Kokkos::Details::ArithTraits<STY> KAT;

    const int numRows = Y.dimension_0 ();
    for (int i = 0; i < numRows; ++i) {
      STY& Y_i = Y(i); // use ref here to avoid 2nd op() call on Y
      const STX X_i = X(i);
      // NOTE: no std::max (not a CUDA __device__ function); must
      // cast back up to complex.
      const auto Y_i_abs = KAT::abs (Y_i);
      const auto X_i_abs = KAT::abs (X_i);
      Y_i = (Y_i_abs >= X_i_abs) ?
        static_cast<STY> (Y_i_abs) :
        static_cast<STY> (X_i_abs);
    }
  }
};

/// \brief Implementation of Tpetra's ABSMAX CombineMode for the small
///   dense blocks in BlockCrsMatrix, and the small dense vectors in
///   BlockMultiVector and BlockVector.
///
/// This is the function that Tpetra actually uses to implement the
/// ABSMAX CombineMode.
template<class ViewType1, class ViewType2, const int rank = ViewType1::rank>
KOKKOS_INLINE_FUNCTION void
absMax (const ViewType2& Y, const ViewType1& X)
{
  static_assert (static_cast<int> (ViewType1::rank) == static_cast<int> (ViewType2::rank),
                 "absMax: ViewType1 and ViewType2 must have the same rank.");
  AbsMax<ViewType1, ViewType2, rank>::run (Y, X);
}

/// \brief Implementation of Tpetra::Experimental::SCAL function.
///
/// This is the "generic" version that we don't implement.
/// We actually implement versions for ViewType rank 1 or rank 2.
template<class ViewType,
         class CoefficientType,
         class LayoutType = typename ViewType::array_layout,
         class IndexType = int,
         const int rank = ViewType::rank>
struct SCAL {
  static KOKKOS_INLINE_FUNCTION void
  run (const CoefficientType& alpha, const ViewType& x);
};

/// \brief Implementation of Tpetra::Experimental::SCAL function, for
///   ViewType rank 1 (i.e., a vector).
template<class ViewType,
         class CoefficientType,
         class LayoutType,
         class IndexType>
struct SCAL<ViewType, CoefficientType, LayoutType, IndexType, 1> {
  /// \brief x := alpha*x (rank-1 x, i.e., a vector)
  static KOKKOS_INLINE_FUNCTION void
  run (const CoefficientType& alpha, const ViewType& x)
  {
    const IndexType numRows = static_cast<IndexType> (x.dimension_0 ());
    // BLAS _SCAL doesn't check whether alpha is 0.
    for (IndexType i = 0; i < numRows; ++i) {
      x(i) = alpha * x(i);
    }
  }
};

/// \brief Implementation of Tpetra::Experimental::SCAL function, for
///   ViewType rank 2 (i.e., a matrix).
template<class ViewType,
         class CoefficientType,
         class LayoutType,
         class IndexType>
struct SCAL<ViewType, CoefficientType, LayoutType, IndexType, 2> {
  /// \brief A := alpha*A (rank-2 A, i.e., a matrix)
  static KOKKOS_INLINE_FUNCTION void
  run (const CoefficientType& alpha, const ViewType& A)
  {
    const IndexType numRows = static_cast<IndexType> (A.dimension_0 ());
    const IndexType numCols = static_cast<IndexType> (A.dimension_1 ());

    // BLAS _SCAL doesn't check whether alpha is 0.
    for (IndexType i = 0; i < numRows; ++i) {
      for (IndexType j = 0; j < numCols; ++j) {
        A(i,j) = alpha * A(i,j);
      }
    }
  }
};

/// \brief Implementation of Tpetra::Experimental::SCAL function, for
///   ViewType rank 2 (i.e., a matrix), and LayoutType = LayoutRight.
///
/// For LayoutRight (or LayoutLeft) input, we can flatten indexing
/// from 2-D to 1-D.
template<class ViewType,
         class CoefficientType,
         class IndexType>
struct SCAL<ViewType, CoefficientType, Kokkos::LayoutRight, IndexType, 2> {
  /// \brief A := alpha*A (rank-2 A, i.e., a matrix)
  static KOKKOS_INLINE_FUNCTION void
  run (const CoefficientType& alpha, const ViewType& A)
  {
    const IndexType N = A.size ();
    typedef typename std::decay<decltype (A(0,0)) >::type scalar_type;
    scalar_type* const A_raw = A.ptr_on_device ();

    for (IndexType i = 0; i < N; ++i) {
      A_raw[i] = alpha * A_raw[i];
    }
  }
};


/// \brief Implementation of Tpetra::Experimental::FILL function.
///
/// This is the "generic" version that we don't implement.
/// We actually implement versions for ViewType rank 1 or rank 2.
template<class ViewType,
         class InputType,
         class LayoutType = typename ViewType::array_layout,
         class IndexType = int,
         const int rank = ViewType::rank>
struct FILL {
  static KOKKOS_INLINE_FUNCTION void
  run (const ViewType& x, const InputType& val);
};

/// \brief Implementation of Tpetra::Experimental::FILL function, for
///   ViewType rank 1 (i.e., a vector).
template<class ViewType,
         class InputType,
         class LayoutType,
         class IndexType>
struct FILL<ViewType, InputType, LayoutType, IndexType, 1> {
  static KOKKOS_INLINE_FUNCTION void
  run (const ViewType& x, const InputType& val)
  {
    const IndexType numRows = static_cast<IndexType> (x.dimension_0 ());
    for (IndexType i = 0; i < numRows; ++i) {
      x(i) = val;
    }
  }
};

/// \brief Implementation of Tpetra::Experimental::FILL function, for
///   ViewType rank 2 (i.e., a matrix).
template<class ViewType,
         class InputType,
         class LayoutType,
         class IndexType>
struct FILL<ViewType, InputType, LayoutType, IndexType, 2> {
  static KOKKOS_INLINE_FUNCTION void
  run (const ViewType& X, const InputType& val)
  {
    const IndexType numRows = static_cast<IndexType> (X.dimension_0 ());
    const IndexType numCols = static_cast<IndexType> (X.dimension_1 ());
    for (IndexType j = 0; j < numCols; ++j) {
      for (IndexType i = 0; i < numRows; ++i) {
        X(i,j) = val;
      }
    }
  }
};

/// \brief Implementation of Tpetra::Experimental::AXPY function.
///
/// This is the "generic" version that we don't implement.
/// We actually implement versions for ViewType rank 1 or rank 2.
template<class CoefficientType,
         class ViewType1,
         class ViewType2,
         class LayoutType1 = typename ViewType1::array_layout,
         class LayoutType2 = typename ViewType2::array_layout,
         class IndexType = int,
         const int rank = ViewType1::rank>
struct AXPY {
  static KOKKOS_INLINE_FUNCTION void
  run (const CoefficientType& alpha,
       const ViewType1& x,
       const ViewType2& y);
};

/// \brief Implementation of Tpetra::Experimental::AXPY function, for
///   ViewType1 and ViewType2 rank 1 (i.e., vectors).
template<class CoefficientType,
         class ViewType1,
         class ViewType2,
         class LayoutType1,
         class LayoutType2,
         class IndexType>
struct AXPY<CoefficientType, ViewType1, ViewType2, LayoutType1, LayoutType2, IndexType, 1> {
  /// \brief y := y + alpha*x (rank-1 x and y, i.e., vectors)
  static KOKKOS_INLINE_FUNCTION void
  run (const CoefficientType& alpha,
       const ViewType1& x,
       const ViewType2& y)
  {
    static_assert (static_cast<int> (ViewType1::rank) == static_cast<int> (ViewType2::rank),
                   "AXPY: x and y must have the same rank.");
    const IndexType numRows = static_cast<IndexType> (y.dimension_0 ());
    if (alpha != 0.0) {
      for (IndexType i = 0; i < numRows; ++i) {
        y(i) += alpha * x(i);
      }
    }
  }
};

/// \brief Implementation of Tpetra::Experimental::AXPY function, for
///   ViewType1 and ViewType2 rank 2 (i.e., matrices).
template<class CoefficientType,
         class ViewType1,
         class ViewType2,
         class LayoutType1,
         class LayoutType2,
         class IndexType>
struct AXPY<CoefficientType, ViewType1, ViewType2, LayoutType1, LayoutType2, IndexType, 2> {
  /// \brief Y := Y + alpha*X (rank-2 X and Y, i.e., matrices)
  static KOKKOS_INLINE_FUNCTION void
  run (const CoefficientType& alpha,
       const ViewType1& X,
       const ViewType2& Y)
  {
    static_assert (ViewType1::rank == ViewType2::rank,
                   "AXPY: X and Y must have the same rank.");
    const IndexType numRows = static_cast<IndexType> (Y.dimension_0 ());
    const IndexType numCols = static_cast<IndexType> (Y.dimension_1 ());

    if (alpha != 0.0) {
      for (IndexType i = 0; i < numRows; ++i) {
        for (IndexType j = 0; j < numCols; ++j) {
          Y(i,j) += alpha * X(i,j);
        }
      }
    }
  }
};

/// \brief Implementation of Tpetra::Experimental::AXPY function, for
///   ViewType1 and ViewType2 rank 2 (i.e., matrices), when both
///   ViewType1 and ViewType2 have LayoutRight.
template<class CoefficientType,
         class ViewType1,
         class ViewType2,
         class IndexType>
struct AXPY<CoefficientType, ViewType1, ViewType2, Kokkos::LayoutRight, Kokkos::LayoutRight, IndexType, 2> {
  /// \brief Y := Y + alpha*X (rank-2 X and Y, i.e., matrices)
  static KOKKOS_INLINE_FUNCTION void
  run (const CoefficientType& alpha,
       const ViewType1& X,
       const ViewType2& Y)
  {
    static_assert (static_cast<int> (ViewType1::rank) == static_cast<int> (ViewType2::rank),
                   "AXPY: X and Y must have the same rank.");
    typedef typename std::decay<decltype (X(0,0)) >::type SX;
    typedef typename std::decay<decltype (Y(0,0)) >::type SY;

    const IndexType N = static_cast<IndexType> (Y.size ());
    const SX* const X_raw = X.ptr_on_device ();
    SY* const Y_raw = Y.ptr_on_device ();

    if (alpha != 0.0) {
      for (IndexType i = 0; i < N; ++i) {
        Y_raw[i] += alpha * X_raw[i];
      }
    }
  }
};

/// \brief Implementation of Tpetra::Experimental::AXPY function, for
///   ViewType1 and ViewType2 rank 2 (i.e., matrices), when both
///   ViewType1 and ViewType2 have LayoutLeft.
template<class CoefficientType,
         class ViewType1,
         class ViewType2,
         class IndexType>
struct AXPY<CoefficientType, ViewType1, ViewType2, Kokkos::LayoutLeft, Kokkos::LayoutLeft, IndexType, 2> {
  /// \brief Y := Y + alpha*X (rank-2 X and Y, i.e., matrices)
  static KOKKOS_INLINE_FUNCTION void
  run (const CoefficientType& alpha,
       const ViewType1& X,
       const ViewType2& Y)
  {
    static_assert (ViewType1::rank == ViewType2::rank,
                   "AXPY: X and Y must have the same rank.");
    typedef typename std::decay<decltype (X(0,0)) >::type SX;
    typedef typename std::decay<decltype (Y(0,0)) >::type SY;

    const IndexType N = static_cast<IndexType> (Y.size ());
    const SX* const X_raw = X.ptr_on_device ();
    SY* const Y_raw = Y.ptr_on_device ();

    if (alpha != 0.0) {
      for (IndexType i = 0; i < N; ++i) {
        Y_raw[i] += alpha * X_raw[i];
      }
    }
  }
};

/// \brief Implementation of Tpetra::Experimental::COPY function.
///
/// This is the "generic" version that we don't implement.
/// We actually implement versions for ViewType rank 1 or rank 2.
template<class ViewType1,
         class ViewType2,
         class LayoutType1 = typename ViewType1::array_layout,
         class LayoutType2 = typename ViewType2::array_layout,
         class IndexType = int,
         const int rank = ViewType1::rank>
struct COPY {
  static KOKKOS_INLINE_FUNCTION void
  run (const ViewType1& x, const ViewType2& y);
};

/// \brief Implementation of Tpetra::Experimental::COPY function, for
///   ViewType1 and ViewType2 rank 1 (i.e., vectors).
template<class ViewType1,
         class ViewType2,
         class LayoutType1,
         class LayoutType2,
         class IndexType>
struct COPY<ViewType1, ViewType2, LayoutType1, LayoutType2, IndexType, 1> {
  /// \brief y := x (rank-1 x and y, i.e., vectors)
  static KOKKOS_INLINE_FUNCTION void
  run (const ViewType1& x, const ViewType2& y)
  {
    const IndexType numRows = static_cast<IndexType> (x.dimension_0 ());
    for (IndexType i = 0; i < numRows; ++i) {
      y(i) = x(i);
    }
  }
};

/// \brief Implementation of Tpetra::Experimental::COPY function, for
///   ViewType1 and ViewType2 rank 2 (i.e., matrices).
template<class ViewType1,
         class ViewType2,
         class LayoutType1,
         class LayoutType2,
         class IndexType>
struct COPY<ViewType1, ViewType2, LayoutType1, LayoutType2, IndexType, 2> {
  /// \brief Y := X (rank-2 X and Y, i.e., matrices)
  static KOKKOS_INLINE_FUNCTION void
  run (const ViewType1& X, const ViewType2& Y)
  {
    const IndexType numRows = static_cast<IndexType> (Y.dimension_0 ());
    const IndexType numCols = static_cast<IndexType> (Y.dimension_1 ());

    // BLAS _SCAL doesn't check whether alpha is 0.
    for (IndexType i = 0; i < numRows; ++i) {
      for (IndexType j = 0; j < numCols; ++j) {
        Y(i,j) = X(i,j);
      }
    }
  }
};

/// \brief Implementation of Tpetra::Experimental::COPY function, for
///   ViewType1 and ViewType2 rank 2 (i.e., matrices), where both have
///   LayoutRight (row-major order, with contiguous storage).
template<class ViewType1,
         class ViewType2,
         class IndexType>
struct COPY<ViewType1, ViewType2, Kokkos::LayoutRight, Kokkos::LayoutRight, IndexType, 2> {
  /// \brief Y := X (rank-2 X and Y, i.e., matrices)
  static KOKKOS_INLINE_FUNCTION void
  run (const ViewType1& X, const ViewType2& Y)
  {
    typedef typename std::decay<decltype (X(0,0)) >::type SX;
    typedef typename std::decay<decltype (Y(0,0)) >::type SY;

    const IndexType N = static_cast<IndexType> (Y.size ());
    const SX* const X_raw = X.ptr_on_device ();
    SY* const Y_raw = Y.ptr_on_device ();

    // BLAS _SCAL doesn't check whether alpha is 0.
    for (IndexType i = 0; i < N; ++i) {
      Y_raw[i] = X_raw[i];
    }
  }
};

/// \brief Implementation of Tpetra::Experimental::COPY function, for
///   ViewType1 and ViewType2 rank 2 (i.e., matrices), where both have
///   LayoutLeft (row-major order, with contiguous storage).
template<class ViewType1,
         class ViewType2,
         class IndexType>
struct COPY<ViewType1, ViewType2, Kokkos::LayoutLeft, Kokkos::LayoutLeft, IndexType, 2> {
  /// \brief Y := X (rank-2 X and Y, i.e., matrices)
  static KOKKOS_INLINE_FUNCTION void
  run (const ViewType1& X, const ViewType2& Y)
  {
    typedef typename std::decay<decltype (X(0,0)) >::type SX;
    typedef typename std::decay<decltype (Y(0,0)) >::type SY;

    const IndexType N = static_cast<IndexType> (Y.size ());
    const SX* const X_raw = X.ptr_on_device ();
    SY* const Y_raw = Y.ptr_on_device ();

    // BLAS _SCAL doesn't check whether alpha is 0.
    for (IndexType i = 0; i < N; ++i) {
      Y_raw[i] = X_raw[i];
    }
  }
};


template<class VecType1,
         class BlkType,
         class VecType2,
         class CoeffType,
         class IndexType = int,
         class VecLayoutType1 = typename VecType1::array_layout,
         class BlkLayoutType = typename BlkType::array_layout,
         class VecLayoutType2 = typename VecType2::array_layout>
struct GEMV {
  static KOKKOS_INLINE_FUNCTION void
  run (const CoeffType& alpha,
       const BlkType& A,
       const VecType1& x,
       const VecType2& y)
  {
    static_assert (VecType1::rank == 1, "GEMV: VecType1 must have rank 1.");
    static_assert (BlkType::rank == 2, "GEMV: BlkType must have rank 2.");
    static_assert (VecType2::rank == 1, "GEMV: VecType2 must have rank 1.");
    typedef typename std::decay<decltype (y(0)) >::type y_elt_type;

    const IndexType numRows = static_cast<IndexType> (A.dimension_0 ());
    const IndexType numCols = static_cast<IndexType> (A.dimension_1 ());

    for (IndexType i = 0; i < numRows; ++i) {
      y_elt_type y_i = y(i);
      for (IndexType j = 0; j < numCols; ++j) {
        y_i += alpha * A(i,j) * x(j);
      }
      y(i) = y_i;
    }
  }
};

template<class VecType1,
         class BlkType,
         class VecType2,
         class CoeffType,
         class IndexType>
struct GEMV<VecType1, BlkType, VecType2, CoeffType, IndexType,
            Kokkos::LayoutRight, Kokkos::LayoutRight, Kokkos::LayoutRight>
{
  static KOKKOS_INLINE_FUNCTION void
  run (const CoeffType& alpha,
       const BlkType& A,
       const VecType1& x,
       const VecType2& y)
  {
    static_assert (VecType1::rank == 1, "GEMV: VecType1 must have rank 1.");
    static_assert (BlkType::rank == 2, "GEMV: BlkType must have rank 2.");
    static_assert (VecType2::rank == 1, "GEMV: VecType2 must have rank 1.");
    typedef typename std::decay<decltype (y(0)) >::type y_elt_type;
    typedef typename std::decay<decltype (A(0,0)) >::type A_elt_type;

    const IndexType numRows = static_cast<IndexType> (A.dimension_0 ());
    const IndexType numCols = static_cast<IndexType> (A.dimension_1 ());
    const A_elt_type* const A_raw = A.ptr_on_device ();

    for (IndexType i = 0; i < numRows; ++i) {
      y_elt_type y_i = y(i);
      const A_elt_type* const A_i = A_raw + i*numCols;
      for (IndexType j = 0; j < numCols; ++j) {
        y_i += alpha * A_i[j] * x(j);
      }
      y(i) = y_i;
    }
  }
};

template<class VecType1,
         class BlkType,
         class VecType2,
         class CoeffType,
         class IndexType>
struct GEMV<VecType1, BlkType, VecType2, CoeffType, IndexType,
            Kokkos::LayoutLeft, Kokkos::LayoutLeft, Kokkos::LayoutLeft>
{
  static KOKKOS_INLINE_FUNCTION void
  run (const CoeffType& alpha,
       const BlkType& A,
       const VecType1& x,
       const VecType2& y)
  {
    static_assert (VecType1::rank == 1, "GEMV: VecType1 must have rank 1.");
    static_assert (BlkType::rank == 2, "GEMV: BlkType must have rank 2.");
    static_assert (VecType2::rank == 1, "GEMV: VecType2 must have rank 1.");
    typedef typename std::decay<decltype (A(0,0)) >::type A_elt_type;

    const A_elt_type* const A_raw = A.ptr_on_device ();
    const IndexType numRows = static_cast<IndexType> (A.dimension_0 ());
    const IndexType numCols = static_cast<IndexType> (A.dimension_1 ());
    for (IndexType j = 0; j < numCols; ++j) {
      const A_elt_type* const A_j = A_raw + j*numRows;
      for (IndexType i = 0; i < numRows; ++i) {
        y(i) += alpha * A_j[i] * x(i);
      }
    }
  }
};

} // namespace Impl

/// \brief x := alpha*x, where x is either rank 1 (a vector) or rank 2
///   (a matrix).
template<class ViewType,
         class CoefficientType,
         class LayoutType = typename ViewType::array_layout,
         class IndexType = int,
         const int rank = ViewType::rank>
KOKKOS_INLINE_FUNCTION void
SCAL (const CoefficientType& alpha, const ViewType& x)
{
  Impl::SCAL<ViewType, CoefficientType, LayoutType, IndexType, rank>::run (alpha, x);
}

/// \brief Set every entry of x to val.
template<class ViewType,
         class InputType,
         class LayoutType = typename ViewType::array_layout,
         class IndexType = int,
         const int rank = ViewType::rank>
KOKKOS_INLINE_FUNCTION void
FILL (const ViewType& x, const InputType& val)
{
  Impl::FILL<ViewType, InputType, LayoutType, IndexType, rank>::run (x, val);
}

/// \brief <tt>y := y + alpha * x</tt> (dense vector or matrix update)
///
/// This function follows the BLAS convention that if alpha == 0, then
/// it does nothing.  (This matters only if x contains Inf or NaN
/// values.)
template<class CoefficientType,
         class ViewType1,
         class ViewType2,
         class LayoutType1 = typename ViewType1::array_layout,
         class LayoutType2 = typename ViewType2::array_layout,
         class IndexType = int,
         const int rank = ViewType1::rank>
KOKKOS_INLINE_FUNCTION void
AXPY (const CoefficientType& alpha,
      const ViewType1& x,
      const ViewType2& y)
{
  static_assert (static_cast<int> (ViewType1::rank) ==
                 static_cast<int> (ViewType2::rank),
                 "AXPY: x and y must have the same rank.");
  Impl::AXPY<CoefficientType, ViewType1, ViewType2, LayoutType1, LayoutType2,
    IndexType, rank>::run (alpha, x, y);
}

/// \brief Deep copy x into y, where x and y are either rank 1
///   (vectors) or rank 2 (matrices) with the same dimension(s).
///
/// \param x [in] The input vector / matrix.
/// \param y [out] The output vector / matrix.
///
/// We put the output argument last, because that's what the BLAS
/// functions _COPY (replace _ with "S", "D", "C", or "Z") do.
template<class ViewType1,
         class ViewType2,
         class LayoutType1 = typename ViewType1::array_layout,
         class LayoutType2 = typename ViewType2::array_layout,
         class IndexType = int,
         const int rank = ViewType1::rank>
KOKKOS_INLINE_FUNCTION void
COPY (const ViewType1& x, const ViewType2& y)
{
  static_assert (static_cast<int> (ViewType1::rank) ==
                 static_cast<int> (ViewType2::rank),
                 "COPY: x and y must have the same rank.");
  Impl::COPY<ViewType1, ViewType2, LayoutType1, LayoutType2, IndexType,
    rank>::run (x, y);
}

/// \brief <tt>y := y + alpha * A * x</tt> (dense matrix-vector multiply)
///
/// \param alpha [in] Coefficient by which to multiply A*x (this does
///   NOT necessarily follow BLAS rules; the caller is responsible for
///   checking whether alpha == 0 and implementing BLAS rules in that
///   case).
/// \param A [in] Small dense matrix (must have rank 2)
/// \param x [in] Small dense vector input (must have rank 1 and at
///   least as many rows as A has columns)
/// \param y [in/out] Small dense vector output (must have rank 1 and
///   at least as many rows as A has rows)
template<class VecType1,
         class BlkType,
         class VecType2,
         class CoeffType,
         class IndexType = int>
KOKKOS_INLINE_FUNCTION void
GEMV (const CoeffType& alpha,
      const BlkType& A,
      const VecType1& x,
      const VecType2& y)
{
  Impl::GEMV<VecType1, BlkType, VecType2, CoeffType,
    IndexType>::run (alpha, A, x, y);
}

/// \brief Small dense matrix-matrix multiply: <tt>C := alpha*A*B + beta*C</tt>
///
/// \tparam ViewType1 Type of the first matrix input A.
/// \tparam ViewType2 Type of the second matrix input B.
/// \tparam ViewType3 Type of the third matrix input/output C.
/// \tparam CoefficientType Type of the scalar coefficients alpha and beta.
/// \tparam IndexType Type of the index used in for loops; defaults to \c int.
template<class ViewType1,
         class ViewType2,
         class ViewType3,
         class CoefficientType,
         class IndexType = int>
KOKKOS_INLINE_FUNCTION void
GEMM (const char transA[],
      const char transB[],
      const CoefficientType& alpha,
      const ViewType1& A,
      const ViewType2& B,
      const CoefficientType& beta,
      const ViewType3& C)
{
  // Assert that A, B, and C are in fact matrices
  static_assert (ViewType1::rank == 2, "GEMM: A must have rank 2 (be a matrix).");
  static_assert (ViewType2::rank == 2, "GEMM: B must have rank 2 (be a matrix).");
  static_assert (ViewType3::rank == 2, "GEMM: C must have rank 2 (be a matrix).");

  typedef typename std::remove_reference<decltype (A(0,0))>::type Scalar;
  typedef Kokkos::Details::ArithTraits<Scalar> STS;
  const Scalar ZERO = STS::zero();
  const Scalar ONE = STS::one();

  // Get the dimensions
  IndexType m, n, k;
  if(transA[0] == 'N' || transA[0] == 'n') {
    m = static_cast<IndexType> (A.dimension_0 ());
    n = static_cast<IndexType> (A.dimension_1 ());
  }
  else {
    m = static_cast<IndexType> (A.dimension_1 ());
    n = static_cast<IndexType> (A.dimension_0 ());
  }
  k = static_cast<IndexType> (C.dimension_1 ());

  // quick return if possible
  if(alpha == ZERO && beta == ONE)
    return;

  // And if alpha equals zero...
  if(alpha == ZERO) {
    if(beta == ZERO) {
      for(IndexType i=0; i<m; i++) {
        for(IndexType j=0; j<k; j++) {
          C(i,j) = ZERO;
        }
      }
    }
    else {
      for(IndexType i=0; i<m; i++) {
        for(IndexType j=0; j<k; j++) {
          C(i,j) = beta*C(i,j);
        }
      }
    }
  }

  // Start the operations
  if(transB[0] == 'n' || transB[0] == 'N') {
    if(transA[0] == 'n' || transA[0] == 'N') {
      // Form C = alpha*A*B + beta*C
      for(IndexType j=0; j<n; j++) {
        if(beta == ZERO) {
          for(IndexType i=0; i<m; i++) {
            C(i,j) = ZERO;
          }
        }
        else if(beta != ONE) {
          for(IndexType i=0; i<m; i++) {
            C(i,j) = beta*C(i,j);
          }
        }
        for(IndexType l=0; l<k; l++) {
          Scalar temp = alpha*B(l,j);
          for(IndexType i=0; i<m; i++) {
            C(i,j) = C(i,j) + temp*A(i,l);
          }
        }
      }
    }
    else {
      // Form C = alpha*A**T*B + beta*C
      for(IndexType j=0; j<n; j++) {
        for(IndexType i=0; i<m; i++) {
          Scalar temp = ZERO;
          for(IndexType l=0; l<k; l++) {
            temp = temp + A(l,i)*B(l,j);
          }
          if(beta == ZERO) {
            C(i,j) = alpha*temp;
          }
          else {
            C(i,j) = alpha*temp + beta*C(i,j);
          }
        }
      }
    }
  }
  else {
    if(transA[0] == 'n' || transA[0] == 'N') {
      // Form C = alpha*A*B**T + beta*C
      for(IndexType j=0; j<n; j++) {
        if(beta == ZERO) {
          for(IndexType i=0; i<m; i++) {
            C(i,j) = ZERO;
          }
        }
        else if(beta != ONE) {
          for(IndexType i=0; i<m; i++) {
            C(i,j) = beta*C(i,j);
          }
        }
        for(IndexType l=0; l<k; l++) {
          Scalar temp = alpha*B(j,l);
          for(IndexType i=0; i<m; i++) {
            C(i,j) = C(i,j) + temp*A(i,l);
          }
        }
      }
    }
    else {
      // Form C = alpha*A**T*B**T + beta*C
      for(IndexType j=0; j<n; j++) {
        for(IndexType i=0; i<m; i++) {
          Scalar temp = ZERO;
          for(IndexType l=0; l<k; l++) {
            temp = temp + A(l,i)*B(j,l);
          }
          if(beta == ZERO) {
            C(i,j) = alpha*temp;
          }
          else {
            C(i,j) = alpha*temp + beta*C(i,j);
          }
        }
      }
    }
  }
}

/// \brief Computes A = P*L*U
template<class LittleBlockType,
         class LittleVectorType>
KOKKOS_INLINE_FUNCTION void
GETF2 (const LittleBlockType& A, const LittleVectorType& ipiv, int& info)
{
  // The type of an entry of ipiv is the index type.
  typedef typename std::decay<decltype (ipiv(0)) >::type IndexType;
  static_assert (std::is_integral<IndexType>::value,
                 "GETF2: The type of each entry of ipiv must be an integer type.");
  typedef typename std::remove_reference<decltype (A(0,0))>::type Scalar;
  static_assert (! std::is_const<Scalar>::value,
                 "GETF2: A must not be a const View (or LittleBlock).");
  static_assert (! std::is_const<std::remove_reference<decltype (ipiv(0))>>::value,
                 "GETF2: ipiv must not be a const View (or LittleBlock).");
  static_assert (LittleBlockType::rank == 2, "GETF2: A must have rank 2 (be a matrix).");
  typedef Kokkos::Details::ArithTraits<Scalar> STS;
  const Scalar ZERO = STS::zero();

  const IndexType numRows = static_cast<IndexType> (A.dimension_0 ());
  const IndexType numCols = static_cast<IndexType> (A.dimension_1 ());
  const IndexType pivDim = static_cast<IndexType> (ipiv.dimension_0 ());

  // std::min is not a CUDA device function
  const IndexType minPivDim = (numRows < numCols) ? numRows : numCols;
  if (pivDim < minPivDim) {
    info = -2;
    return;
  }

  // Initialize info
  info = 0;

  for(IndexType j=0; j < pivDim; j++)
  {
    // Find pivot and test for singularity
    IndexType jp = j;
    for(IndexType i=j+1; i<numRows; i++)
    {
      if(STS::abs(A(i,j)) > STS::abs(A(jp,j))) {
        jp = i;
      }
    }
    ipiv(j) = jp+1;

    if(A(jp,j) != ZERO)
    {
      // Apply the interchange to columns 1:N
      if(jp != j)
      {
        for(IndexType i=0; i < numCols; i++)
        {
          Scalar temp = A(jp,i);
          A(jp,i) = A(j,i);
          A(j,i) = temp;
        }
      }

      // Compute elements J+1:M of J-th column
      for(IndexType i=j+1; i<numRows; i++) {
        A(i,j) = A(i,j) / A(j,j);
      }
    }
    else if(info == 0) {
      info = j;
    }

    // Update trailing submatrix
    for(IndexType r=j+1; r < numRows; r++)
    {
      for(IndexType c=j+1; c < numCols; c++) {
        A(r,c) = A(r,c) - A(r,j) * A(j,c);
      }
    }
  }
}

namespace Impl {

/// \brief Computes the solution to Ax=b
///
/// We have not implemented transpose yet, or multiple RHS
template<class LittleBlockType,
         class LittleIntVectorType,
         class LittleScalarVectorType,
         const int rank = LittleScalarVectorType::rank>
struct GETRS {
  static KOKKOS_INLINE_FUNCTION void
  run (const char mode[],
       const LittleBlockType& A,
       const LittleIntVectorType& ipiv,
       const LittleScalarVectorType& B,
       int& info);
};

//! Special case of GETRS for a single right-hand side.
template<class LittleBlockType,
         class LittleIntVectorType,
         class LittleScalarVectorType>
struct GETRS<LittleBlockType, LittleIntVectorType, LittleScalarVectorType, 1> {
  static KOKKOS_INLINE_FUNCTION void
  run (const char mode[],
       const LittleBlockType& A,
       const LittleIntVectorType& ipiv,
       const LittleScalarVectorType& B,
       int& info)
  {
    // The type of an entry of ipiv is the index type.
    typedef typename std::decay<decltype (ipiv(0))>::type IndexType;
    // IndexType must be signed, because this code does a countdown loop
    // to zero.  Unsigned integers are always >= 0, even on underflow.
    static_assert (std::is_integral<IndexType>::value &&
                   std::is_signed<IndexType>::value,
                   "GETRS: The type of each entry of ipiv must be a signed integer.");
    typedef typename std::decay<decltype (A(0,0))>::type Scalar;
    static_assert (! std::is_const<std::remove_reference<decltype (B(0))>>::value,
                   "GETRS: B must not be a const View (or LittleBlock).");
    static_assert (LittleBlockType::rank == 2, "GETRS: A must have rank 2 (be a matrix).");
    static_assert (LittleIntVectorType::rank == 1, "GETRS: ipiv must have rank 1.");
    static_assert (LittleScalarVectorType::rank == 1, "GETRS: For this specialization, B must have rank 1.");

    typedef Kokkos::Details::ArithTraits<Scalar> STS;
    const Scalar ZERO = STS::zero();
    const IndexType numRows = static_cast<IndexType> (A.dimension_0 ());
    const IndexType numCols = static_cast<IndexType> (A.dimension_1 ());
    const IndexType pivDim = static_cast<IndexType> (ipiv.dimension_0 ());

    info = 0;

    // Ensure that the matrix is square
    if (numRows != numCols) {
      info = -2;
      return;
    }

    // Ensure that the pivot array is sufficiently large
    if (pivDim < numRows) {
      info = -3;
      return;
    }

    // No transpose case
    if(mode[0] == 'n' || mode[0] == 'N') {
      // Apply row interchanges to the RHS
      for(IndexType i=0; i<numRows; i++) {
        if(ipiv(i) != i+1) {
          Scalar temp = B(i);
          B(i) = B(ipiv(i)-1);
          B(ipiv(i)-1) = temp;
        }
      }

      // Solve Lx=b, overwriting b with x
      for(IndexType r=1; r < numRows; r++) {
        for(IndexType c=0; c < r; c++) {
          B(r) = B(r) - A(r,c)*B(c);
        }
      }

      // Solve Ux=b, overwriting b with x
      for(IndexType r=numRows-1; r >= 0; r--) {
        // Check whether U is singular
        if(A(r,r) == ZERO) {
          info = r+1;
          return;
        }

        for(IndexType c=r+1; c < numCols; c++) {
          B(r) = B(r) - A(r,c)*B(c);
        }
        B(r) = B(r) / A(r,r);
      }
    }
    // Transpose case
    else if(mode[0] == 't' || mode[0] == 'T') {
      info = -1; // NOT YET IMPLEMENTED
      return;
    }
    // Conjugate transpose case
    else if (mode[0] == 'c' || mode[0] == 'C') {
      info = -1; // NOT YET IMPLEMENTED
      return;
    }
    else { // invalid mode
      info = -1;
      return;
    }
  }
};


//! Special case of GETRS for multiple right-hand sides.
template<class LittleBlockType,
         class LittleIntVectorType,
         class LittleScalarVectorType>
struct GETRS<LittleBlockType, LittleIntVectorType, LittleScalarVectorType, 2> {
  static KOKKOS_INLINE_FUNCTION void
  run (const char mode[],
       const LittleBlockType& A,
       const LittleIntVectorType& ipiv,
       const LittleScalarVectorType& B,
       int& info)
  {
    // The type of an entry of ipiv is the index type.
    typedef typename std::decay<decltype (ipiv(0)) >::type IndexType;
    static_assert (std::is_integral<IndexType>::value,
                   "GETRS: The type of each entry of ipiv must be an integer type.");
    static_assert (! std::is_const<std::remove_reference<decltype (B(0)) > >::value,
                   "GETRS: B must not be a const View (or LittleBlock).");
    static_assert (LittleBlockType::rank == 2, "GETRS: A must have rank 2 (be a matrix).");
    static_assert (LittleIntVectorType::rank == 1, "GETRS: ipiv must have rank 1.");
    static_assert (LittleScalarVectorType::rank == 2, "GETRS: For this specialization, B must have rank 2.");

    // The current implementation iterates over one right-hand side at
    // a time.  It might be faster to do this differently, but this
    // should work for now.
    const IndexType numRhs = B.dimension_1 ();
    info = 0;

    for (IndexType rhs = 0; rhs < numRhs; ++rhs) {
      auto B_cur = Kokkos::subview (B, Kokkos::ALL (), rhs);
      GETRS<LittleBlockType, LittleIntVectorType, decltype (B_cur), 1>::run (mode, A, ipiv, B_cur, info);
      if (info != 0) {
        return;
      }
    }
  }
};

} // namespace Impl

/// \brief Solve the linear system(s) AX=B, using the result of GETRF or GETF2.
///
/// \warning We have not implemented transpose yet, or multiple right-hand sides.
template<class LittleBlockType,
         class LittleIntVectorType,
         class LittleScalarVectorType>
KOKKOS_INLINE_FUNCTION void
GETRS (const char mode[],
       const LittleBlockType& A,
       const LittleIntVectorType& ipiv,
       const LittleScalarVectorType& B,
       int& info)
{
  Impl::GETRS<LittleBlockType, LittleIntVectorType, LittleScalarVectorType,
    LittleScalarVectorType::rank>::run (mode, A, ipiv, B, info);
}


/// \brief Compute inverse of A, using result of GETRF or GETF2.
///
/// \tparam LittleBlockType Type of dense matrix \c A
/// \tparam LittleBlockType Type of 1-D pivot array \c ipiv
/// \tparam LittleScalarVectorType Type of 1-D work array \c work
///
/// \param A [in/out] On input: output matrix resulting from running
///   GETRF or GETF2 on a square matrix A.  On output: inverse of the
///   original matrix A.
/// \param ipiv [in] Pivot array from the LU factorization.
/// \param work [out] Temporary workspace; must be at least as long as
///   the number of rows in A.
/// \param info [out] On output, 0 if the routine was successful, else
///   nonzero.
template<class LittleBlockType,
         class LittleIntVectorType,
         class LittleScalarVectorType>
KOKKOS_INLINE_FUNCTION void
GETRI (const LittleBlockType& A,
       const LittleIntVectorType& ipiv,
       const LittleScalarVectorType& work,
       int& info)
{
  // The type of an entry of ipiv is the index type.
  typedef typename std::decay<decltype (ipiv(0))>::type IndexType;
  // IndexType must be signed, because this code does a countdown loop
  // to zero.  Unsigned integers are always >= 0, even on underflow.
  static_assert (std::is_integral<IndexType>::value &&
                 std::is_signed<IndexType>::value,
                 "GETRI: The type of each entry of ipiv must be a signed integer.");
  typedef typename std::remove_reference<decltype (A(0,0))>::type Scalar;
  static_assert (! std::is_const<std::remove_reference<decltype (A(0,0))>>::value,
                 "GETRI: A must not be a const View (or LittleBlock).");
  static_assert (! std::is_const<std::remove_reference<decltype (work(0))>>::value,
                 "GETRI: work must not be a const View (or LittleBlock).");
  static_assert (LittleBlockType::rank == 2, "GETRI: A must have rank 2 (be a matrix).");
  typedef Kokkos::Details::ArithTraits<Scalar> STS;
  const Scalar ZERO = STS::zero();
  const Scalar ONE = STS::one();

  const IndexType numRows = static_cast<IndexType> (A.dimension_0 ());
  const IndexType numCols = static_cast<IndexType> (A.dimension_1 ());
  const IndexType pivDim = static_cast<IndexType> (ipiv.dimension_0 ());
  const IndexType workDim = static_cast<IndexType> (work.dimension_0 ());

  info = 0;

  // Ensure that the matrix is square
  if (numRows != numCols) {
    info = -1;
    return;
  }

  // Ensure that the pivot array is sufficiently large
  if (pivDim < numRows) {
    info = -2;
    return;
  }

  // Ensure that the work array is sufficiently large
  if (workDim < numRows) {
    info = -3;
    return;
  }

  // Form Uinv in place
  for(IndexType j=0; j < numRows; j++) {
    if(A(j,j) == ZERO) {
      info = j+1;
      return;
    }

    A(j,j) = ONE / A(j,j);

    // Compute elements 1:j-1 of j-th column
    for(IndexType r=0; r < j; r++) {
      A(r,j) = A(r,r)*A(r,j);
      for(IndexType c=r+1; c < j; c++) {
        A(r,j) = A(r,j) + A(r,c)*A(c,j);
      }
    }
    for(IndexType r=0; r < j; r++) {
      A(r,j) = -A(j,j)*A(r,j);
    }
  }

  // Compute Ainv by solving A\L = Uinv
  for(IndexType j = numCols-2; j >= 0; j--) {
    // Copy lower triangular data to work array and replace with 0
    for(IndexType r=j+1; r < numRows; r++) {
      work(r) = A(r,j);
      A(r,j) = 0;
    }

    for(IndexType r=0; r < numRows; r++) {
      for(IndexType i=j+1; i < numRows; i++) {
        A(r,j) = A(r,j) - work(i)*A(r,i);
      }
    }
  }

  // Apply column interchanges
  for(IndexType j=numRows-1; j >= 0; j--) {
    IndexType jp = ipiv(j)-1;
    if(j != jp) {
      for(IndexType r=0; r < numRows; r++) {
        Scalar temp = A(r,j);
        A(r,j) = A(r,jp);
        A(r,jp) = temp;
      }
    }
  }
}


// mfh 08 Nov 2015: I haven't tested this overload yet.  It also needs
// an implementation for trans != 'N' (the transpose and conjugate
// transpose cases).
#if 0
template<class LittleBlockType,
         class LittleVectorTypeX,
         class LittleVectorTypeY,
         class CoefficientType,
         class IndexType = int>
KOKKOS_INLINE_FUNCTION void
GEMV (const char trans,
      const CoefficientType& alpha,
      const LittleBlockType& A,
      const LittleVectorTypeX& x,
      const CoefficientType& beta,
      const LittleVectorTypeY& y)
{
  // y(0) returns a reference to the 0-th entry of y.  Remove that
  // reference to get the type of each entry of y.  It's OK if y has
  // zero entries -- this doesn't actually do y(i), it just returns
  // the type of that expression.
  typedef typename std::remove_reference<decltype (y(0)) >::type y_value_type;
  const IndexType numRows = static_cast<IndexType> (A.dimension_0 ());
  const IndexType numCols = static_cast<IndexType> (A.dimension_1 ());

  if (beta == 0.0) {
    if (alpha == 0.0) {
      for (IndexType i = 0; i < numRows; ++i) {
        y(i) = 0.0;
      }
    }
    else {
      for (IndexType i = 0; i < numRows; ++i) {
        y_value_type y_i = 0.0;
        for (IndexType j = 0; j < numCols; ++j) {
          y_i += A(i,j) * x(j);
        }
        y(i) = y_i;
      }
    }
  }
  else { // beta != 0
    if (alpha == 0.0) {
      if (beta == 0.0) {
        for (IndexType i = 0; i < numRows; ++i) {
          y(i) = 0.0;
        }
      }
      else {
        for (IndexType i = 0; i < numRows; ++i) {
          y(i) *= beta;
        }
      }
    }
    else {
      for (IndexType i = 0; i < numRows; ++i) {
        y_value_type y_i = beta * y(i);
        for (IndexType j = 0; j < numCols; ++j) {
          y_i += alpha * A(i,j) * x(j);
        }
        y(i) = y_i;
      }
    }
  }
}

#endif // 0

} // namespace Experimental
} // namespace Tpetra

#endif // TPETRA_EXPERIMENTAL_BLOCKVIEW_HPP