This file is indexed.

/usr/include/trilinos/Tpetra_TsqrAdaptor.hpp is in libtrilinos-tpetra-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// @HEADER
// ***********************************************************************
//
//          Tpetra: Templated Linear Algebra Services Package
//                 Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef __Tpetra_TsqrAdaptor_hpp
#define __Tpetra_TsqrAdaptor_hpp

/// \file Tpetra_TsqrAdaptor.hpp
/// \brief Adaptor from Tpetra::MultiVector to TSQR
/// \author Mark Hoemmen

#include "Tpetra_ConfigDefs.hpp"

#ifdef HAVE_TPETRA_TSQR
#  include "Tsqr_NodeTsqrFactory.hpp" // create intranode TSQR object
#  include "Tsqr.hpp" // full (internode + intranode) TSQR
#  include "Tsqr_DistTsqr.hpp" // internode TSQR
// Subclass of TSQR::MessengerBase, implemented using Teuchos
// communicator template helper functions
#  include "Tsqr_TeuchosMessenger.hpp"
#  include "Tpetra_MultiVector.hpp"
#  include "Teuchos_ParameterListAcceptorDefaultBase.hpp"
#  include <stdexcept>


namespace Tpetra {

  /// \class TsqrAdaptor
  /// \brief Adaptor from Tpetra::MultiVector to TSQR
  /// \author Mark Hoemmen
  ///
  /// \tparam MV A specialization of \c Tpetra::MultiVector.
  ///
  /// TSQR (Tall Skinny QR factorization) is an orthogonalization
  /// kernel that is as accurate as Householder QR, yet requires only
  /// \f$2 \log P\f$ messages between $P$ MPI processes, independently
  /// of the number of columns in the multivector.
  ///
  /// TSQR works independently of the particular multivector
  /// implementation, and interfaces to the latter via an adaptor
  /// class.  This class is the adaptor class for \c MultiVector.  It
  /// templates on the particular specialization of MultiVector, so
  /// that it can pick up the specialization's typedefs.  In
  /// particular, TSQR chooses its intranode implementation based on
  /// the Kokkos Node type of the multivector.
  ///
  /// \warning The current implementation of this adaptor requires
  ///   that all Tpetra::MultiVector inputs use the same communicator
  ///   object (that is, the same Epetra_Comm) and map.
  template<class MV>
  class TsqrAdaptor : public Teuchos::ParameterListAcceptorDefaultBase {
  public:
    typedef typename MV::scalar_type scalar_type;
    typedef typename MV::local_ordinal_type ordinal_type;
    typedef typename MV::node_type node_type;
    typedef Teuchos::SerialDenseMatrix<ordinal_type, scalar_type> dense_matrix_type;
    typedef typename Teuchos::ScalarTraits<scalar_type>::magnitudeType magnitude_type;

  private:
    //typedef TSQR::MatView<ordinal_type, scalar_type> matview_type;
    typedef TSQR::NodeTsqrFactory<node_type, scalar_type, ordinal_type> node_tsqr_factory_type;
    typedef typename node_tsqr_factory_type::node_tsqr_type node_tsqr_type;
    typedef TSQR::DistTsqr<ordinal_type, scalar_type> dist_tsqr_type;
    typedef TSQR::Tsqr<ordinal_type, scalar_type, node_tsqr_type> tsqr_type;

  public:
    /// \brief Constructor (that accepts a parameter list).
    ///
    /// \param plist [in/out] List of parameters for configuring TSQR.
    ///   The specific parameter keys that are read depend on the TSQR
    ///   implementation.  For details, call \c getValidParameters()
    ///   and examine the documentation embedded therein.
    TsqrAdaptor (const Teuchos::RCP<Teuchos::ParameterList>& plist) :
      nodeTsqr_ (new node_tsqr_type),
      distTsqr_ (new dist_tsqr_type),
      tsqr_ (new tsqr_type (nodeTsqr_, distTsqr_)),
      ready_ (false)
    {
      setParameterList (plist);
    }

    //! Constructor (that uses default parameters).
    TsqrAdaptor () :
      nodeTsqr_ (new node_tsqr_type),
      distTsqr_ (new dist_tsqr_type),
      tsqr_ (new tsqr_type (nodeTsqr_, distTsqr_)),
      ready_ (false)
    {
      setParameterList (Teuchos::null);
    }

    //! Get all valid parameters (with default values) that TSQR understands.
    Teuchos::RCP<const Teuchos::ParameterList>
    getValidParameters () const
    {
      using Teuchos::RCP;
      using Teuchos::rcp;
      using Teuchos::ParameterList;
      using Teuchos::parameterList;

      if (defaultParams_.is_null()) {
        RCP<ParameterList> params = parameterList ("TSQR implementation");
        params->set ("NodeTsqr", *(nodeTsqr_->getValidParameters ()));
        params->set ("DistTsqr", *(distTsqr_->getValidParameters ()));
        defaultParams_ = params;
      }
      return defaultParams_;
    }

    /// \brief Set TSQR's parameters.
    ///
    /// \param plist [in/out] List of parameters.
    ///
    /// This method accepts the following sublists:
    ///   - "NodeTsqr": Parameters for the intra-process part of TSQR.
    ///   - "DistTsqr": Parameters for the inter-process part of TSQR.
    ///
    /// Only experts should attempt to set these parameters.  The
    /// default parameters generally perform well.
    ///
    /// The exact set of parameters valid for the "NodeTsqr" sublist
    /// depends on the intra-process TSQR implementation, which in
    /// turn is a function of the Kokkos Node type.  All
    /// implementations accept the "Cache Size Hint" parameter, which
    /// is the cache size in bytes (as a size_t) to use for the
    /// intra-process part of TSQR.  If zero, TSQR will pick a
    /// reasonable default.  The size should correspond to that of the
    /// largest cache that is private to each CPU core, if such a
    /// private cache exists; otherwise, it should correspond to the
    /// amount of shared cache, divided by the number of cores sharing
    /// that cache.  I found through experimentation that TSQR's
    /// performance is not sensitive to this parameter's value, as
    /// long as it is not too large or too small.  The default value
    /// should be fine.
    void
    setParameterList (const Teuchos::RCP<Teuchos::ParameterList>& plist)
    {
      using Teuchos::ParameterList;
      using Teuchos::parameterList;
      using Teuchos::RCP;
      using Teuchos::sublist;

      RCP<ParameterList> params = plist.is_null() ?
        parameterList (*getValidParameters ()) : plist;
      nodeTsqr_->setParameterList (sublist (params, "NodeTsqr"));
      distTsqr_->setParameterList (sublist (params, "DistTsqr"));

      this->setMyParamList (params);
    }

    /// \brief Compute QR factorization [Q,R] = qr(A,0).
    ///
    /// \param A [in/out] On input: the multivector to factor.
    ///   Overwritten with garbage on output.
    ///
    /// \param Q [out] On output: the (explicitly stored) Q factor in
    ///   the QR factorization of the (input) multivector A.
    ///
    /// \param R [out] On output: the R factor in the QR factorization
    ///   of the (input) multivector A.
    ///
    /// \param forceNonnegativeDiagonal [in] If true, then (if
    ///   necessary) do extra work (modifying both the Q and R
    ///   factors) in order to force the R factor to have a
    ///   nonnegative diagonal.
    ///
    /// \warning Currently, this method only works if A and Q have the
    ///   same communicator and row distribution ("Map," in Petra
    ///   terms) as those of the multivector given to this adapter
    ///   instance's constructor.  Otherwise, the result of this
    ///   method is undefined.
    void
    factorExplicit (MV& A,
                    MV& Q,
                    dense_matrix_type& R,
                    const bool forceNonnegativeDiagonal=false)
    {
      TEUCHOS_TEST_FOR_EXCEPTION
        (! A.isConstantStride (), std::invalid_argument, "TsqrAdaptor::"
         "factorExplicit: Input MultiVector A must have constant stride.");
      TEUCHOS_TEST_FOR_EXCEPTION
        (! Q.isConstantStride (), std::invalid_argument, "TsqrAdaptor::"
         "factorExplicit: Input MultiVector Q must have constant stride.");
      prepareTsqr (Q); // Finish initializing TSQR.

      // FIXME (mfh 16 Jan 2016) Currently, TSQR is a host-only
      // implementation.
      A.template sync<Kokkos::HostSpace> ();
      A.template modify<Kokkos::HostSpace> ();
      Q.template sync<Kokkos::HostSpace> ();
      Q.template modify<Kokkos::HostSpace> ();
      auto A_view = A.template getLocalView<Kokkos::HostSpace> ();
      auto Q_view = Q.template getLocalView<Kokkos::HostSpace> ();
      scalar_type* const A_ptr =
        reinterpret_cast<scalar_type*> (A_view.ptr_on_device ());
      scalar_type* const Q_ptr =
        reinterpret_cast<scalar_type*> (Q_view.ptr_on_device ());
      const bool contiguousCacheBlocks = false;
      tsqr_->factorExplicitRaw (A_view.dimension_0 (),
                                A_view.dimension_1 (),
                                A_ptr, A.getStride (),
                                Q_ptr, Q.getStride (),
                                R.values (), R.stride (),
                                contiguousCacheBlocks,
                                forceNonnegativeDiagonal);
    }

    /// \brief Rank-revealing decomposition
    ///
    /// Using the R factor and explicit Q factor from
    /// factorExplicit(), compute the singular value decomposition
    /// (SVD) of R: \f$R = U \Sigma V^*\f$.  If R is full rank (with
    /// respect to the given relative tolerance \c tol), do not modify
    /// Q or R.  Otherwise, compute \f$Q := Q \cdot U\f$ and \f$R :=
    /// \Sigma V^*\f$ in place.  If R was modified, then it may not
    /// necessarily be upper triangular on output.
    ///
    /// \param Q [in/out] On input: explicit Q factor computed by
    ///   factorExplicit().  (Must be an orthogonal resp. unitary
    ///   matrix.)  On output: If R is of full numerical rank with
    ///   respect to the tolerance tol, Q is unmodified.  Otherwise, Q
    ///   is updated so that the first \c rank columns of Q are a
    ///   basis for the column space of A (the original matrix whose
    ///   QR factorization was computed by factorExplicit()).  The
    ///   remaining columns of Q are a basis for the null space of A.
    ///
    /// \param R [in/out] On input: N by N upper triangular matrix
    ///   with leading dimension LDR >= N.  On output: if input is
    ///   full rank, R is unchanged on output.  Otherwise, if \f$R = U
    ///   \Sigma V^*\f$ is the SVD of R, on output R is overwritten
    ///   with \f$\Sigma \cdot V^*\f$.  This is also an N by N matrix,
    ///   but it may not necessarily be upper triangular.
    ///
    /// \param tol [in] Relative tolerance for computing the numerical
    ///   rank of the matrix R.
    ///
    /// \return Rank \f$r\f$ of R: \f$ 0 \leq r \leq N\f$.
    int
    revealRank (MV& Q,
                dense_matrix_type& R,
                const magnitude_type& tol)
    {
      TEUCHOS_TEST_FOR_EXCEPTION
        (! Q.isConstantStride (), std::invalid_argument, "TsqrAdaptor::"
         "revealRank: Input MultiVector Q must have constant stride.");
      prepareTsqr (Q); // Finish initializing TSQR.
      // FIXME (mfh 18 Oct 2010) Check Teuchos::Comm<int> object in Q
      // to make sure it is the same communicator as the one we are
      // using in our dist_tsqr_type implementation.

      Q.template sync<Kokkos::HostSpace> ();
      Q.template modify<Kokkos::HostSpace> ();
      auto Q_view = Q.template getLocalView<Kokkos::HostSpace> ();
      scalar_type* const Q_ptr =
        reinterpret_cast<scalar_type*> (Q_view.ptr_on_device ());
      const bool contiguousCacheBlocks = false;
      return tsqr_->revealRankRaw (Q_view.dimension_0 (),
                                   Q_view.dimension_1 (),
                                   Q_ptr, Q.getStride (),
                                   R.values (), R.stride (),
                                   tol, contiguousCacheBlocks);
    }

  private:
    //! The intranode TSQR implementation instance.
    Teuchos::RCP<node_tsqr_type> nodeTsqr_;

    //! The internode TSQR implementation instance.
    Teuchos::RCP<dist_tsqr_type> distTsqr_;

    //! The (full) TSQR implementation instance.
    Teuchos::RCP<tsqr_type> tsqr_;

    //! Default parameter list.  Initialized by getValidParameters().
    mutable Teuchos::RCP<const Teuchos::ParameterList> defaultParams_;

    //! Whether TSQR has been fully initialized.
    bool ready_;

    /// \brief Finish TSQR initialization.
    ///
    /// The intranode and internode TSQR implementations both have a
    /// two-stage initialization procedure: first, setting parameters
    /// (which may happen at construction), and second, getting
    /// information they need from the multivector input in order to
    /// finish initialization.  For intranode TSQR, this includes the
    /// Kokkos Node instance; for internode TSQR, this includes the
    /// communicator.  The second stage of initialization happens in
    /// this class' computational routines; all of those routines
    /// accept one or more multivector inputs, which this method can
    /// use for finishing initialization.  Thus, users of this class
    /// never need to see the two-stage initialization.
    ///
    /// \param mv [in] Multivector object, used only to access the
    ///   underlying communicator object (in this case,
    ///   Teuchos::Comm<int>, accessed via the Tpetra::Map belonging
    ///   to the multivector) and Kokkos Node instance.  All
    ///   multivector objects used with this Adaptor instance must
    ///   have the same map, communicator, and Kokkos Node instance.
    void
    prepareTsqr (const MV& mv)
    {
      if (! ready_) {
        prepareDistTsqr (mv);
        prepareNodeTsqr (mv);
        ready_ = true;
      }
    }

    /// \brief Finish intranode TSQR initialization.
    ///
    /// \note It's OK to call this method more than once; it is idempotent.
    void
    prepareNodeTsqr (const MV& mv)
    {
      node_tsqr_factory_type::prepareNodeTsqr (nodeTsqr_, mv.getMap()->getNode());
    }

    /// \brief Finish internode TSQR initialization.
    ///
    /// \param mv [in] A valid Tpetra::MultiVector instance whose
    ///   communicator wrapper we will use to prepare TSQR.
    ///
    /// \note It's OK to call this method more than once; it is idempotent.
    void
    prepareDistTsqr (const MV& mv)
    {
      using Teuchos::RCP;
      using Teuchos::rcp_implicit_cast;
      typedef TSQR::TeuchosMessenger<scalar_type> mess_type;
      typedef TSQR::MessengerBase<scalar_type> base_mess_type;

      RCP<const Teuchos::Comm<int> > comm = mv.getMap()->getComm();
      RCP<mess_type> mess (new mess_type (comm));
      RCP<base_mess_type> messBase = rcp_implicit_cast<base_mess_type> (mess);
      distTsqr_->init (messBase);
    }
  };

} // namespace Tpetra

#endif // HAVE_TPETRA_TSQR

#endif // __Tpetra_TsqrAdaptor_hpp