/usr/include/trilinos/Tpetra_TsqrAdaptor.hpp is in libtrilinos-tpetra-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 | // @HEADER
// ***********************************************************************
//
// Tpetra: Templated Linear Algebra Services Package
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef __Tpetra_TsqrAdaptor_hpp
#define __Tpetra_TsqrAdaptor_hpp
/// \file Tpetra_TsqrAdaptor.hpp
/// \brief Adaptor from Tpetra::MultiVector to TSQR
/// \author Mark Hoemmen
#include "Tpetra_ConfigDefs.hpp"
#ifdef HAVE_TPETRA_TSQR
# include "Tsqr_NodeTsqrFactory.hpp" // create intranode TSQR object
# include "Tsqr.hpp" // full (internode + intranode) TSQR
# include "Tsqr_DistTsqr.hpp" // internode TSQR
// Subclass of TSQR::MessengerBase, implemented using Teuchos
// communicator template helper functions
# include "Tsqr_TeuchosMessenger.hpp"
# include "Tpetra_MultiVector.hpp"
# include "Teuchos_ParameterListAcceptorDefaultBase.hpp"
# include <stdexcept>
namespace Tpetra {
/// \class TsqrAdaptor
/// \brief Adaptor from Tpetra::MultiVector to TSQR
/// \author Mark Hoemmen
///
/// \tparam MV A specialization of \c Tpetra::MultiVector.
///
/// TSQR (Tall Skinny QR factorization) is an orthogonalization
/// kernel that is as accurate as Householder QR, yet requires only
/// \f$2 \log P\f$ messages between $P$ MPI processes, independently
/// of the number of columns in the multivector.
///
/// TSQR works independently of the particular multivector
/// implementation, and interfaces to the latter via an adaptor
/// class. This class is the adaptor class for \c MultiVector. It
/// templates on the particular specialization of MultiVector, so
/// that it can pick up the specialization's typedefs. In
/// particular, TSQR chooses its intranode implementation based on
/// the Kokkos Node type of the multivector.
///
/// \warning The current implementation of this adaptor requires
/// that all Tpetra::MultiVector inputs use the same communicator
/// object (that is, the same Epetra_Comm) and map.
template<class MV>
class TsqrAdaptor : public Teuchos::ParameterListAcceptorDefaultBase {
public:
typedef typename MV::scalar_type scalar_type;
typedef typename MV::local_ordinal_type ordinal_type;
typedef typename MV::node_type node_type;
typedef Teuchos::SerialDenseMatrix<ordinal_type, scalar_type> dense_matrix_type;
typedef typename Teuchos::ScalarTraits<scalar_type>::magnitudeType magnitude_type;
private:
//typedef TSQR::MatView<ordinal_type, scalar_type> matview_type;
typedef TSQR::NodeTsqrFactory<node_type, scalar_type, ordinal_type> node_tsqr_factory_type;
typedef typename node_tsqr_factory_type::node_tsqr_type node_tsqr_type;
typedef TSQR::DistTsqr<ordinal_type, scalar_type> dist_tsqr_type;
typedef TSQR::Tsqr<ordinal_type, scalar_type, node_tsqr_type> tsqr_type;
public:
/// \brief Constructor (that accepts a parameter list).
///
/// \param plist [in/out] List of parameters for configuring TSQR.
/// The specific parameter keys that are read depend on the TSQR
/// implementation. For details, call \c getValidParameters()
/// and examine the documentation embedded therein.
TsqrAdaptor (const Teuchos::RCP<Teuchos::ParameterList>& plist) :
nodeTsqr_ (new node_tsqr_type),
distTsqr_ (new dist_tsqr_type),
tsqr_ (new tsqr_type (nodeTsqr_, distTsqr_)),
ready_ (false)
{
setParameterList (plist);
}
//! Constructor (that uses default parameters).
TsqrAdaptor () :
nodeTsqr_ (new node_tsqr_type),
distTsqr_ (new dist_tsqr_type),
tsqr_ (new tsqr_type (nodeTsqr_, distTsqr_)),
ready_ (false)
{
setParameterList (Teuchos::null);
}
//! Get all valid parameters (with default values) that TSQR understands.
Teuchos::RCP<const Teuchos::ParameterList>
getValidParameters () const
{
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::ParameterList;
using Teuchos::parameterList;
if (defaultParams_.is_null()) {
RCP<ParameterList> params = parameterList ("TSQR implementation");
params->set ("NodeTsqr", *(nodeTsqr_->getValidParameters ()));
params->set ("DistTsqr", *(distTsqr_->getValidParameters ()));
defaultParams_ = params;
}
return defaultParams_;
}
/// \brief Set TSQR's parameters.
///
/// \param plist [in/out] List of parameters.
///
/// This method accepts the following sublists:
/// - "NodeTsqr": Parameters for the intra-process part of TSQR.
/// - "DistTsqr": Parameters for the inter-process part of TSQR.
///
/// Only experts should attempt to set these parameters. The
/// default parameters generally perform well.
///
/// The exact set of parameters valid for the "NodeTsqr" sublist
/// depends on the intra-process TSQR implementation, which in
/// turn is a function of the Kokkos Node type. All
/// implementations accept the "Cache Size Hint" parameter, which
/// is the cache size in bytes (as a size_t) to use for the
/// intra-process part of TSQR. If zero, TSQR will pick a
/// reasonable default. The size should correspond to that of the
/// largest cache that is private to each CPU core, if such a
/// private cache exists; otherwise, it should correspond to the
/// amount of shared cache, divided by the number of cores sharing
/// that cache. I found through experimentation that TSQR's
/// performance is not sensitive to this parameter's value, as
/// long as it is not too large or too small. The default value
/// should be fine.
void
setParameterList (const Teuchos::RCP<Teuchos::ParameterList>& plist)
{
using Teuchos::ParameterList;
using Teuchos::parameterList;
using Teuchos::RCP;
using Teuchos::sublist;
RCP<ParameterList> params = plist.is_null() ?
parameterList (*getValidParameters ()) : plist;
nodeTsqr_->setParameterList (sublist (params, "NodeTsqr"));
distTsqr_->setParameterList (sublist (params, "DistTsqr"));
this->setMyParamList (params);
}
/// \brief Compute QR factorization [Q,R] = qr(A,0).
///
/// \param A [in/out] On input: the multivector to factor.
/// Overwritten with garbage on output.
///
/// \param Q [out] On output: the (explicitly stored) Q factor in
/// the QR factorization of the (input) multivector A.
///
/// \param R [out] On output: the R factor in the QR factorization
/// of the (input) multivector A.
///
/// \param forceNonnegativeDiagonal [in] If true, then (if
/// necessary) do extra work (modifying both the Q and R
/// factors) in order to force the R factor to have a
/// nonnegative diagonal.
///
/// \warning Currently, this method only works if A and Q have the
/// same communicator and row distribution ("Map," in Petra
/// terms) as those of the multivector given to this adapter
/// instance's constructor. Otherwise, the result of this
/// method is undefined.
void
factorExplicit (MV& A,
MV& Q,
dense_matrix_type& R,
const bool forceNonnegativeDiagonal=false)
{
TEUCHOS_TEST_FOR_EXCEPTION
(! A.isConstantStride (), std::invalid_argument, "TsqrAdaptor::"
"factorExplicit: Input MultiVector A must have constant stride.");
TEUCHOS_TEST_FOR_EXCEPTION
(! Q.isConstantStride (), std::invalid_argument, "TsqrAdaptor::"
"factorExplicit: Input MultiVector Q must have constant stride.");
prepareTsqr (Q); // Finish initializing TSQR.
// FIXME (mfh 16 Jan 2016) Currently, TSQR is a host-only
// implementation.
A.template sync<Kokkos::HostSpace> ();
A.template modify<Kokkos::HostSpace> ();
Q.template sync<Kokkos::HostSpace> ();
Q.template modify<Kokkos::HostSpace> ();
auto A_view = A.template getLocalView<Kokkos::HostSpace> ();
auto Q_view = Q.template getLocalView<Kokkos::HostSpace> ();
scalar_type* const A_ptr =
reinterpret_cast<scalar_type*> (A_view.ptr_on_device ());
scalar_type* const Q_ptr =
reinterpret_cast<scalar_type*> (Q_view.ptr_on_device ());
const bool contiguousCacheBlocks = false;
tsqr_->factorExplicitRaw (A_view.dimension_0 (),
A_view.dimension_1 (),
A_ptr, A.getStride (),
Q_ptr, Q.getStride (),
R.values (), R.stride (),
contiguousCacheBlocks,
forceNonnegativeDiagonal);
}
/// \brief Rank-revealing decomposition
///
/// Using the R factor and explicit Q factor from
/// factorExplicit(), compute the singular value decomposition
/// (SVD) of R: \f$R = U \Sigma V^*\f$. If R is full rank (with
/// respect to the given relative tolerance \c tol), do not modify
/// Q or R. Otherwise, compute \f$Q := Q \cdot U\f$ and \f$R :=
/// \Sigma V^*\f$ in place. If R was modified, then it may not
/// necessarily be upper triangular on output.
///
/// \param Q [in/out] On input: explicit Q factor computed by
/// factorExplicit(). (Must be an orthogonal resp. unitary
/// matrix.) On output: If R is of full numerical rank with
/// respect to the tolerance tol, Q is unmodified. Otherwise, Q
/// is updated so that the first \c rank columns of Q are a
/// basis for the column space of A (the original matrix whose
/// QR factorization was computed by factorExplicit()). The
/// remaining columns of Q are a basis for the null space of A.
///
/// \param R [in/out] On input: N by N upper triangular matrix
/// with leading dimension LDR >= N. On output: if input is
/// full rank, R is unchanged on output. Otherwise, if \f$R = U
/// \Sigma V^*\f$ is the SVD of R, on output R is overwritten
/// with \f$\Sigma \cdot V^*\f$. This is also an N by N matrix,
/// but it may not necessarily be upper triangular.
///
/// \param tol [in] Relative tolerance for computing the numerical
/// rank of the matrix R.
///
/// \return Rank \f$r\f$ of R: \f$ 0 \leq r \leq N\f$.
int
revealRank (MV& Q,
dense_matrix_type& R,
const magnitude_type& tol)
{
TEUCHOS_TEST_FOR_EXCEPTION
(! Q.isConstantStride (), std::invalid_argument, "TsqrAdaptor::"
"revealRank: Input MultiVector Q must have constant stride.");
prepareTsqr (Q); // Finish initializing TSQR.
// FIXME (mfh 18 Oct 2010) Check Teuchos::Comm<int> object in Q
// to make sure it is the same communicator as the one we are
// using in our dist_tsqr_type implementation.
Q.template sync<Kokkos::HostSpace> ();
Q.template modify<Kokkos::HostSpace> ();
auto Q_view = Q.template getLocalView<Kokkos::HostSpace> ();
scalar_type* const Q_ptr =
reinterpret_cast<scalar_type*> (Q_view.ptr_on_device ());
const bool contiguousCacheBlocks = false;
return tsqr_->revealRankRaw (Q_view.dimension_0 (),
Q_view.dimension_1 (),
Q_ptr, Q.getStride (),
R.values (), R.stride (),
tol, contiguousCacheBlocks);
}
private:
//! The intranode TSQR implementation instance.
Teuchos::RCP<node_tsqr_type> nodeTsqr_;
//! The internode TSQR implementation instance.
Teuchos::RCP<dist_tsqr_type> distTsqr_;
//! The (full) TSQR implementation instance.
Teuchos::RCP<tsqr_type> tsqr_;
//! Default parameter list. Initialized by getValidParameters().
mutable Teuchos::RCP<const Teuchos::ParameterList> defaultParams_;
//! Whether TSQR has been fully initialized.
bool ready_;
/// \brief Finish TSQR initialization.
///
/// The intranode and internode TSQR implementations both have a
/// two-stage initialization procedure: first, setting parameters
/// (which may happen at construction), and second, getting
/// information they need from the multivector input in order to
/// finish initialization. For intranode TSQR, this includes the
/// Kokkos Node instance; for internode TSQR, this includes the
/// communicator. The second stage of initialization happens in
/// this class' computational routines; all of those routines
/// accept one or more multivector inputs, which this method can
/// use for finishing initialization. Thus, users of this class
/// never need to see the two-stage initialization.
///
/// \param mv [in] Multivector object, used only to access the
/// underlying communicator object (in this case,
/// Teuchos::Comm<int>, accessed via the Tpetra::Map belonging
/// to the multivector) and Kokkos Node instance. All
/// multivector objects used with this Adaptor instance must
/// have the same map, communicator, and Kokkos Node instance.
void
prepareTsqr (const MV& mv)
{
if (! ready_) {
prepareDistTsqr (mv);
prepareNodeTsqr (mv);
ready_ = true;
}
}
/// \brief Finish intranode TSQR initialization.
///
/// \note It's OK to call this method more than once; it is idempotent.
void
prepareNodeTsqr (const MV& mv)
{
node_tsqr_factory_type::prepareNodeTsqr (nodeTsqr_, mv.getMap()->getNode());
}
/// \brief Finish internode TSQR initialization.
///
/// \param mv [in] A valid Tpetra::MultiVector instance whose
/// communicator wrapper we will use to prepare TSQR.
///
/// \note It's OK to call this method more than once; it is idempotent.
void
prepareDistTsqr (const MV& mv)
{
using Teuchos::RCP;
using Teuchos::rcp_implicit_cast;
typedef TSQR::TeuchosMessenger<scalar_type> mess_type;
typedef TSQR::MessengerBase<scalar_type> base_mess_type;
RCP<const Teuchos::Comm<int> > comm = mv.getMap()->getComm();
RCP<mess_type> mess (new mess_type (comm));
RCP<base_mess_type> messBase = rcp_implicit_cast<base_mess_type> (mess);
distTsqr_->init (messBase);
}
};
} // namespace Tpetra
#endif // HAVE_TPETRA_TSQR
#endif // __Tpetra_TsqrAdaptor_hpp
|