This file is indexed.

/usr/include/trilinos/Tsqr_CacheBlocker.hpp is in libtrilinos-tpetra-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __TSQR_CacheBlocker_hpp
#define __TSQR_CacheBlocker_hpp

#include <Tsqr_CacheBlockingStrategy.hpp>
#include <Tsqr_MatView.hpp>
#include <Tsqr_Util.hpp>

#include <iterator>
#include <sstream>
#include <stdexcept>

namespace TSQR {

  /// \class CacheBlocker
  /// \brief Break a tall skinny matrix by rows into cache blocks.
  /// \author Mark Hoemmen
  ///
  /// A CacheBlocker uses a particular cache blocking strategy to
  /// partition an nrows by ncols matrix by rows into cache blocks.
  /// The entries in a cache block may be stored contiguously, or as
  /// non-contiguous partitions of a matrix stored conventionally (in
  /// column-major order).
  ///
  /// The CacheBlocker blocks any matrix with the same number of rows
  /// in the same way, regardless of the number of columns (the cache
  /// blocking strategy's number of columns is set on construction).
  /// This is useful for TSQR's apply() routine, which requires that
  /// the output matrix C be blocked in the same way as the input
  /// matrix Q (in which the Q factor is stored implicitly).
  template<class Ordinal, class Scalar>
  class CacheBlocker {
  private:
    typedef MatView<Ordinal, Scalar> mat_view_type;
    typedef ConstMatView<Ordinal, Scalar> const_mat_view_type;

    void
    validate ()
    {
      if (nrows_cache_block_ < ncols_)
        {
          std::ostringstream os;
          os << "The typical cache block size is too small.  Only "
             << nrows_cache_block_ << " rows fit, but every cache block needs "
            "at least as many rows as the number of columns " << ncols_
             << " in the matrix.";
          throw std::logic_error (os.str());
        }
    }

  public:
    /// \brief Constructor
    ///
    /// \param num_rows Number of rows in the matrix to block.
    /// \param num_cols Number of columns in the matrix to block.
    /// \param strategy Cache blocking strategy object (passed by copy).
    ///
    /// \note The CacheBlocker's number of columns may differ from the
    ///   number of columns associated with the cache blocking
    ///   strategy.  The strategy uses a fixed number of columns for
    ///   all matrices with the same number of rows, so that it blocks
    ///   all such matrices in the same way (at the same row indices).
    ///   This is useful for TSQR's apply() and explicit_Q() methods.
    CacheBlocker (const Ordinal num_rows,
                  const Ordinal num_cols,
                  const CacheBlockingStrategy<Ordinal, Scalar>& strategy) :
      nrows_ (num_rows),
      ncols_ (num_cols),
      strategy_ (strategy),
      nrows_cache_block_ (strategy_.cache_block_num_rows (ncols()))
    {
      validate ();
    }

    //! Default constructor, so that CacheBlocker is DefaultConstructible.
    CacheBlocker () :
      nrows_ (0),
      ncols_ (0),
      nrows_cache_block_ (strategy_.cache_block_num_rows (ncols()))
    {}

    //! Copy constructor
    CacheBlocker (const CacheBlocker& rhs) :
      nrows_ (rhs.nrows()),
      ncols_ (rhs.ncols()),
      strategy_ (rhs.strategy_),
      nrows_cache_block_ (rhs.nrows_cache_block_)
    {}

    //! Assignment operator
    CacheBlocker& operator= (const CacheBlocker& rhs) {
      nrows_ = rhs.nrows();
      ncols_ = rhs.ncols();
      strategy_ = rhs.strategy_;
      nrows_cache_block_ = rhs.nrows_cache_block_;
      return *this;
    }

    //! Cache size hint (in bytes).
    size_t cache_size_hint () const { return strategy_.cache_size_hint(); }

    //! Number of rows in the matrix to block.
    Ordinal nrows () const { return nrows_; }

    //! Number of columns in the matrix to block.
    Ordinal ncols () const { return ncols_; }

    /// \brief Split A in place into [A_top; A_rest].
    ///
    /// Return the topmost cache block A_top of A, and modify A in
    /// place to be the "rest" of the matrix A_rest.
    ///
    /// \param A [in/out] On input: view of the matrix to split.
    ///   On output: the "rest" of the matrix.  If there is only
    ///   one cache block, A_top contains all of the matrix and
    ///   A is empty on output.
    /// \param contiguous_cache_blocks [in] Whether cache blocks in
    ///   the matrix A are stored contiguously (default is false).
    ///
    /// \return View of the topmost cache block A_top.
    ///
    /// \note The number of rows in A_top depends on the number of
    ///   columns with which this CacheBlocker was set up (rather than
    ///   the number of columns in A, which may not be the same).  The
    ///   idea is to have the number and distribution of rows in the
    ///   cache blocks be the same as the original nrows() by ncols()
    ///   matrix with which this CacheBlocker was initialized.
    template< class MatrixViewType >
    MatrixViewType
    split_top_block (MatrixViewType& A, const bool contiguous_cache_blocks) const
    {
      typedef typename MatrixViewType::ordinal_type ordinal_type;
      const ordinal_type nrows_top =
        strategy_.top_block_split_nrows (A.nrows(), ncols(),
                                         nrows_cache_block());
      // split_top() sets A to A_rest, and returns A_top.
      return A.split_top (nrows_top, contiguous_cache_blocks);
    }

    /// \brief View of the topmost cache block of A.
    ///
    /// The matrix view A is copied so the view itself won't be modified.
    ///
    /// \param A [in] View of the matrix to block.
    /// \param contiguous_cache_blocks [in] Whether cache blocks in
    ///   the matrix A are stored contiguously (default is false).
    ///
    /// \return View of the topmost cache block of A.
    template< class MatrixViewType >
    MatrixViewType
    top_block (const MatrixViewType& A, const bool contiguous_cache_blocks) const
    {
      typedef typename MatrixViewType::ordinal_type ordinal_type;
      // Ignore the number of columns in A, since we want to block all
      // matrices using the same cache blocking strategy.
      const ordinal_type nrows_top =
        strategy_.top_block_split_nrows (A.nrows(), ncols(),
                                         nrows_cache_block());
      MatrixViewType A_copy (A);
      return A_copy.split_top (nrows_top, contiguous_cache_blocks);
    }

    /// \brief Split A in place into [A_rest; A_bot].
    ///
    /// Return the bottommost cache block A_bot of A, and modify A in
    /// place to be the "rest" of the matrix A_rest.
    ///
    /// \param A [in/out] On input: view of the matrix to split.  On
    ///   output: the "rest" of the matrix.  If there is only one
    ///   cache block, A_bot contains all of the matrix and A is empty
    ///   on output.
    /// \param contiguous_cache_blocks [in] Whether cache blocks in
    ///   the matrix A are stored contiguously (default is false).
    ///
    /// \return View of the bottommost cache block A_bot.
    ///
    template< class MatrixViewType >
    MatrixViewType
    split_bottom_block (MatrixViewType& A, const bool contiguous_cache_blocks) const
    {
      typedef typename MatrixViewType::ordinal_type ordinal_type;
      // Ignore the number of columns in A, since we want to block all
      // matrices using the same cache blocking strategy.
      const ordinal_type nrows_bottom =
        strategy_.bottom_block_split_nrows (A.nrows(), ncols(),
                                            nrows_cache_block());
      // split_bottom() sets A to A_rest, and returns A_bot.
      return A.split_bottom (nrows_bottom, contiguous_cache_blocks);
    }

    /// \brief Fill the matrix A with zeros, respecting cache blocks.
    ///
    /// A specialization of this method for a particular
    /// MatrixViewType will only compile if MatrixViewType has a
    /// method "fill(const Scalar)" or "fill(const Scalar&)".  The
    /// intention is that the method be non-const and that it fill in
    /// the entries of the matrix with Scalar(0).
    ///
    /// \param A [in/out] View of the matrix to fill with zeros.
    ///
    /// \param contiguous_cache_blocks [in] Whether the cache blocks
    ///   in A are stored contiguously.
    ///
    template<class MatrixViewType>
    void
    fill_with_zeros (MatrixViewType A,
                     const bool contiguous_cache_blocks) const
    {
      // Note: if the cache blocks are stored contiguously, A.lda()
      // won't be the correct leading dimension of A, but it won't
      // matter: we only ever operate on A_cur here, and A_cur's
      // leading dimension is set correctly by split_top_block().
      while (! A.empty())
        {
          // This call modifies the matrix view A, but that's OK since
          // we passed the input view by copy, not by reference.
          MatrixViewType A_cur = split_top_block (A, contiguous_cache_blocks);
          A_cur.fill (Scalar(0));
        }
    }

    /// \brief Fill the matrix A with zeros, respecting cache blocks.
    ///
    /// This version of the method takes a raw pointer and matrix
    /// dimensions, rather than a matrix view object.  If
    /// contiguous_cache_blocks==false, the matrix is stored either in
    /// column-major order with leading dimension lda; else, the
    /// matrix is stored in cache blocks, with each cache block's
    /// entries stored contiguously in column-major order.
    ///
    /// \param num_rows [in] Number of rows in the matrix A.
    /// \param num_cols [in] Number of columns in the matrix A.
    /// \param A [out] The matrix to fill with zeros.
    /// \param lda [in] Leading dimension (a.k.a. stride) of the
    ///   matrix A.
    /// \param contiguous_cache_blocks [in] Whether the cache blocks
    ///   in A are stored contiguously.
    void
    fill_with_zeros (const Ordinal num_rows,
                     const Ordinal num_cols,
                     Scalar A[],
                     const Ordinal lda,
                     const bool contiguous_cache_blocks) const
    {
      // We say "A_rest" because it points to the remaining part of
      // the matrix left to process; at the beginning, the "remaining"
      // part is the whole matrix, but that will change as the
      // algorithm progresses.
      //
      // Note: if the cache blocks are stored contiguously, lda won't
      // be the correct leading dimension of A, but it won't matter:
      // we only ever operate on A_cur here, and A_cur's leading
      // dimension is set correctly by A_rest.split_top().
      mat_view_type A_rest (num_rows, num_cols, A, lda);

      while (! A_rest.empty())
        {
          // This call modifies A_rest.
          mat_view_type A_cur = split_top_block (A_rest, contiguous_cache_blocks);
          A_cur.fill (Scalar(0));
        }
    }

    /// \brief Cache-block the given A_in matrix into A_out.
    ///
    /// Given an nrows by ncols (with nrows >= ncols) matrix A_in,
    /// stored in column-major order with leading dimension lda_in (>=
    /// nrows), copy it into A_out in a cache-blocked row block
    /// format.  Each cache block is a matrix in column-major order,
    /// and the elements of a cache block are stored consecutively in
    /// A_out.  The number of rows in each cache block depends on the
    /// cache-blocking strategy that this CacheBlocker uses.
    ///
    /// \param num_rows [in] Total number of rows in the matrices A_in and A_out
    /// \param num_cols [in] Number of columns in the matrices A_in and A_out
    /// \param A_out [out] nrows*ncols contiguous storage into which to write
    ///   the cache-blocked output matrix.
    /// \param A_in [in] nrows by ncols matrix, stored in column-major
    ///   order with leading dimension lda_in >= nrows
    /// \param lda_in [in] Leading dimension of the matrix A_in
    void
    cache_block (const Ordinal num_rows,
                 const Ordinal num_cols,
                 Scalar A_out[],
                 const Scalar A_in[],
                 const Ordinal lda_in) const
    {
      // We say "*_rest" because it points to the remaining part of
      // the matrix left to cache block; at the beginning, the
      // "remaining" part is the whole matrix, but that will change as
      // the algorithm progresses.
      const_mat_view_type A_in_rest (num_rows, num_cols, A_in, lda_in);
      // Leading dimension doesn't matter since A_out will be cache blocked.
      mat_view_type A_out_rest (num_rows, num_cols, A_out, lda_in);

      while (! A_in_rest.empty())
        {
          if (A_out_rest.empty())
            throw std::logic_error("A_out_rest is empty, but A_in_rest is not");

          // This call modifies A_in_rest.
          const_mat_view_type A_in_cur = split_top_block (A_in_rest, false);

          // This call modifies A_out_rest.
          mat_view_type A_out_cur = split_top_block (A_out_rest, true);

          copy_matrix (A_in_cur.nrows(), num_cols, A_out_cur.get(),
                       A_out_cur.lda(), A_in_cur.get(), A_in_cur.lda());
        }
    }

    //! "Un"-cache-block the given A_in matrix into A_out.
    void
    un_cache_block (const Ordinal num_rows,
                    const Ordinal num_cols,
                    Scalar A_out[],
                    const Ordinal lda_out,
                    const Scalar A_in[]) const
    {
      // We say "*_rest" because it points to the remaining part of
      // the matrix left to cache block; at the beginning, the
      // "remaining" part is the whole matrix, but that will change as
      // the algorithm progresses.
      //
      // Leading dimension doesn't matter since A_in is cache blocked.
      const_mat_view_type A_in_rest (num_rows, num_cols, A_in, lda_out);
      mat_view_type A_out_rest (num_rows, num_cols, A_out, lda_out);

      while (! A_in_rest.empty())
        {
          if (A_out_rest.empty())
            throw std::logic_error("A_out_rest is empty, but A_in_rest is not");

          // This call modifies A_in_rest.
          const_mat_view_type A_in_cur = split_top_block (A_in_rest, true);

          // This call modifies A_out_rest.
          mat_view_type A_out_cur = split_top_block (A_out_rest, false);

          copy_matrix (A_in_cur.nrows(), num_cols, A_out_cur.get(),
                       A_out_cur.lda(), A_in_cur.get(), A_in_cur.lda());
        }
    }

    /// \brief Return the cache block with index \c cache_block_index.
    ///
    /// \param A [in] The original matrix.
    /// \param cache_block_index [in] Zero-based index of the cache block.
    ///   If the index is out of bounds, silently return an empty matrix
    ///   view.
    /// \param contiguous_cache_blocks [in] Whether cache blocks are
    ///   stored contiguously.
    ///
    /// \return Cache block of A with the given index, or an empty
    ///   matrix view if the index is out of bounds.
    ///
    /// \note This method is templated on MatrixViewType, so that it
    ///   works with any matrix view type.
    template<class MatrixViewType>
    MatrixViewType
    get_cache_block (MatrixViewType A,
                     const typename MatrixViewType::ordinal_type cache_block_index,
                     const bool contiguous_cache_blocks) const
    {
      typedef typename MatrixViewType::ordinal_type ordinal_type;

      // Total number of cache blocks.
      const ordinal_type num_cache_blocks =
        strategy_.num_cache_blocks (A.nrows(), A.ncols(), nrows_cache_block());

      if (cache_block_index >= num_cache_blocks)
        return MatrixViewType (0, 0, NULL, 0); // empty

      // result[0] = starting row index of the cache block
      // result[1] = number of rows in the cache block
      // result[2] = pointer offset (A.get() + result[2])
      // result[3] = leading dimension (a.k.a. stride) of the cache block
      std::vector<Ordinal> result =
        strategy_.cache_block_details (cache_block_index, A.nrows(), A.ncols(),
                                       A.lda(), nrows_cache_block(),
                                       contiguous_cache_blocks);
      if (result[1] == 0)
        // For some reason, the cache block is empty.
        return MatrixViewType (0, 0, NULL, 0);

      // We expect that ordinal_type is signed, so adding signed
      // (ordinal_type) to unsigned (pointer) may raise compiler
      // warnings.
      return MatrixViewType (result[1], A.ncols(),
                             A.get() + static_cast<size_t>(result[2]),
                             result[3]);
    }

    /// \brief Equality operator.
    ///
    /// Two cache blockers are "equal" if they correspond to matrices
    /// with the same dimensions (number of rows and number of
    /// columns), and if their cache blocking strategies are equal.
    bool
    operator== (const CacheBlockingStrategy<Ordinal, Scalar>& rhs) const
    {
      return nrows() == rhs.nrows() &&
        ncols() == rhs.ncols() &&
        strategy_ == rhs.strategy_;
    }

  private:
    //! Number of rows in the matrix to block.
    Ordinal nrows_;

    //! Number of columns in the matrix to block.
    Ordinal ncols_;

    //! Strategy used to break the matrix into cache blocks.
    CacheBlockingStrategy<Ordinal, Scalar> strategy_;

    /// \brief Number of rows in a "typical" cache block.
    ///
    /// We could instead use the strategy object to recompute this
    /// quantity each time, but we choose to cache the computed value
    /// here.  For an explanation of "typical," see the documentation
    /// of \c nrows_cache_block().
    Ordinal nrows_cache_block_;

    /// \brief Number of rows in a "typical" cache block.
    ///
    /// For an explanation of "typical," see the documentation of
    /// CacheBlockingStrategy.  In brief, some cache blocks may have
    /// more rows (up to but not including nrows_cache_block() +
    /// ncols() rows), and some may have less (but no less than
    /// ncols() rows).
    size_t nrows_cache_block () const { return nrows_cache_block_; }
  };


  /// \class CacheBlockRangeIterator
  /// \brief Bidirectional iterator over a contiguous range of cache blocks.
  /// \author Mark Hoemmen
  ///
  /// "Contiguous range of cache blocks" means that the indices of the
  /// cache blocks, as interpreted by the CacheBlocker object, are
  /// contiguous.
  template<class MatrixViewType>
  class CacheBlockRangeIterator :
    public std::iterator<std::forward_iterator_tag, MatrixViewType>
  {
  public:
    typedef MatrixViewType view_type;
    typedef typename MatrixViewType::ordinal_type ordinal_type;
    typedef typename MatrixViewType::scalar_type scalar_type;

    /// \brief Default constructor.
    ///
    /// \note To implementers: We only implement a default constructor
    ///   because all iterators (e.g., TrivialIterator) must be
    ///   DefaultConstructible.
    CacheBlockRangeIterator () :
      A_ (0, 0, NULL, 0),
      curInd_ (0),
      reverse_ (false),
      contiguousCacheBlocks_ (false)
    {}

    /// \brief Standard constructor.
    ///
    /// \param A [in] View of the matrix over whose cache block(s) to
    ///   iterate.
    /// \param strategy [in] Cache blocking strategy for a matrix with
    ///   the same number of rows as the matrix A.
    /// \param currentIndex [in] The iterator's current cache block index.
    /// \param reverse [in] Whether to iterate over the cache blocks
    ///   in reverse order of their indices.
    /// \param contiguousCacheBlocks [in] Whether cache blocks in the
    ///   matrix A are stored contiguously.
    CacheBlockRangeIterator (const MatrixViewType& A,
                             const CacheBlockingStrategy<ordinal_type, scalar_type>& strategy,
                             const ordinal_type currentIndex,
                             const bool reverse,
                             const bool contiguousCacheBlocks) :
      A_ (A),
      blocker_ (A_.nrows(), A_.ncols(), strategy),
      curInd_ (currentIndex),
      reverse_ (reverse),
      contiguousCacheBlocks_ (contiguousCacheBlocks)
    {}

    //! Copy constructor.
    CacheBlockRangeIterator (const CacheBlockRangeIterator& rhs) :
      A_ (rhs.A_),
      blocker_ (rhs.blocker_),
      curInd_ (rhs.curInd_),
      reverse_ (rhs.reverse_),
      contiguousCacheBlocks_ (rhs.contiguousCacheBlocks_)
    {}

    //! Assignment operator.
    CacheBlockRangeIterator& operator= (const CacheBlockRangeIterator& rhs)
    {
      A_ = rhs.A_;
      blocker_ = rhs.blocker_;
      curInd_ = rhs.curInd_;
      reverse_ = rhs.reverse_;
      contiguousCacheBlocks_ = rhs.contiguousCacheBlocks_;
      return *this;
    }

    //! Prefix increment operator.
    CacheBlockRangeIterator& operator++() {
      if (reverse_)
        --curInd_;
      else
        ++curInd_;
      return *this;
    }

    /// \brief Postfix increment operator.
    ///
    /// This may be less efficient than prefix operator++, since the
    /// postfix operator has to make a copy of the iterator before
    /// modifying it.
    CacheBlockRangeIterator operator++(int) {
      CacheBlockRangeIterator retval (*this);
      operator++();
      return retval;
    }

    /// \brief Equality operator.
    ///
    /// Equality of cache block range iterators only tests the cache
    /// block index, not reverse-ness.  This means we can compare a
    /// reverse-direction iterator with a forward-direction iterator,
    /// and vice versa.
    bool operator== (const CacheBlockRangeIterator& rhs) {
      // Not correct, but fast.  Should return false for different A_
      // or different blocker_.
      return curInd_ == rhs.curInd_;
    }

    //! Inequality operator.
    bool operator!= (const CacheBlockRangeIterator& rhs) {
      // Not correct, but fast.  Should return false for different A_
      // or different blocker_.
      return curInd_ != rhs.curInd_;
    }

    /// \brief A view of the current cache block.
    ///
    /// If the current cache block index is invalid, this returns an
    /// empty cache block (that is, calling empty() on the returned
    /// view returns true).
    MatrixViewType operator*() const {
      return blocker_.get_cache_block (A_, curInd_, contiguousCacheBlocks_);
    }

  private:
    MatrixViewType A_;
    CacheBlocker<ordinal_type, scalar_type> blocker_;
    ordinal_type curInd_;
    bool reverse_;
    bool contiguousCacheBlocks_;
  };

  /// \class CacheBlockRange
  /// \brief Collection of cache blocks with a contiguous range of indices.
  /// \author Mark Hoemmen
  ///
  /// We mean "collection" in the C++ sense: you can iterate over the
  /// elements using iterators.  The iterators are valid only when the
  /// CacheBlockRange is in scope, just like the iterators of
  /// std::vector.
  ///
  /// CacheBlockRange is useful for \c KokkosNodeTsqr, in particular
  /// for \c FactorFirstPass and \c ApplyFirstPass.  Sequential TSQR's
  /// factorization is forward iteration over the collection, and
  /// applying the Q factor or computing the explicit Q factor is
  /// iteration in the reverse direction (decreasing cache block
  /// index).
  ///
  /// This class is templated so that it works with any matrix view.
  template<class MatrixViewType>
  class CacheBlockRange {
  public:
    typedef MatrixViewType view_type;
    typedef typename MatrixViewType::ordinal_type ordinal_type;
    typedef typename MatrixViewType::scalar_type scalar_type;

    /// \typedef iterator
    /// \brief Type of an iterator over the range of cache blocks.
    typedef CacheBlockRangeIterator<MatrixViewType> iterator;

    /// \brief Constructor
    ///
    /// \param A [in] View of the matrix to factor.
    /// \param strategy [in] Cache blocking strategy to use (copied
    ///   on input).
    /// \param startIndex [in] Starting index of the cache block
    ///   sequence.
    /// \param endIndex [in] Ending index (exclusive) of the cache
    ///   block sequence.  Precondition: startIndex <= endIndex.  If
    ///   startIndex == endIndex, the sequence is empty.
    /// \param contiguousCacheBlocks [in] Whether cache blocks in the
    ///   matrix A are stored contiguously.
    CacheBlockRange (MatrixViewType A,
                     const CacheBlockingStrategy<ordinal_type, scalar_type>& strategy,
                     const ordinal_type startIndex,
                     const ordinal_type endIndex,
                     const bool contiguousCacheBlocks) :
      A_ (A),
      startIndex_ (startIndex),
      endIndex_ (endIndex),
      strategy_ (strategy),
      contiguousCacheBlocks_ (contiguousCacheBlocks)
    {}

    bool empty() const {
      return startIndex_ >= endIndex_;
    }

    iterator begin() const {
      return iterator (A_, strategy_, startIndex_, false, contiguousCacheBlocks_);
    }

    iterator end() const {
      return iterator (A_, strategy_, endIndex_, false, contiguousCacheBlocks_);
    }

    iterator rbegin() const {
      return iterator (A_, strategy_, endIndex_-1, true, contiguousCacheBlocks_);
    }

    iterator rend() const {
      // Think about it: rbegin() == rend() means that rbegin() is invalid
      // and shouldn't be dereferenced.  rend() should never be dereferenced.
      return iterator (A_, strategy_, startIndex_-1, true, contiguousCacheBlocks_);
    }

    private:
      //! View of the matrix.
      MatrixViewType A_;

      /// \brief Starting index of the range of cache blocks.
      ///
      /// We always have startIndex_ <= endIndex_.  Reverse-order
      /// iteration is indicated by the iterator's reverse_ member
      /// datum.
      ordinal_type startIndex_;

      /// \brief Ending index (exclusive) of the range of cache blocks.
      ///
      /// See the documentation of startIndex_ for its invariant.
      ordinal_type endIndex_;

      //! Cache blocking strategy for a matrix with the same number of rows as A_.
      CacheBlockingStrategy<ordinal_type, scalar_type> strategy_;

      //! Whether the cache blocks of the matrix A_ are stored contiguously.
      bool contiguousCacheBlocks_;
    };


} // namespace TSQR


#endif // __TSQR_CacheBlocker_hpp