This file is indexed.

/usr/include/trilinos/Tsqr_FullTsqrTest.hpp is in libtrilinos-tpetra-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __TSQR_Test_FullTsqrTest_hpp
#define __TSQR_Test_FullTsqrTest_hpp

#include <Tsqr.hpp>
#include <Tsqr_Random_NormalGenerator.hpp>
#include <Tsqr_Random_GlobalMatrix.hpp>
#include <Tsqr_TestSetup.hpp>
//#include <TsqrFactory_SequentialTsqr.hpp>
#include <Tsqr_GlobalVerify.hpp>
#include <Tsqr_TeuchosMessenger.hpp>
#include "Tsqr_TestUtils.hpp"
#include <Teuchos_ScalarTraits.hpp>

#include <iostream>
#include <stdexcept>
#include <string>

namespace TSQR {
  namespace Test {

    /// \class TsqrInaccurate
    /// \brief Signals that a TSQR test failed due to insufficient accuracy.
    ///
    class TsqrInaccurate : public std::exception {
    public:
      //! Constructor
      TsqrInaccurate (const std::string& msg) : msg_ (msg) {}

      //! The error message
      const char* what() const throw() { return msg_.c_str(); }

      //! Destructor (declared virtual for memory safety of subclasses).
      virtual ~TsqrInaccurate() throw() {}

    private:
      std::string msg_;
    };

    /// \class FullTsqrVerifier
    /// \brief Test (correctness and) accuracy of Tsqr for one Scalar type.
    /// \author Mark Hoemmen
    ///
    /// This class is meant to be used only by \c
    /// FullTsqrVerifierCaller.  It performs one accuracy test of \c
    /// Tsqr for the given Scalar type (that is, the type of the
    /// matrix entries).  An accuracy test is also a correctness test.
    /// This test computes accuracy bounds for both orthogonality and
    /// forward errors, and if those bounds are exceeded and the
    /// failIfInaccurate option is enabled, the test will throw a \c
    /// TsqrInaccurate exception.
    ///
    /// The test takes a \c Teuchos::ParameterList input.  For a
    /// ParameterList with all parameters, their default values, and
    /// documentation, see the relevant class method in \c
    /// FullTsqrVerifierCaller.
    ///
    /// This class currently only tests the version of Tsqr that is
    /// the composition of NodeTsqrType=SequentialTsqr and
    /// DistTsqrType=DistTsqr.  This should suffice to test
    /// correctness, as long as the other NodeTsqrType possibilities
    /// (such as TbbTsqr) are tested separately.
    ///
    template<class Scalar>
    class FullTsqrVerifier {
    public:
      typedef Scalar scalar_type;
      typedef int ordinal_type;
      typedef SequentialTsqr<ordinal_type, scalar_type> node_tsqr_type;
      typedef DistTsqr<ordinal_type, scalar_type> dist_tsqr_type;
      typedef Tsqr<ordinal_type, scalar_type, node_tsqr_type> tsqr_type;

    private:

      //! Instantiate and return a (full) Tsqr instance.
      static Teuchos::RCP<tsqr_type>
      getTsqr (const Teuchos::RCP<Teuchos::ParameterList>& testParams,
               const Teuchos::RCP<const Teuchos::Comm<int> >& comm)
      {
        using Teuchos::ParameterList;
        using Teuchos::parameterList;
        using Teuchos::rcp_implicit_cast;
        using Teuchos::RCP;
        using Teuchos::rcp;

        const size_t cacheSizeHint = testParams->get<size_t> ("cacheSizeHint");
        //const int numTasks = testParams->get<int> ("numTasks");

        //RCP<ParameterList> tsqrParams = parameterList ("NodeTsqr");
        //tsqrParams->set ("Cache Size Hint", cacheSizeHint);
        //tsqrParams->set ("Num Tasks", numCores);

        // TODO (mfh 21 Oct 2011) Some node_tsqr_type classes need a
        // Kokkos Node instance.  SequentialTsqr doesn't, so this code
        // should be fine for now.
        RCP<node_tsqr_type> seqTsqr = rcp (new node_tsqr_type (cacheSizeHint));

        RCP<TeuchosMessenger<scalar_type> > scalarMess =
          rcp (new TeuchosMessenger<scalar_type> (comm));
        RCP<MessengerBase<scalar_type> > scalarMessBase =
          rcp_implicit_cast<MessengerBase<scalar_type> > (scalarMess);
        RCP<dist_tsqr_type> distTsqr = rcp (new dist_tsqr_type);
        distTsqr->init (scalarMessBase);

        return rcp (new tsqr_type (seqTsqr, distTsqr));
      }

    public:

      /// \brief Run the test for the Scalar type.
      ///
      /// \param comm [in] Communicator over which to run the test.
      /// \param testParams [in/out] Parameters for the test.  May
      ///   be modified by each test in turn.
      /// \param randomSeed [in/out] On input: the random seed for
      ///   LAPACK's pseudorandom number generator.  On output: the
      ///   updated random seed.
      static void
      run (const Teuchos::RCP<const Teuchos::Comm<int> >& comm,
           const Teuchos::RCP<Teuchos::ParameterList>& testParams,
           std::vector<int>& randomSeed)
      {
        using std::cerr;
        using std::cout;
        using std::endl;
        using Teuchos::arcp;
        using Teuchos::ParameterList;
        using Teuchos::parameterList;
        using Teuchos::RCP;
        using Teuchos::rcp;
        using Teuchos::rcp_const_cast;
        using Teuchos::rcp_implicit_cast;
        typedef Matrix<ordinal_type, scalar_type> matrix_type;
        typedef MatView<ordinal_type, scalar_type> mat_view_type;
        typedef typename tsqr_type::FactorOutput factor_output_type;

        const int myRank = Teuchos::rank (*comm);
        const int numProcs = Teuchos::size (*comm);

        // Construct TSQR implementation instance.
        RCP<tsqr_type> tsqr = getTsqr (testParams, comm);

        // Fetch test parameters from the input parameter list.
        const ordinal_type numRowsLocal = testParams->get<ordinal_type> ("numRowsLocal");
        const ordinal_type numCols = testParams->get<ordinal_type> ("numCols");
        const int numCores = testParams->get<int> ("numCores");
        const bool contiguousCacheBlocks = testParams->get<bool> ("contiguousCacheBlocks");
        const bool testFactorExplicit = testParams->get<bool> ("testFactorExplicit");
        const bool testRankRevealing = testParams->get<bool> ("testRankRevealing");
        const bool debug = testParams->get<bool> ("debug");

        // Space for each process's local part of the test problem.
        // A_local, A_copy, and Q_local are distributed matrices, and
        // R is replicated on all processes sharing the communicator.
        matrix_type A_local (numRowsLocal, numCols);
        matrix_type A_copy (numRowsLocal, numCols);
        matrix_type Q_local (numRowsLocal, numCols);
        matrix_type R (numCols, numCols);

        // Start out by filling the test problem with zeros.
        typedef Teuchos::ScalarTraits<scalar_type> STS;
        A_local.fill (STS::zero());
        A_copy.fill (STS::zero());
        Q_local.fill (STS::zero());
        R.fill (STS::zero());

        // Create some reasonable singular values for the test problem:
        // 1, 1/2, 1/4, 1/8, ...
        typedef typename STS::magnitudeType magnitude_type;
        std::vector<magnitude_type> singularValues (numCols);
        typedef Teuchos::ScalarTraits<magnitude_type> STM;
        {
          const magnitude_type scalingFactor = STM::one() + STM::one();
          magnitude_type curVal = STM::one();
          typedef typename std::vector<magnitude_type>::iterator iter_type;
          for (iter_type it = singularValues.begin();
               it != singularValues.end(); ++it)
            {
              *it = curVal;
              curVal = curVal / scalingFactor;
            }
        }

        // Construct a normal(0,1) pseudorandom number generator with
        // the given random seed.
        using TSQR::Random::NormalGenerator;
        typedef NormalGenerator<ordinal_type, scalar_type> generator_type;
        generator_type gen (randomSeed);

        // We need a Messenger for Ordinal-type data, so that we can
        // build a global random test matrix.
        RCP<MessengerBase<ordinal_type> > ordinalMessenger =
          rcp_implicit_cast<MessengerBase<ordinal_type> > (rcp (new TeuchosMessenger<ordinal_type> (comm)));

        // We also need a Messenger for Scalar-type data.  The TSQR
        // implementation already constructed one, but it's OK to
        // construct another one; TeuchosMessenger is just a thin
        // wrapper over the Teuchos::Comm object.
        RCP<MessengerBase<scalar_type> > scalarMessenger =
          rcp_implicit_cast<MessengerBase<scalar_type> > (rcp (new TeuchosMessenger<scalar_type> (comm)));

        {
          // Generate a global distributed matrix (whose part local to
          // this process is in A_local) with the given singular values.
          // This part has O(P) communication for P MPI processes.
          using TSQR::Random::randomGlobalMatrix;
          // Help the C++ compiler with type inference.
          mat_view_type A_local_view (A_local.nrows(), A_local.ncols(), A_local.get(), A_local.lda());
          const magnitude_type* const singVals = (numCols == 0) ? NULL : &singularValues[0];
          randomGlobalMatrix<mat_view_type, generator_type> (&gen, A_local_view, singVals,
                                                             ordinalMessenger.getRawPtr(),
                                                             scalarMessenger.getRawPtr());
        }
        // Save the pseudorandom number generator's seed for any later
        // tests.  The generator keeps its own copy of the seed and
        // updates it internally, so we have to ask for its copy.
        gen.getSeed (randomSeed);

        // If specified in the test parameters, rearrange cache blocks
        // in the copy.  Otherwise, just copy the test problem into
        // A_copy.  The factorization overwrites the input matrix, so
        // we have to make a copy in order to validate the final
        // result.
        if (contiguousCacheBlocks) {
          tsqr->cache_block (numRowsLocal, numCols, A_copy.get(),
                             A_local.get(), A_local.lda());
          if (debug) {
            Teuchos::barrier (*comm);
            if (myRank == 0)
              cerr << "-- Finished Tsqr::cache_block" << endl;
          }
        }
        else {
          deep_copy (A_copy, A_local);
        }

        // "factorExplicit" is an alternate, hopefully faster way of
        // factoring the matrix, when only the explicit Q factor is
        // wanted.
        if (testFactorExplicit) {
          tsqr->factorExplicitRaw (A_copy.nrows (), A_copy.ncols (),
                                   A_copy.get (), A_copy.lda (),
                                   Q_local.get (), Q_local.lda (),
                                   R.get (), R.lda (),
                                   contiguousCacheBlocks);
          if (debug) {
            Teuchos::barrier (*comm);
            if (myRank == 0)
              cerr << "-- Finished Tsqr::factorExplicit" << endl;
          }
        }
        else {
          // Factor the (copy of the) matrix.
          factor_output_type factorOutput =
            tsqr->factor (numRowsLocal, numCols, A_copy.get(), A_copy.lda(),
                          R.get(), R.lda(), contiguousCacheBlocks);
          if (debug) {
            Teuchos::barrier (*comm);
            if (myRank == 0)
              cerr << "-- Finished Tsqr::factor" << endl;
          }
          // Compute the explicit Q factor in Q_local.
          tsqr->explicit_Q (numRowsLocal, numCols, A_copy.get(), A_copy.lda(),
                            factorOutput, numCols, Q_local.get(), Q_local.lda(),
                            contiguousCacheBlocks);
          if (debug) {
            Teuchos::barrier (*comm);
            if (myRank == 0)
              cerr << "-- Finished Tsqr::explicit_Q" << endl;
          }
        }

        // Optionally, test rank-revealing capability.  We do this
        // before un-cache-blocking the explicit Q factor, since
        // revealRank can work with contiguous cache blocks, and
        // modifies the Q factor if the matrix doesn't have full
        // column rank.
        if (testRankRevealing) {
          // If 2^{# columns} > machine precision, then our choice
          // of singular values will make the smallest singular
          // value < machine precision.  In that case, the SVD can't
          // promise it will distinguish between tiny and zero.  If
          // the number of columns is less than that, we can use a
          // tolerance of zero to test the purported rank with the
          // actual numerical rank.
          const magnitude_type tol = STM::zero();
          const ordinal_type rank =
            tsqr->revealRankRaw (Q_local.nrows (), Q_local.ncols (),
                                 Q_local.get (), Q_local.lda (),
                                 R.get (), R.lda (), tol,
                                 contiguousCacheBlocks);

          magnitude_type two_to_the_numCols = STM::one();
          for (int k = 0; k < numCols; ++k) {
            const magnitude_type two = STM::one() + STM::one();
            two_to_the_numCols *= two;
          }
          // Throw in a factor of 10, just for more tolerance of
          // rounding error (so the test only fails if something is
          // really broken).
          if (two_to_the_numCols > magnitude_type(10) * STM::eps ()) {
            TEUCHOS_TEST_FOR_EXCEPTION(
              rank != numCols, std::logic_error, "The matrix of " << numCols
              << " columns should have full numerical rank, but Tsqr reports "
              "that it has rank " << rank << ".  Please report this bug to "
              "the Kokkos developers.");
            if (debug) {
              Teuchos::barrier (*comm);
              if (myRank == 0)
                cerr << "-- Tested rank-revealing capability" << endl;
            }
          }
          else {
            if (debug) {
              Teuchos::barrier (*comm);
              if (myRank == 0)
                cerr << "-- Not testing rank-revealing capability; too many columns" << endl;
            }
          }
        }
        // "Un"-cache-block the output, if contiguous cache blocks
        // were used.  This is only necessary because global_verify()
        // doesn't currently support contiguous cache blocks.
        if (contiguousCacheBlocks) {
          // We can use A_copy as scratch space for
          // un-cache-blocking Q_local, since we're done using
          // A_copy for other things.
          tsqr->un_cache_block (numRowsLocal, numCols, A_copy.get(),
                                A_copy.lda(), Q_local.get());
          // Overwrite Q_local with the un-cache-blocked Q factor.
          deep_copy (Q_local, A_copy);
          if (debug) {
            Teuchos::barrier (*comm);
            if (myRank == 0)
              cerr << "-- Finished Tsqr::un_cache_block" << endl;
          }
        }

        // Test accuracy of the factorization.
        const std::vector<magnitude_type> results =
          global_verify (numRowsLocal, numCols, A_local.get(), A_local.lda(),
                         Q_local.get(), Q_local.lda(), R.get(), R.lda(),
                         scalarMessenger.getRawPtr());
        if (debug) {
          Teuchos::barrier (*comm);
          if (myRank == 0)
            cerr << "-- Finished global_verify" << endl;
        }

        // Print the results on Proc 0.
        if (myRank == 0) {
          if (testParams->get<bool> ("printFieldNames")) {
            cout << "%"
                 << "method"
                 << ",scalarType"
                 << ",numRowsLocal"
                 << ",numCols"
                 << ",numProcs"
                 << ",numCores"
                 << ",cacheSizeHint"
                 << ",contiguousCacheBlocks"
                 << ",absFrobResid"
                 << ",absFrobOrthog"
                 << ",frobA" << endl;
            // We don't need to print field names again for the other
            // tests, so set the test parameters accordingly.
            testParams->set ("printFieldNames", false);
          }
          if (testParams->get<bool> ("printResults")) {
            cout << "Tsqr"
                 << "," << Teuchos::TypeNameTraits<scalar_type>::name()
                 << "," << numRowsLocal
                 << "," << numCols
                 << "," << numProcs
                 << "," << numCores
                 << "," << tsqr->cache_size_hint()
                 << "," << contiguousCacheBlocks
                 << "," << results[0]
                 << "," << results[1]
                 << "," << results[2]
                 << endl;
          }
        } // if (myRank == 0)

        // If requested, check accuracy and fail if results are not
        // sufficiently accurate.
        if (testParams->get<bool> ("failIfInaccurate")) {
          // Avoid overflow of the local Ordinal type, by casting
          // first to a floating-point type.
          const magnitude_type dimsProd = magnitude_type(numRowsLocal) *
            magnitude_type(numProcs) * magnitude_type(numCols*numCols);

          // Relative residual error is ||A-Q*R|| / ||A||, or just
          // ||A-Q*R|| if ||A|| == 0.  (The result had better be zero
          // in the latter case.)  A reasonable error bound should
          // incorporate the dimensions of the matrix, since this
          // indicates the amount of rounding error.  Square root of
          // the matrix dimensions is an old heuristic from Wilkinson
          // or perhaps even an earlier source.  We include a factor
          // of 10 so that the test won't fail unless there is a
          // really good reason.
          const magnitude_type relResidBound =
            magnitude_type(10) * STM::squareroot(dimsProd) * STM::eps();

          // Orthogonality of the matrix should not depend on the
          // matrix dimensions, if we measure in the 2-norm.
          // However, we are measuring in the Frobenius norm, so
          // it's appropriate to multiply eps by the number of
          // entries in the matrix for which we compute the
          // Frobenius norm.  We include a factor of 10 for the same
          // reason as mentioned above.
          const magnitude_type orthoBound =
            magnitude_type(10*numCols*numCols) * STM::eps();

          // Avoid division by zero.
          const magnitude_type relResidError =
            results[0] / (results[2] == STM::zero() ? STM::one() : results[2]);
          TEUCHOS_TEST_FOR_EXCEPTION(
            relResidError > relResidBound, TsqrInaccurate, "Full Tsqr "
            "has an inaccurate relative residual ||A - QR||_F"
            << (results[2] == STM::zero() ? " / ||A||_F" : "")
            << " = " << relResidError << ", which is greater than the bound "
            << relResidBound << " by a factor of "
            << relResidError / relResidBound << ".");
          const magnitude_type orthoError = results[1];
          TEUCHOS_TEST_FOR_EXCEPTION(
            orthoError > orthoBound, TsqrInaccurate,
            "Full Tsqr has an inaccurate orthogonality measure ||I - Q^* Q||_F"
            << results[1] << " = " << orthoError << ", which is greater than "
            "the bound " << orthoBound << " by a factor of "
            << orthoError / orthoBound << ".");
        } // if (the tests should fail on inaccuracy)
      }
    };

    /// \class FullTsqrVerifierCallerImpl
    /// \brief This class implements a "function template specialization."
    /// \author Mark Hoemmen
    ///
    /// We want to make FullTsqrVerifierCaller::run() a template
    /// function, with a partial specialization for Cons<CarType,
    /// CdrType> and a full specialization for NullType.  However,
    /// function templates can't have partial specializations, at
    /// least not in the version of the C++ standard currently
    /// supported by Trilinos.  Thus, I've taken the advice of Herb
    /// Sutter (C/C++ Users Journal, 19(7), July 2001), which can be
    /// read online here:
    ///
    /// http://www.gotw.ca/publications/mill17.htm
    ///
    /// Namely, I've implemented the function template via a class
    /// template.  This class is an implementation detail and not
    /// meant to be used anywhere else other than in
    /// FullTsqrVerifierCaller::run().
    template<class TypeListType>
    class FullTsqrVerifierCallerImpl {
    public:
      static void
      run (const Teuchos::RCP<const Teuchos::Comm<int> >& comm,
           const Teuchos::RCP<Teuchos::ParameterList>& testParams,
           std::vector<int>& randomSeed);
    };

    //
    // Partial specialization for Cons<CarType, CdrType>.
    //
    template<class CarType, class CdrType>
    class FullTsqrVerifierCallerImpl<TSQR::Test::Cons<CarType, CdrType> > {
    public:
      static void
      run (const Teuchos::RCP<const Teuchos::Comm<int> >& comm,
           const Teuchos::RCP<Teuchos::ParameterList>& testParams,
           std::vector<int>& randomSeed)
      {
        typedef CarType car_type;
        typedef CdrType cdr_type;
        FullTsqrVerifier<car_type>::run (comm, testParams, randomSeed);
        FullTsqrVerifierCallerImpl<cdr_type>::run (comm, testParams, randomSeed);
      }
    };

    //
    // Full specialization for NullCons.
    //
    template<>
    class FullTsqrVerifierCallerImpl<TSQR::Test::NullCons> {
    public:
      static void
      run (const Teuchos::RCP<const Teuchos::Comm<int> >&,
           const Teuchos::RCP<Teuchos::ParameterList>&,
           std::vector<int>&)
      {
        // We're at the end of the type list, so do nothing.
      }
    };

    /// \class FullTsqrVerifierCaller
    /// \brief Invokes FullTsqrVerifier::run() over all Scalar types in a type list.
    /// \author Mark Hoemmen
    ///
    /// Use this class to test the full TSQR implementation in Tsqr.
    /// It will test Tsqr over a list of Scalar types that you define,
    /// using \c Cons and \c NullCons.
    class FullTsqrVerifierCaller {
    public:
      /// \typedef ordinal_type
      /// \brief The (local) Ordinal type to use for TSQR.
      ///
      /// This must be a type for which Teuchos::BLAS<ordinal_type,
      /// Scalar> and Teuchos::LAPACK<ordinal_type, Scalar> each have
      /// an instantiation.  That means a signed integer type.  LAPACK
      /// and the BLAS can be built with signed 64-bit integers
      /// (int64_t), but usually they are only built with signed
      /// 32-bit integers (int).
      typedef int ordinal_type;

      /// \brief Return a valid parameter list for verifying Tsqr.
      ///
      /// Call this once to get a valid parameter list with all the
      /// defaults filled in.  This list is valid for all the Scalar
      /// types which TsqrVerifierCaller::run tests.
      Teuchos::RCP<const Teuchos::ParameterList>
      getValidParameterList () const
      {
        using Teuchos::ParameterList;
        using Teuchos::parameterList;
        using Teuchos::RCP;

        RCP<ParameterList> plist = parameterList ("FullTsqrVerifier");

        const size_t cacheSizeHint = 0;
        const int numCores = 1;
        const ordinal_type numRowsLocal = 100;
        const ordinal_type numCols = 10;
        const bool contiguousCacheBlocks = false;
        const bool testFactorExplicit = true;
        const bool testRankRevealing = true;
        const bool printFieldNames = true;
        const bool printResults = true;
        const bool failIfInaccurate = true;
        const bool debug = false;

        // Parameters for configuring Tsqr itself.
        plist->set ("cacheSizeHint", cacheSizeHint,
                    "Cache size hint in bytes.  "
                    "Zero means TSQR picks a reasonable default.");
        plist->set ("numCores", numCores,
                    "Number of partition(s) to use for TbbTsqr (if "
                    "applicable).  Must be a positive integer.");

        // Parameters for testing Tsqr.
        plist->set ("numRowsLocal", numRowsLocal,
                    "Number of rows per (MPI) process in the test matrix.  "
                    "Must be >= the number of columns.");
        plist->set ("numCols", numCols,
                    "Number of columns in the test matrix.");
        plist->set ("contiguousCacheBlocks", contiguousCacheBlocks,
                    "Whether to test the factorization with contiguously "
                    "stored cache blocks.");
        plist->set ("testFactorExplicit", testFactorExplicit,
                    "Whether to test TSQR's factorExplicit() (a hopefully "
                    "faster path than calling factor() and explicit_Q() in "
                    "sequence).");
        plist->set ("testRankRevealing", testRankRevealing,
                    "Whether to test TSQR's rank-revealing capability.");
        plist->set ("printFieldNames", printFieldNames,
                    "Whether to print field names (this is only done once, "
                    "for all Scalar types tested).");
        plist->set ("printResults", printResults,
                    "Whether to print test results.");
        plist->set ("failIfInaccurate", failIfInaccurate,
                    "Whether to fail the test if the factorization "
                    "is not sufficiently accurate.");
        plist->set ("debug", debug,
                    "Whether to print debugging output.");
        return plist;
      }

      /// \brief Run TsqrVerifier<T>::run() for every type in the type list.
      ///
      /// TypeListType should be either a \c NullCons (representing an
      /// empty type list, in which case this function does nothing),
      /// or a \c Cons (whose CarType is a Scalar type to test, and
      /// whose CdrType is either a NullCons or a Cons).
      ///
      /// \param testParams [in/out] List of parameters for all tests
      ///   to run.  Call \c getValidParameterList() to get a valid
      ///   list of parameters with default values and documentation.
      ///
      template<class TypeListType>
      void
      run (const Teuchos::RCP<Teuchos::ParameterList>& testParams)
      {
        // Using a class with a static method is a way to implement
        // "partial specialization of function templates" (which by
        // itself is not allowed in C++).
        typedef FullTsqrVerifierCallerImpl<TypeListType> impl_type;
        impl_type::run (comm_, testParams, randomSeed_);
      }


      /// \brief Full constructor.
      ///
      /// \param comm [in] Communicator (with one or more processes)
      ///   over which to perform tests.
      ///
      /// \param randomSeed [in] The seed for LAPACK's pseudorandom
      ///   number generator.  An array of four integers, satisfying
      ///   the requirements of LAPACK's _LARNV routines.  The array
      ///   elements must be in [0,4095], and the last element
      ///   (iseed[3]) must be odd.  Call \c defaultRandomSeed() for a
      ///   constant default value (if you want the same results each
      ///   time; not "random" but reproducible).
      FullTsqrVerifierCaller (const Teuchos::RCP<const Teuchos::Comm<int> >& comm,
                              const std::vector<int>& randomSeed) :
        comm_ (comm),
        randomSeed_ (validateRandomSeed (randomSeed))
      {}

      /// \brief One-argument constructor.
      ///
      /// Fills in defaults for the other arguments that the full
      /// constructor would take.
      ///
      /// \param comm [in] Communicator (with one or more processes)
      ///   over which to perform tests.
      FullTsqrVerifierCaller (const Teuchos::RCP<const Teuchos::Comm<int> >& comm) :
        comm_ (comm),
        randomSeed_ (defaultRandomSeed ())
      {}

      //! Validate the given random seed.
      static std::vector<int>
      validateRandomSeed (const std::vector<int>& seed)
      {
        TEUCHOS_TEST_FOR_EXCEPTION(
          seed.size () < 4, std::invalid_argument, "Invalid random seed: "
          "Need an array of four integers.");
        for (std::vector<int>::size_type k = 0; k < seed.size (); ++k) {
          TEUCHOS_TEST_FOR_EXCEPTION(
            seed[k] < 0 || seed[k] > 4095, std::invalid_argument, "Invalid "
            "random seed: Each of the four integers must be in [0, 4095].");
        }
        TEUCHOS_TEST_FOR_EXCEPTION(
          seed[3] % 2 != 1, std::invalid_argument, "Invalid random seed: "
          "The last of the four integers must be odd.");
        return seed;
      }

      //! Default random seed.
      static std::vector<int>
      defaultRandomSeed ()
      {
        std::vector<int> seed (4);
        seed[0] = 0;
        seed[1] = 0;
        seed[2] = 0;
        seed[3] = 1;
        return seed;
      }

    private:
      /// \brief Communicator over which to perform tests.
      ///
      /// This communicator may include one or more processes.
      /// MPI is not required (it may be a "serial communicator").
      Teuchos::RCP<const Teuchos::Comm<int> > comm_;

      /// \brief The seed for LAPACK's pseudorandom number generator.
      ///
      /// Array of four integers, satisfying the requirements of
      /// LAPACK's _LARNV routines.  The array elements must be in
      /// [0,4095], and the last element (iseed[3]) must be odd.
      std::vector<int> randomSeed_;
    };

  } // namespace Test
} // namespace TSQR

#endif // __TSQR_Test_FullTsqrTest_hpp