/usr/include/trilinos/Tsqr_NodeTsqr.hpp is in libtrilinos-tpetra-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
/// \file Tsqr_NodeTsqr.hpp
/// \brief Common interface and functionality for intranode TSQR.
///
#ifndef __TSQR_Tsqr_NodeTsqr_hpp
#define __TSQR_Tsqr_NodeTsqr_hpp
#include <Tsqr_ApplyType.hpp>
#include <Tsqr_Matrix.hpp>
#include <Teuchos_as.hpp>
#include <Teuchos_Describable.hpp>
#include <Teuchos_LAPACK.hpp>
#include <Teuchos_ScalarTraits.hpp>
#include <Teuchos_TypeNameTraits.hpp>
#include <vector>
namespace TSQR {
/// \class NodeTsqr
/// \brief Common interface and functionality for intranode TSQR.
///
/// NodeTsqr provides a generic interface for TSQR operations within
/// a node ("intranode"). It also implements rank-revealing
/// functionality used by all intranode TSQR implementations.
///
/// \tparam Ordinal The (local) Ordinal type; the type of indices
/// into a matrix on a node
/// \tparam Scalar Tthe type of elements stored in the matrix
/// \tparam FactorOutputType The type returned by factor().
///
/// We template on FactorOutputType for compile-time polymorphism.
/// This lets subclasses define the \c factor() method, without
/// constraining them to inherit their particular FactorOutputType
/// from a common abstract base class. FactorOutputType is meant to
/// be either just a simple composition of std::pair and
/// std::vector, or a simple struct. Its contents are specific to
/// each intranode TSQR implementation. and are not intended to be
/// polymorphic, so it would not make sense for all the different
/// FactorOutputType types to inherit from a common base class.
///
/// Templating on FactorOutputType means that we can't use run-time
/// polymorphism to swap between NodeTsqr subclasses, since the
/// latter are really subclasses of different NodeTsqr
/// instantiations (i.e., different FactorOutputType types).
/// However, inheriting from different specializations of NodeTsqr
/// does enforce correct compile-time polymorphism in a syntactic
/// way. It also avoids repeated code for common functionality.
/// Full run-time polymorphism of different NodeTsqr subclasses
/// would not be useful. This is because ultimately each subclass
/// is bound to a Kokkos Node type, and those only use compile-time
/// polymorphism.
///
template<class Ordinal, class Scalar, class FactorOutputType>
class NodeTsqr : public Teuchos::Describable {
public:
typedef Ordinal ordinal_type;
typedef Scalar scalar_type;
typedef FactorOutputType factor_output_type;
typedef MatView<Ordinal, Scalar> mat_view_type;
typedef ConstMatView<Ordinal, Scalar> const_mat_view_type;
//! Constructor
NodeTsqr() {}
//! Virtual destructor, for memory safety of derived classes.
virtual ~NodeTsqr() {}
/// \brief Whether this object is ready to perform computations.
///
/// Some NodeTsqr subclasses require additional initialization
/// after construction, before they can perform computations.
/// Call this method to make sure that the subclass instance is
/// fully initialized, before calling any of its computational
/// methods.
virtual bool ready() const = 0;
//! Cache size hint (in bytes) used for the factorization.
virtual size_t cache_size_hint() const = 0;
/// \brief One-line description of this object.
///
/// This implements \c Teuchos::Describable::description().
/// Subclasses should override this to provide a more specific
/// description of their implementation. Subclasses may also
/// implement \c Teuchos::Describable::describe(), which for this
/// class has a simple default implementation that calls
/// description() with appropriate indenting.
virtual std::string description () const {
using Teuchos::TypeNameTraits;
std::ostringstream os;
os << "NodeTsqr<Ordinal=" << TypeNameTraits<Ordinal>::name()
<< ", Scalar=" << TypeNameTraits<Scalar>::name()
<< ", ...>: Intranode Tall Skinny QR (TSQR), with cache size hint "
<< cache_size_hint();
return os.str();
}
/// \brief Compute the QR factorization of A.
///
/// The resulting Q factor is stored implicitly in two parts. The
/// first part is stored in place in the A matrix, and thus
/// overwrites the input matrix. The second part is stored in the
/// returned factor_output_type object. Both parts must be passed
/// into \c apply() or \c explicit_Q().
///
/// \param nrows [in] Number of rows in the matrix A to factor.
/// \param ncols [in] Number of columns in the matrix A to factor.
/// \param A [in/out] On input: the matrix to factor. It is
/// stored either in column-major order with leading dimension
/// (a.k.a. stride) lda, or with contiguous cache blocks (if
/// contiguousCacheBlocks is true) according to the prevailing
/// cache blocking strategy. Use the \c cache_block() method to
/// convert a matrix in column-major order to the latter format,
/// and the \c un_cache_block() method to convert it back. On
/// output: part of the implicit representation of the Q factor.
/// (The returned object is the other part of that
/// representation.)
/// \param lda [in] Leading dimension (a.k.a. stride) of the
/// matrix A to factor.
/// \param R [out] The ncols x ncols R factor.
/// \param ldr [in] leading dimension (a.k.a. stride) of the R
/// factor.
/// \param contiguousCacheBlocks [in] Whether the cache blocks of
/// A are stored contiguously. If you don't know what this
/// means, put "false" here.
///
/// \return Part of the implicit representation of the Q factor.
/// The other part is the A matrix on output.
virtual factor_output_type
factor (const Ordinal nrows,
const Ordinal ncols,
Scalar A[],
const Ordinal lda,
Scalar R[],
const Ordinal ldr,
const bool contiguousCacheBlocks) const = 0;
/// \brief Apply the implicit Q factor from \c factor() to C.
///
/// \param applyType [in] Whether to apply Q, Q^T, or Q^H to C.
/// \param nrows [in] Number of rows in Q and C.
/// \param ncols [in] Number of columns in in Q.
/// \param Q [in] Part of the implicit representation of the Q
/// factor; the A matrix output of \c factor(). See the \c
/// factor() documentation for details.
/// \param ldq [in] Leading dimension (a.k.a. stride) of Q, if Q
/// is stored in column-major order (not contiguously cache
/// blocked).
/// \param factorOutput [in] Return value of factor(),
/// corresponding to Q.
/// \param ncols_C [in] Number of columns in the matrix C. This
/// may be different than the number of columns in Q. There is
/// no restriction on this value, but we optimize performance
/// for the case ncols_C == ncols_Q.
/// \param C [in/out] On input: Matrix to which to apply the Q
/// factor. On output: Result of applying the Q factor (or Q^T,
/// or Q^H, depending on applyType) to C.
/// \param ldc [in] leading dimension (a.k.a. stride) of C, if C
/// is stored in column-major order (not contiguously cache
/// blocked).
/// \param contiguousCacheBlocks [in] Whether the cache blocks of
/// Q and C are stored contiguously. If you don't know what
/// this means, put "false" here.
virtual void
apply (const ApplyType& applyType,
const Ordinal nrows,
const Ordinal ncols_Q,
const Scalar Q[],
const Ordinal ldq,
const FactorOutputType& factorOutput,
const Ordinal ncols_C,
Scalar C[],
const Ordinal ldc,
const bool contiguousCacheBlocks) const = 0;
/// \brief Compute the explicit Q factor from the result of \c factor().
///
/// This is equivalent to calling \c apply() on the first ncols_C
/// columns of the identity matrix (suitably cache-blocked, if
/// applicable).
///
/// \param nrows [in] Number of rows in Q and C.
/// \param ncols [in] Number of columns in in Q.
/// \param Q [in] Part of the implicit representation of the Q
/// factor; the A matrix output of \c factor(). See the \c
/// factor() documentation for details.
/// \param ldq [in] Leading dimension (a.k.a. stride) of Q, if Q
/// is stored in column-major order (not contiguously cache
/// blocked).
/// \param factorOutput [in] Return value of factor(),
/// corresponding to Q.
/// \param ncols_C [in] Number of columns in the matrix C. This
/// may be different than the number of columns in Q, in which
/// case that number of columns of the Q factor will be
/// computed. There is no restriction on this value, but we
/// optimize performance for the case ncols_C == ncols_Q.
/// \param C [out] The first ncols_C columns of the Q factor.
/// \param ldc [in] leading dimension (a.k.a. stride) of C, if C
/// is stored in column-major order (not contiguously cache
/// blocked).
/// \param contiguousCacheBlocks [in] Whether the cache blocks of
/// Q and C are stored contiguously. If you don't know what
/// this means, put "false" here.
virtual void
explicit_Q (const Ordinal nrows,
const Ordinal ncols_Q,
const Scalar Q[],
const Ordinal ldq,
const factor_output_type& factorOutput,
const Ordinal ncols_C,
Scalar C[],
const Ordinal ldc,
const bool contiguousCacheBlocks) const = 0;
/// \brief Cache block A_in into A_out.
///
/// \param nrows [in] Number of rows in A_in and A_out.
/// \param ncols [in] Number of columns in A_in and A_out.
/// \param A_out [out] Result of cache-blocking A_in.
/// \param A_in [in] Matrix to cache block, stored in column-major
/// order with leading dimension lda_in.
/// \param lda_in [in] Leading dimension of A_in. (See the LAPACK
/// documentation for a definition of "leading dimension.")
/// lda_in >= nrows.
virtual void
cache_block (const Ordinal nrows,
const Ordinal ncols,
Scalar A_out[],
const Scalar A_in[],
const Ordinal lda_in) const = 0;
/// \brief Un - cache block A_in into A_out.
///
/// A_in is a matrix produced by \c cache_block(). It is
/// organized as contiguously stored cache blocks. This method
/// reorganizes A_in into A_out as an ordinary matrix stored in
/// column-major order with leading dimension lda_out.
///
/// \param nrows [in] Number of rows in A_in and A_out.
/// \param ncols [in] Number of columns in A_in and A_out.
/// \param A_out [out] Result of un-cache-blocking A_in.
/// Matrix stored in column-major order with leading
/// dimension lda_out.
/// \param lda_out [in] Leading dimension of A_out. (See the
/// LAPACK documentation for a definition of "leading
/// dimension.") lda_out >= nrows.
/// \param A_in [in] Matrix to un-cache-block.
virtual void
un_cache_block (const Ordinal nrows,
const Ordinal ncols,
Scalar A_out[],
const Ordinal lda_out,
const Scalar A_in[]) const = 0;
/// \brief Compute Q*B
///
/// Compute matrix-matrix product Q*B, where Q is nrows by ncols
/// and B is ncols by ncols. Respect cache blocks of Q.
virtual void
Q_times_B (const Ordinal nrows,
const Ordinal ncols,
Scalar Q[],
const Ordinal ldq,
const Scalar B[],
const Ordinal ldb,
const bool contiguousCacheBlocks) const = 0;
/// \brief Fill the nrows by ncols matrix A with zeros.
///
/// Fill the matrix A with zeros, in a way that respects the cache
/// blocking scheme.
///
/// \param nrows [in] Number of rows in A
/// \param ncols [in] Number of columns in A
/// \param A [out] nrows by ncols column-major-order dense matrix
/// with leading dimension lda
/// \param lda [in] Leading dimension of A: lda >= nrows
/// \param contiguousCacheBlocks [in] Whether the cache blocks
/// in A are stored contiguously.
virtual void
fill_with_zeros (const Ordinal nrows,
const Ordinal ncols,
Scalar A[],
const Ordinal lda,
const bool contiguousCacheBlocks) const = 0;
protected:
/// \brief Return view of topmost cache block of C
///
/// \param C [in] Matrix (view), supporting the usual nrows(),
/// ncols(), get(), lda() interface.
/// \param contiguousCacheBlocks [in] Whether the cache blocks
/// in C are stored contiguously.
///
/// Return a view of the topmost cache block (on this node) of the
/// given matrix C. This is not necessarily square, though it
/// must have at least as many rows as columns. For a square
/// ncols by ncols block, as needed by Tsqr::apply(), do as
/// follows:
/// \code
/// MatrixViewType top = this->top_block (C, contig);
/// mat_view_type square (ncols, ncols, top.get(), top.lda());
/// \endcode
virtual const_mat_view_type
const_top_block (const const_mat_view_type& C,
const bool contiguousCacheBlocks) const = 0;
public:
/// \brief Return view of topmost cache block of C.
///
/// \param C [in] View of a matrix C.
/// \param contiguousCacheBlocks [in] Whether the cache blocks
/// in C are stored contiguously.
///
/// Return a view of the topmost cache block (on this node) of the
/// given matrix C. This is not necessarily square, though it
/// must have at least as many rows as columns. For a view of the
/// first C.ncols() rows of that block, which methods like
/// Tsqr::apply() need, do the following:
/// \code
/// MatrixViewType top = this->top_block (C, contig);
/// mat_view_type square (ncols, ncols, top.get(), top.lda());
/// \endcode
///
/// Models for MatrixViewType are MatView and ConstMatView.
/// MatrixViewType must have member functions nrows(), ncols(),
/// get(), and lda(), and its constructor must take the same four
/// arguments as the constructor of ConstMatView.
template<class MatrixViewType>
MatrixViewType
top_block (const MatrixViewType& C,
const bool contiguous_cache_blocks) const
{
// The *_top_block() methods don't actually modify the data, so
// it's safe to handle the matrix's data as const within this
// method. The only cast from const to nonconst may be in the
// return value, but there it's legitimate since we're just
// using the same constness as C has.
const_mat_view_type C_view (C.nrows(), C.ncols(), C.get(), C.lda());
const_mat_view_type C_top =
const_top_block (C_view, contiguous_cache_blocks);
TEUCHOS_TEST_FOR_EXCEPTION(C_top.nrows() < C_top.ncols(), std::logic_error,
"The subclass of NodeTsqr has a bug in const_top_block"
"(); it returned a block with fewer rows than columns "
"(" << C_top.nrows() << " rows and " << C_top.ncols()
<< " columns). Please report this bug to the Kokkos "
"developers.");
typedef typename MatrixViewType::pointer_type ptr_type;
return MatrixViewType (C_top.nrows(), C_top.ncols(),
const_cast<ptr_type> (C_top.get()),
C_top.lda());
}
/// \brief Does factor() compute R with nonnegative diagonal?
///
/// When using a QR factorization to orthogonalize a block of
/// vectors, computing an R factor with nonnegative diagonal
/// ensures that in exact arithmetic, the result of the
/// orthogonalization (orthogonalized vectors Q and their
/// coefficients R) are the same as would be produced by
/// Gram-Schmidt orthogonalization.
///
/// This distinction is important because LAPACK's QR
/// factorization (_GEQRF) may (and does, in practice) compute an
/// R factor with negative diagonal entries.
virtual bool
QR_produces_R_factor_with_nonnegative_diagonal () const = 0;
/// \brief Reveal rank of TSQR's R factor.
///
/// Compute the singular value decomposition (SVD) \f$R = U \Sigma
/// V^*\f$. This is done not in place, so that the original R is
/// not affected. Use the resulting singular values to compute
/// the numerical rank of R, with respect to the relative
/// tolerance tol. If R is full rank, return without modifying R.
/// If R is not full rank, overwrite R with \f$\Sigma \cdot
/// V^*\f$.
///
/// \param ncols [in] Number of (rows and) columns in R.
/// \param R [in/out] ncols x ncols upper triangular matrix,
/// stored in column-major order with leading dimension ldr.
/// \param ldr [in] Leading dimension of the matrix R.
/// \param U [out] Left singular vectors of the matrix R;
/// an ncols x ncols matrix with leading dimension ldu.
/// \param ldu [in] Leading dimension of the matrix U.
/// \param tol [in] Numerical rank tolerance; relative to
/// the largest nonzero singular value of R.
///
/// \return Numerical rank of R: 0 <= rank <= ncols.
Ordinal
reveal_R_rank (const Ordinal ncols,
Scalar R[],
const Ordinal ldr,
Scalar U[],
const Ordinal ldu,
const typename Teuchos::ScalarTraits<Scalar>::magnitudeType tol) const;
/// \brief Compute rank-revealing decomposition.
///
/// Using the R factor from factor() and the explicit Q factor
/// from explicit_Q(), compute the SVD of R (\f$R = U \Sigma
/// V^*\f$). R. If R is full rank (with respect to the given
/// relative tolerance tol), don't change Q or R. Otherwise,
/// compute \f$Q := Q \cdot U\f$ and \f$R := \Sigma V^*\f$ in
/// place (the latter may be no longer upper triangular).
///
/// \return Rank \f$r\f$ of R: \f$ 0 \leq r \leq ncols\f$.
///
Ordinal
reveal_rank (const Ordinal nrows,
const Ordinal ncols,
Scalar Q[],
const Ordinal ldq,
Scalar R[],
const Ordinal ldr,
const typename Teuchos::ScalarTraits<Scalar>::magnitudeType tol,
const bool contiguousCacheBlocks) const;
};
template<class Ordinal, class Scalar, class FactorOutputType>
Ordinal
NodeTsqr<Ordinal, Scalar, FactorOutputType>::
reveal_R_rank (const Ordinal ncols,
Scalar R[],
const Ordinal ldr,
Scalar U[],
const Ordinal ldu,
const typename Teuchos::ScalarTraits<Scalar>::magnitudeType tol) const
{
using Teuchos::as;
using Teuchos::TypeNameTraits;
typedef Teuchos::ScalarTraits<Scalar> STS;
typedef typename STS::magnitudeType magnitude_type;
typedef Teuchos::ScalarTraits<magnitude_type> STM;
TEUCHOS_TEST_FOR_EXCEPTION(tol < 0, std::invalid_argument,
"In NodeTsqr::reveal_R_rank: numerical rank tolerance "
"(tol = " << tol << ") is negative.");
TEUCHOS_TEST_FOR_EXCEPTION(ncols < 0, std::invalid_argument,
"In NodeTsqr::reveal_R_rank: number of columns "
"(ncols = " << ncols << ") is negative.");
TEUCHOS_TEST_FOR_EXCEPTION(ldr < ncols, std::invalid_argument,
"In NodeTsqr::reveal_R_ank: stride of R (ldr = "
<< ldr << ") is less than the number of columns "
"(ncols = " << ncols << ").");
TEUCHOS_TEST_FOR_EXCEPTION(ldu < ncols, std::invalid_argument,
"In NodeTsqr::reveal_R_rank: stride of U (ldu = "
<< ldu << ") is less than the number of columns "
"(ncols = " << ncols << ")");
// Zero columns always means rank zero.
if (ncols == 0) {
return 0;
}
//
// Compute the SVD (singular value decomposition) of the R
// factor, using LAPACK's GESVD routine. We do so in a deep
// copy (B) because LAPACK overwrites the input. If the R
// factor is full rank (expected to be the common case), we need
// to leave it alone (so that it stays upper triangular).
//
Teuchos::LAPACK<Ordinal, Scalar> lapack;
mat_view_type R_view (ncols, ncols, R, ldr);
Matrix<Ordinal, Scalar> B (R_view); // B := R (deep copy)
mat_view_type U_view (ncols, ncols, U, ldu);
Matrix<Ordinal, Scalar> VT (ncols, ncols, Scalar(0));
// Set up workspace for the SVD.
std::vector<magnitude_type> svd_rwork (5*ncols);
std::vector<magnitude_type> singular_values (ncols);
Ordinal svd_lwork = -1; // -1 for LWORK query; will be changed
int svd_info = 0;
// LAPACK workspace ("LWORK") query for SVD. The workspace
// ("WORK") array is always of Scalar type, even in the complex
// case.
{
// Exception messages in this scope all start with this.
const char prefix[] = "In NodeTsqr::reveal_R_rank: LAPACK SVD (_GESVD) "
"workspace query returned ";
// std::logic_error messages in this scope all end with this.
const char postfix[] = ". Please report this bug to the Kokkos "
"developers.";
Scalar svd_lwork_scalar = STS::zero ();
lapack.GESVD ('A', 'A', ncols, ncols, B.get(), B.lda(),
&singular_values[0], U_view.get(), U_view.lda(),
VT.get(), VT.lda(), &svd_lwork_scalar, svd_lwork,
&svd_rwork[0], &svd_info);
// Failure of the LAPACK workspace query is a logic error (a
// bug) because we have already validated the matrix
// dimensions above.
TEUCHOS_TEST_FOR_EXCEPTION(svd_info != 0, std::logic_error,
prefix << "a nonzero INFO = " << svd_info
<< postfix);
// LAPACK returns the workspace array length as a Scalar. We
// have to convert it back to an Ordinal in order to allocate
// the workspace array and pass it in to LAPACK as the LWORK
// argument. Ordinal definitely must be a signed type, since
// LWORK = -1 indicates a workspace query. If Scalar is
// complex, LAPACK had better return something with a zero
// imaginary part, since I can't allocate imaginary amounts of
// memory! (Take the real part to avoid rounding error, since
// magnitude() may be implemented using a square root always...)
svd_lwork = as<Ordinal> (STS::real (svd_lwork_scalar));
// LAPACK should always return an LWORK that fits in Ordinal,
// but it's a good idea to check anyway. We do so by checking
// whether casting back from Ordinal to Scalar gives the same
// original Scalar result. This should work unless Scalar and
// Ordinal are user-defined types with weird definitions of
// the type casts.
TEUCHOS_TEST_FOR_EXCEPTION(as<Scalar> (svd_lwork) != svd_lwork_scalar,
std::logic_error,
prefix << "a workspace array length (LWORK) of type "
"Scalar=" << TypeNameTraits<Scalar>::name()
<< " that does not fit in an Ordinal="
<< TypeNameTraits<Ordinal>::name() << " type. "
"As a Scalar, LWORK=" << svd_lwork_scalar
<< ", but cast to Ordinal, LWORK=" << svd_lwork
<< postfix);
// Make sure svd_lwork is nonnegative. (Ordinal must be a
// signed type, as we explain above, so this test should never
// signal any unsigned-to-signed conversions from the compiler.
// If it does, you're probably using the wrong Ordinal type.
TEUCHOS_TEST_FOR_EXCEPTION(svd_lwork < 0, std::logic_error,
prefix << "a negative workspace array length (LWORK)"
" = " << svd_lwork << postfix);
}
// Allocate workspace for LAPACK's SVD routine.
std::vector<Scalar> svd_work (svd_lwork);
// Compute SVD $B := U \Sigma V^*$. B is overwritten, which is
// why we copied R into B (so that we don't overwrite R if R is
// full rank).
lapack.GESVD ('A', 'A', ncols, ncols, B.get(), B.lda(),
&singular_values[0], U_view.get(), U_view.lda(),
VT.get(), VT.lda(), &svd_work[0], svd_lwork,
&svd_rwork[0], &svd_info);
//
// Compute the numerical rank of B, using the given relative
// tolerance and the computed singular values. GESVD computes
// singular values in decreasing order and they are all
// nonnegative. We know by now that ncols > 0.
//
// The tolerance "tol" is relative to the largest singular
// value, which is the 2-norm of the matrix.
const magnitude_type absolute_tolerance = tol * singular_values[0];
Ordinal rank = ncols; // "innocent unless proven guilty"
for (Ordinal k = 0; k < ncols; ++k)
// First branch of the IF ensures correctness even if all the
// singular values are zero and the absolute tolerance is
// zero. Recall that LAPACK sorts the singular values in
// decreasing order.
if (singular_values[k] == STM::zero() ||
singular_values[k] < absolute_tolerance) {
rank = k;
break;
}
// Don't modify Q or R, if R is full rank.
if (rank < ncols) { // R is not full rank.
//
// 1. Compute \f$R := \Sigma V^*\f$.
// 2. Return rank (0 <= rank < ncols).
//
// Compute R := \Sigma VT. \Sigma is diagonal so we apply it
// column by column (normally one would think of this as row by
// row, but this "Hadamard product" formulation iterates more
// efficiently over VT).
//
// After this computation, R may no longer be upper triangular.
// R may be zero if all the singular values are zero, but we
// don't need to check for this case; it's rare in practice, and
// the computations below will be correct regardless.
for (Ordinal j = 0; j < ncols; ++j) {
const Scalar* const VT_j = &VT(0,j);
Scalar* const R_j = &R_view(0,j);
for (Ordinal i = 0; i < ncols; ++i) {
R_j[i] = singular_values[i] * VT_j[i];
}
}
}
return rank;
}
template<class Ordinal, class Scalar, class FactorOutputType>
Ordinal
NodeTsqr<Ordinal, Scalar, FactorOutputType>::
reveal_rank (const Ordinal nrows,
const Ordinal ncols,
Scalar Q[],
const Ordinal ldq,
Scalar R[],
const Ordinal ldr,
const typename Teuchos::ScalarTraits<Scalar>::magnitudeType tol,
const bool contiguousCacheBlocks) const
{
// Take the easy exit if available.
if (ncols == 0)
return 0;
// Matrix to hold the left singular vectors of the R factor.
Matrix<Ordinal, Scalar> U (ncols, ncols, Scalar(0));
// Compute numerical rank of the R factor using the SVD.
// Store the left singular vectors in U.
const Ordinal rank =
reveal_R_rank (ncols, R, ldr, U.get(), U.ldu(), tol);
// If R is full rank, we're done. Otherwise, reveal_R_rank()
// already computed the SVD \f$R = U \Sigma V^*\f$ of (the
// input) R, and overwrote R with \f$\Sigma V^*\f$. Now, we
// compute \f$Q := Q \cdot U\f$, respecting cache blocks of Q.
if (rank < ncols)
Q_times_B (nrows, ncols, Q, ldq, U.get(), U.lda(),
contiguousCacheBlocks);
return rank;
}
} // namespace TSQR
#endif // __TSQR_Tsqr_NodeTsqr_hpp
|