This file is indexed.

/usr/include/trilinos/Tsqr_NodeTsqr.hpp is in libtrilinos-tpetra-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

/// \file Tsqr_NodeTsqr.hpp
/// \brief Common interface and functionality for intranode TSQR.
///
#ifndef __TSQR_Tsqr_NodeTsqr_hpp
#define __TSQR_Tsqr_NodeTsqr_hpp

#include <Tsqr_ApplyType.hpp>
#include <Tsqr_Matrix.hpp>

#include <Teuchos_as.hpp>
#include <Teuchos_Describable.hpp>
#include <Teuchos_LAPACK.hpp>
#include <Teuchos_ScalarTraits.hpp>
#include <Teuchos_TypeNameTraits.hpp>

#include <vector>

namespace TSQR {

  /// \class NodeTsqr
  /// \brief Common interface and functionality for intranode TSQR.
  ///
  /// NodeTsqr provides a generic interface for TSQR operations within
  /// a node ("intranode").  It also implements rank-revealing
  /// functionality used by all intranode TSQR implementations.
  ///
  /// \tparam Ordinal The (local) Ordinal type; the type of indices
  ///   into a matrix on a node
  /// \tparam Scalar Tthe type of elements stored in the matrix
  /// \tparam FactorOutputType The type returned by factor().
  ///
  /// We template on FactorOutputType for compile-time polymorphism.
  /// This lets subclasses define the \c factor() method, without
  /// constraining them to inherit their particular FactorOutputType
  /// from a common abstract base class.  FactorOutputType is meant to
  /// be either just a simple composition of std::pair and
  /// std::vector, or a simple struct.  Its contents are specific to
  /// each intranode TSQR implementation.  and are not intended to be
  /// polymorphic, so it would not make sense for all the different
  /// FactorOutputType types to inherit from a common base class.
  ///
  /// Templating on FactorOutputType means that we can't use run-time
  /// polymorphism to swap between NodeTsqr subclasses, since the
  /// latter are really subclasses of different NodeTsqr
  /// instantiations (i.e., different FactorOutputType types).
  /// However, inheriting from different specializations of NodeTsqr
  /// does enforce correct compile-time polymorphism in a syntactic
  /// way.  It also avoids repeated code for common functionality.
  /// Full run-time polymorphism of different NodeTsqr subclasses
  /// would not be useful.  This is because ultimately each subclass
  /// is bound to a Kokkos Node type, and those only use compile-time
  /// polymorphism.
  ///
  template<class Ordinal, class Scalar, class FactorOutputType>
  class NodeTsqr : public Teuchos::Describable {
  public:
    typedef Ordinal ordinal_type;
    typedef Scalar scalar_type;
    typedef FactorOutputType factor_output_type;
    typedef MatView<Ordinal, Scalar> mat_view_type;
    typedef ConstMatView<Ordinal, Scalar> const_mat_view_type;

    //! Constructor
    NodeTsqr() {}

    //! Virtual destructor, for memory safety of derived classes.
    virtual ~NodeTsqr() {}

    /// \brief Whether this object is ready to perform computations.
    ///
    /// Some NodeTsqr subclasses require additional initialization
    /// after construction, before they can perform computations.
    /// Call this method to make sure that the subclass instance is
    /// fully initialized, before calling any of its computational
    /// methods.
    virtual bool ready() const = 0;

    //! Cache size hint (in bytes) used for the factorization.
    virtual size_t cache_size_hint() const = 0;

    /// \brief One-line description of this object.
    ///
    /// This implements \c Teuchos::Describable::description().
    /// Subclasses should override this to provide a more specific
    /// description of their implementation.  Subclasses may also
    /// implement \c Teuchos::Describable::describe(), which for this
    /// class has a simple default implementation that calls
    /// description() with appropriate indenting.
    virtual std::string description () const {
      using Teuchos::TypeNameTraits;
      std::ostringstream os;
      os << "NodeTsqr<Ordinal=" << TypeNameTraits<Ordinal>::name()
         << ", Scalar=" << TypeNameTraits<Scalar>::name()
         << ", ...>: Intranode Tall Skinny QR (TSQR), with cache size hint "
         << cache_size_hint();
      return os.str();
    }

    /// \brief Compute the QR factorization of A.
    ///
    /// The resulting Q factor is stored implicitly in two parts.  The
    /// first part is stored in place in the A matrix, and thus
    /// overwrites the input matrix.  The second part is stored in the
    /// returned factor_output_type object.  Both parts must be passed
    /// into \c apply() or \c explicit_Q().
    ///
    /// \param nrows [in] Number of rows in the matrix A to factor.
    /// \param ncols [in] Number of columns in the matrix A to factor.
    /// \param A [in/out] On input: the matrix to factor.  It is
    ///   stored either in column-major order with leading dimension
    ///   (a.k.a. stride) lda, or with contiguous cache blocks (if
    ///   contiguousCacheBlocks is true) according to the prevailing
    ///   cache blocking strategy.  Use the \c cache_block() method to
    ///   convert a matrix in column-major order to the latter format,
    ///   and the \c un_cache_block() method to convert it back.  On
    ///   output: part of the implicit representation of the Q factor.
    ///   (The returned object is the other part of that
    ///   representation.)
    /// \param lda [in] Leading dimension (a.k.a. stride) of the
    ///   matrix A to factor.
    /// \param R [out] The ncols x ncols R factor.
    /// \param ldr [in] leading dimension (a.k.a. stride) of the R
    ///   factor.
    /// \param contiguousCacheBlocks [in] Whether the cache blocks of
    ///   A are stored contiguously.  If you don't know what this
    ///   means, put "false" here.
    ///
    /// \return Part of the implicit representation of the Q factor.
    ///   The other part is the A matrix on output.
    virtual factor_output_type
    factor (const Ordinal nrows,
            const Ordinal ncols,
            Scalar A[],
            const Ordinal lda,
            Scalar R[],
            const Ordinal ldr,
            const bool contiguousCacheBlocks) const = 0;

    /// \brief Apply the implicit Q factor from \c factor() to C.
    ///
    /// \param applyType [in] Whether to apply Q, Q^T, or Q^H to C.
    /// \param nrows [in] Number of rows in Q and C.
    /// \param ncols [in] Number of columns in in Q.
    /// \param Q [in] Part of the implicit representation of the Q
    ///   factor; the A matrix output of \c factor().  See the \c
    ///   factor() documentation for details.
    /// \param ldq [in] Leading dimension (a.k.a. stride) of Q, if Q
    ///   is stored in column-major order (not contiguously cache
    ///   blocked).
    /// \param factorOutput [in] Return value of factor(),
    ///   corresponding to Q.
    /// \param ncols_C [in] Number of columns in the matrix C.  This
    ///   may be different than the number of columns in Q.  There is
    ///   no restriction on this value, but we optimize performance
    ///   for the case ncols_C == ncols_Q.
    /// \param C [in/out] On input: Matrix to which to apply the Q
    ///   factor.  On output: Result of applying the Q factor (or Q^T,
    ///   or Q^H, depending on applyType) to C.
    /// \param ldc [in] leading dimension (a.k.a. stride) of C, if C
    ///   is stored in column-major order (not contiguously cache
    ///   blocked).
    /// \param contiguousCacheBlocks [in] Whether the cache blocks of
    ///   Q and C are stored contiguously.  If you don't know what
    ///   this means, put "false" here.
    virtual void
    apply (const ApplyType& applyType,
           const Ordinal nrows,
           const Ordinal ncols_Q,
           const Scalar Q[],
           const Ordinal ldq,
           const FactorOutputType& factorOutput,
           const Ordinal ncols_C,
           Scalar C[],
           const Ordinal ldc,
           const bool contiguousCacheBlocks) const = 0;

    /// \brief Compute the explicit Q factor from the result of \c factor().
    ///
    /// This is equivalent to calling \c apply() on the first ncols_C
    /// columns of the identity matrix (suitably cache-blocked, if
    /// applicable).
    ///
    /// \param nrows [in] Number of rows in Q and C.
    /// \param ncols [in] Number of columns in in Q.
    /// \param Q [in] Part of the implicit representation of the Q
    ///   factor; the A matrix output of \c factor().  See the \c
    ///   factor() documentation for details.
    /// \param ldq [in] Leading dimension (a.k.a. stride) of Q, if Q
    ///   is stored in column-major order (not contiguously cache
    ///   blocked).
    /// \param factorOutput [in] Return value of factor(),
    ///   corresponding to Q.
    /// \param ncols_C [in] Number of columns in the matrix C.  This
    ///   may be different than the number of columns in Q, in which
    ///   case that number of columns of the Q factor will be
    ///   computed.  There is no restriction on this value, but we
    ///   optimize performance for the case ncols_C == ncols_Q.
    /// \param C [out] The first ncols_C columns of the Q factor.
    /// \param ldc [in] leading dimension (a.k.a. stride) of C, if C
    ///   is stored in column-major order (not contiguously cache
    ///   blocked).
    /// \param contiguousCacheBlocks [in] Whether the cache blocks of
    ///   Q and C are stored contiguously.  If you don't know what
    ///   this means, put "false" here.
    virtual void
    explicit_Q (const Ordinal nrows,
                const Ordinal ncols_Q,
                const Scalar Q[],
                const Ordinal ldq,
                const factor_output_type& factorOutput,
                const Ordinal ncols_C,
                Scalar C[],
                const Ordinal ldc,
                const bool contiguousCacheBlocks) const = 0;

    /// \brief Cache block A_in into A_out.
    ///
    /// \param nrows [in] Number of rows in A_in and A_out.
    /// \param ncols [in] Number of columns in A_in and A_out.
    /// \param A_out [out] Result of cache-blocking A_in.
    /// \param A_in [in] Matrix to cache block, stored in column-major
    ///   order with leading dimension lda_in.
    /// \param lda_in [in] Leading dimension of A_in.  (See the LAPACK
    ///   documentation for a definition of "leading dimension.")
    ///   lda_in >= nrows.
    virtual void
    cache_block (const Ordinal nrows,
                 const Ordinal ncols,
                 Scalar A_out[],
                 const Scalar A_in[],
                 const Ordinal lda_in) const = 0;

    /// \brief Un - cache block A_in into A_out.
    ///
    /// A_in is a matrix produced by \c cache_block().  It is
    /// organized as contiguously stored cache blocks.  This method
    /// reorganizes A_in into A_out as an ordinary matrix stored in
    /// column-major order with leading dimension lda_out.
    ///
    /// \param nrows [in] Number of rows in A_in and A_out.
    /// \param ncols [in] Number of columns in A_in and A_out.
    /// \param A_out [out] Result of un-cache-blocking A_in.
    ///   Matrix stored in column-major order with leading
    ///   dimension lda_out.
    /// \param lda_out [in] Leading dimension of A_out.  (See the
    ///   LAPACK documentation for a definition of "leading
    ///   dimension.")  lda_out >= nrows.
    /// \param A_in [in] Matrix to un-cache-block.
    virtual void
    un_cache_block (const Ordinal nrows,
                    const Ordinal ncols,
                    Scalar A_out[],
                    const Ordinal lda_out,
                    const Scalar A_in[]) const = 0;

    /// \brief Compute Q*B
    ///
    /// Compute matrix-matrix product Q*B, where Q is nrows by ncols
    /// and B is ncols by ncols.  Respect cache blocks of Q.
    virtual void
    Q_times_B (const Ordinal nrows,
               const Ordinal ncols,
               Scalar Q[],
               const Ordinal ldq,
               const Scalar B[],
               const Ordinal ldb,
               const bool contiguousCacheBlocks) const = 0;

    /// \brief Fill the nrows by ncols matrix A with zeros.
    ///
    /// Fill the matrix A with zeros, in a way that respects the cache
    /// blocking scheme.
    ///
    /// \param nrows [in] Number of rows in A
    /// \param ncols [in] Number of columns in A
    /// \param A [out] nrows by ncols column-major-order dense matrix
    ///   with leading dimension lda
    /// \param lda [in] Leading dimension of A: lda >= nrows
    /// \param contiguousCacheBlocks [in] Whether the cache blocks
    ///   in A are stored contiguously.
    virtual void
    fill_with_zeros (const Ordinal nrows,
                     const Ordinal ncols,
                     Scalar A[],
                     const Ordinal lda,
                     const bool contiguousCacheBlocks) const = 0;

  protected:

    /// \brief Return view of topmost cache block of C
    ///
    /// \param C [in] Matrix (view), supporting the usual nrows(),
    ///   ncols(), get(), lda() interface.
    /// \param contiguousCacheBlocks [in] Whether the cache blocks
    ///   in C are stored contiguously.
    ///
    /// Return a view of the topmost cache block (on this node) of the
    /// given matrix C.  This is not necessarily square, though it
    /// must have at least as many rows as columns.  For a square
    /// ncols by ncols block, as needed by Tsqr::apply(), do as
    /// follows:
    /// \code
    /// MatrixViewType top = this->top_block (C, contig);
    /// mat_view_type square (ncols, ncols, top.get(), top.lda());
    /// \endcode
    virtual const_mat_view_type
    const_top_block (const const_mat_view_type& C,
                     const bool contiguousCacheBlocks) const = 0;

  public:

    /// \brief Return view of topmost cache block of C.
    ///
    /// \param C [in] View of a matrix C.
    /// \param contiguousCacheBlocks [in] Whether the cache blocks
    ///   in C are stored contiguously.
    ///
    /// Return a view of the topmost cache block (on this node) of the
    /// given matrix C.  This is not necessarily square, though it
    /// must have at least as many rows as columns.  For a view of the
    /// first C.ncols() rows of that block, which methods like
    /// Tsqr::apply() need, do the following:
    /// \code
    /// MatrixViewType top = this->top_block (C, contig);
    /// mat_view_type square (ncols, ncols, top.get(), top.lda());
    /// \endcode
    ///
    /// Models for MatrixViewType are MatView and ConstMatView.
    /// MatrixViewType must have member functions nrows(), ncols(),
    /// get(), and lda(), and its constructor must take the same four
    /// arguments as the constructor of ConstMatView.
    template<class MatrixViewType>
    MatrixViewType
    top_block (const MatrixViewType& C,
               const bool contiguous_cache_blocks) const
    {
      // The *_top_block() methods don't actually modify the data, so
      // it's safe to handle the matrix's data as const within this
      // method.  The only cast from const to nonconst may be in the
      // return value, but there it's legitimate since we're just
      // using the same constness as C has.
      const_mat_view_type C_view (C.nrows(), C.ncols(), C.get(), C.lda());
      const_mat_view_type C_top =
        const_top_block (C_view, contiguous_cache_blocks);
      TEUCHOS_TEST_FOR_EXCEPTION(C_top.nrows() < C_top.ncols(), std::logic_error,
                         "The subclass of NodeTsqr has a bug in const_top_block"
                         "(); it returned a block with fewer rows than columns "
                         "(" << C_top.nrows() << " rows and " << C_top.ncols()
                         << " columns).  Please report this bug to the Kokkos "
                         "developers.");
      typedef typename MatrixViewType::pointer_type ptr_type;
      return MatrixViewType (C_top.nrows(), C_top.ncols(),
                             const_cast<ptr_type> (C_top.get()),
                             C_top.lda());
    }

    /// \brief Does factor() compute R with nonnegative diagonal?
    ///
    /// When using a QR factorization to orthogonalize a block of
    /// vectors, computing an R factor with nonnegative diagonal
    /// ensures that in exact arithmetic, the result of the
    /// orthogonalization (orthogonalized vectors Q and their
    /// coefficients R) are the same as would be produced by
    /// Gram-Schmidt orthogonalization.
    ///
    /// This distinction is important because LAPACK's QR
    /// factorization (_GEQRF) may (and does, in practice) compute an
    /// R factor with negative diagonal entries.
    virtual bool
    QR_produces_R_factor_with_nonnegative_diagonal () const = 0;

    /// \brief Reveal rank of TSQR's R factor.
    ///
    /// Compute the singular value decomposition (SVD) \f$R = U \Sigma
    /// V^*\f$.  This is done not in place, so that the original R is
    /// not affected.  Use the resulting singular values to compute
    /// the numerical rank of R, with respect to the relative
    /// tolerance tol.  If R is full rank, return without modifying R.
    /// If R is not full rank, overwrite R with \f$\Sigma \cdot
    /// V^*\f$.
    ///
    /// \param ncols [in] Number of (rows and) columns in R.
    /// \param R [in/out] ncols x ncols upper triangular matrix,
    ///   stored in column-major order with leading dimension ldr.
    /// \param ldr [in] Leading dimension of the matrix R.
    /// \param U [out] Left singular vectors of the matrix R;
    ///   an ncols x ncols matrix with leading dimension ldu.
    /// \param ldu [in] Leading dimension of the matrix U.
    /// \param tol [in] Numerical rank tolerance; relative to
    ///   the largest nonzero singular value of R.
    ///
    /// \return Numerical rank of R: 0 <= rank <= ncols.
    Ordinal
    reveal_R_rank (const Ordinal ncols,
                   Scalar R[],
                   const Ordinal ldr,
                   Scalar U[],
                   const Ordinal ldu,
                   const typename Teuchos::ScalarTraits<Scalar>::magnitudeType tol) const;

    /// \brief Compute rank-revealing decomposition.
    ///
    /// Using the R factor from factor() and the explicit Q factor
    /// from explicit_Q(), compute the SVD of R (\f$R = U \Sigma
    /// V^*\f$).  R.  If R is full rank (with respect to the given
    /// relative tolerance tol), don't change Q or R.  Otherwise,
    /// compute \f$Q := Q \cdot U\f$ and \f$R := \Sigma V^*\f$ in
    /// place (the latter may be no longer upper triangular).
    ///
    /// \return Rank \f$r\f$ of R: \f$ 0 \leq r \leq ncols\f$.
    ///
    Ordinal
    reveal_rank (const Ordinal nrows,
                 const Ordinal ncols,
                 Scalar Q[],
                 const Ordinal ldq,
                 Scalar R[],
                 const Ordinal ldr,
                 const typename Teuchos::ScalarTraits<Scalar>::magnitudeType tol,
                 const bool contiguousCacheBlocks) const;
  };


  template<class Ordinal, class Scalar, class FactorOutputType>
  Ordinal
  NodeTsqr<Ordinal, Scalar, FactorOutputType>::
  reveal_R_rank (const Ordinal ncols,
                 Scalar R[],
                 const Ordinal ldr,
                 Scalar U[],
                 const Ordinal ldu,
                 const typename Teuchos::ScalarTraits<Scalar>::magnitudeType tol) const
  {
    using Teuchos::as;
    using Teuchos::TypeNameTraits;
    typedef Teuchos::ScalarTraits<Scalar> STS;
    typedef typename STS::magnitudeType magnitude_type;
    typedef Teuchos::ScalarTraits<magnitude_type> STM;

    TEUCHOS_TEST_FOR_EXCEPTION(tol < 0, std::invalid_argument,
                       "In NodeTsqr::reveal_R_rank: numerical rank tolerance "
                       "(tol = " << tol << ") is negative.");
    TEUCHOS_TEST_FOR_EXCEPTION(ncols < 0, std::invalid_argument,
                       "In NodeTsqr::reveal_R_rank: number of columns "
                       "(ncols = " << ncols << ") is negative.");
    TEUCHOS_TEST_FOR_EXCEPTION(ldr < ncols, std::invalid_argument,
                       "In NodeTsqr::reveal_R_ank: stride of R (ldr = "
                       << ldr << ") is less than the number of columns "
                       "(ncols = " << ncols << ").");
    TEUCHOS_TEST_FOR_EXCEPTION(ldu < ncols, std::invalid_argument,
                       "In NodeTsqr::reveal_R_rank: stride of U (ldu = "
                       << ldu << ") is less than the number of columns "
                       "(ncols = " << ncols << ")");

    // Zero columns always means rank zero.
    if (ncols == 0) {
      return 0;
    }
    //
    // Compute the SVD (singular value decomposition) of the R
    // factor, using LAPACK's GESVD routine.  We do so in a deep
    // copy (B) because LAPACK overwrites the input.  If the R
    // factor is full rank (expected to be the common case), we need
    // to leave it alone (so that it stays upper triangular).
    //
    Teuchos::LAPACK<Ordinal, Scalar> lapack;
    mat_view_type R_view (ncols, ncols, R, ldr);
    Matrix<Ordinal, Scalar> B (R_view); // B := R (deep copy)
    mat_view_type U_view (ncols, ncols, U, ldu);
    Matrix<Ordinal, Scalar> VT (ncols, ncols, Scalar(0));

    // Set up workspace for the SVD.
    std::vector<magnitude_type> svd_rwork (5*ncols);
    std::vector<magnitude_type> singular_values (ncols);
    Ordinal svd_lwork = -1; // -1 for LWORK query; will be changed
    int svd_info = 0;

    // LAPACK workspace ("LWORK") query for SVD.  The workspace
    // ("WORK") array is always of Scalar type, even in the complex
    // case.
    {
      // Exception messages in this scope all start with this.
      const char prefix[] = "In NodeTsqr::reveal_R_rank: LAPACK SVD (_GESVD) "
        "workspace query returned ";
      // std::logic_error messages in this scope all end with this.
      const char postfix[] = ".  Please report this bug to the Kokkos "
        "developers.";

      Scalar svd_lwork_scalar = STS::zero ();
      lapack.GESVD ('A', 'A', ncols, ncols, B.get(), B.lda(),
                    &singular_values[0], U_view.get(), U_view.lda(),
                    VT.get(), VT.lda(), &svd_lwork_scalar, svd_lwork,
                    &svd_rwork[0], &svd_info);
      // Failure of the LAPACK workspace query is a logic error (a
      // bug) because we have already validated the matrix
      // dimensions above.
      TEUCHOS_TEST_FOR_EXCEPTION(svd_info != 0, std::logic_error,
                         prefix << "a nonzero INFO = " << svd_info
                         << postfix);
      // LAPACK returns the workspace array length as a Scalar.  We
      // have to convert it back to an Ordinal in order to allocate
      // the workspace array and pass it in to LAPACK as the LWORK
      // argument.  Ordinal definitely must be a signed type, since
      // LWORK = -1 indicates a workspace query.  If Scalar is
      // complex, LAPACK had better return something with a zero
      // imaginary part, since I can't allocate imaginary amounts of
      // memory!  (Take the real part to avoid rounding error, since
      // magnitude() may be implemented using a square root always...)
      svd_lwork = as<Ordinal> (STS::real (svd_lwork_scalar));

      // LAPACK should always return an LWORK that fits in Ordinal,
      // but it's a good idea to check anyway.  We do so by checking
      // whether casting back from Ordinal to Scalar gives the same
      // original Scalar result.  This should work unless Scalar and
      // Ordinal are user-defined types with weird definitions of
      // the type casts.
      TEUCHOS_TEST_FOR_EXCEPTION(as<Scalar> (svd_lwork) != svd_lwork_scalar,
                         std::logic_error,
                         prefix << "a workspace array length (LWORK) of type "
                         "Scalar=" << TypeNameTraits<Scalar>::name()
                         << " that does not fit in an Ordinal="
                         << TypeNameTraits<Ordinal>::name() << " type.  "
                         "As a Scalar, LWORK=" << svd_lwork_scalar
                         << ", but cast to Ordinal, LWORK=" << svd_lwork
                         << postfix);
      // Make sure svd_lwork is nonnegative.  (Ordinal must be a
      // signed type, as we explain above, so this test should never
      // signal any unsigned-to-signed conversions from the compiler.
      // If it does, you're probably using the wrong Ordinal type.
      TEUCHOS_TEST_FOR_EXCEPTION(svd_lwork < 0, std::logic_error,
                         prefix << "a negative workspace array length (LWORK)"
                         " = " << svd_lwork << postfix);
    }
    // Allocate workspace for LAPACK's SVD routine.
    std::vector<Scalar> svd_work (svd_lwork);

    // Compute SVD $B := U \Sigma V^*$.  B is overwritten, which is
    // why we copied R into B (so that we don't overwrite R if R is
    // full rank).
    lapack.GESVD ('A', 'A', ncols, ncols, B.get(), B.lda(),
                  &singular_values[0], U_view.get(), U_view.lda(),
                  VT.get(), VT.lda(), &svd_work[0], svd_lwork,
                  &svd_rwork[0], &svd_info);
    //
    // Compute the numerical rank of B, using the given relative
    // tolerance and the computed singular values.  GESVD computes
    // singular values in decreasing order and they are all
    // nonnegative.  We know by now that ncols > 0.
    //
    // The tolerance "tol" is relative to the largest singular
    // value, which is the 2-norm of the matrix.
    const magnitude_type absolute_tolerance = tol * singular_values[0];
    Ordinal rank = ncols; // "innocent unless proven guilty"
    for (Ordinal k = 0; k < ncols; ++k)
      // First branch of the IF ensures correctness even if all the
      // singular values are zero and the absolute tolerance is
      // zero.  Recall that LAPACK sorts the singular values in
      // decreasing order.
      if (singular_values[k] == STM::zero() ||
          singular_values[k] < absolute_tolerance) {
        rank = k;
        break;
      }
    // Don't modify Q or R, if R is full rank.
    if (rank < ncols) { // R is not full rank.
      //
      // 1. Compute \f$R := \Sigma V^*\f$.
      // 2. Return rank (0 <= rank < ncols).
      //
      // Compute R := \Sigma VT.  \Sigma is diagonal so we apply it
      // column by column (normally one would think of this as row by
      // row, but this "Hadamard product" formulation iterates more
      // efficiently over VT).
      //
      // After this computation, R may no longer be upper triangular.
      // R may be zero if all the singular values are zero, but we
      // don't need to check for this case; it's rare in practice, and
      // the computations below will be correct regardless.
      for (Ordinal j = 0; j < ncols; ++j) {
        const Scalar* const VT_j = &VT(0,j);
        Scalar* const R_j = &R_view(0,j);

        for (Ordinal i = 0; i < ncols; ++i) {
          R_j[i] = singular_values[i] * VT_j[i];
        }
      }
    }
    return rank;
  }

  template<class Ordinal, class Scalar, class FactorOutputType>
  Ordinal
  NodeTsqr<Ordinal, Scalar, FactorOutputType>::
  reveal_rank (const Ordinal nrows,
               const Ordinal ncols,
               Scalar Q[],
               const Ordinal ldq,
               Scalar R[],
               const Ordinal ldr,
               const typename Teuchos::ScalarTraits<Scalar>::magnitudeType tol,
               const bool contiguousCacheBlocks) const
  {
    // Take the easy exit if available.
    if (ncols == 0)
      return 0;
    // Matrix to hold the left singular vectors of the R factor.
    Matrix<Ordinal, Scalar> U (ncols, ncols, Scalar(0));
    // Compute numerical rank of the R factor using the SVD.
    // Store the left singular vectors in U.
    const Ordinal rank =
      reveal_R_rank (ncols, R, ldr, U.get(), U.ldu(), tol);

    // If R is full rank, we're done.  Otherwise, reveal_R_rank()
    // already computed the SVD \f$R = U \Sigma V^*\f$ of (the
    // input) R, and overwrote R with \f$\Sigma V^*\f$.  Now, we
    // compute \f$Q := Q \cdot U\f$, respecting cache blocks of Q.
    if (rank < ncols)
      Q_times_B (nrows, ncols, Q, ldq, U.get(), U.lda(),
                 contiguousCacheBlocks);
    return rank;
  }

} // namespace TSQR


#endif // __TSQR_Tsqr_NodeTsqr_hpp