/usr/include/trilinos/Tsqr_TsqrTest.hpp is in libtrilinos-tpetra-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __TSQR_Test_TsqrTest_hpp
#define __TSQR_Test_TsqrTest_hpp
#include <Tsqr.hpp>
#ifdef HAVE_KOKKOSTSQR_TBB
# include <TbbTsqr.hpp>
#endif // HAVE_KOKKOSTSQR_TBB
#include <Tsqr_TestSetup.hpp>
#include <Tsqr_GlobalVerify.hpp>
#include <Tsqr_printGlobalMatrix.hpp>
#include <Tsqr_verifyTimerConcept.hpp>
#include <Teuchos_ScalarTraits.hpp>
#include <cstring> // size_t
#include <iostream>
#include <stdexcept>
#include <string>
namespace TSQR {
namespace Test {
template<class TsqrType>
class TsqrVerifier {
public:
typedef TsqrType tsqr_type;
typedef typename tsqr_type::scalar_type scalar_type;
typedef typename tsqr_type::ordinal_type ordinal_type;
typedef Matrix<ordinal_type, scalar_type> matrix_type;
typedef typename tsqr_type::FactorOutput factor_output_type;
typedef MessengerBase<scalar_type> messenger_type;
typedef Teuchos::RCP<messenger_type> messenger_ptr;
static void
verify (tsqr_type& tsqr,
const messenger_ptr& scalarComm,
const matrix_type& A_local,
matrix_type& A_copy,
matrix_type& Q_local,
matrix_type& R,
const bool contiguousCacheBlocks,
const bool b_debug = false)
{
using std::cerr;
using std::endl;
const ordinal_type nrows_local = A_local.nrows();
const ordinal_type ncols = A_local.ncols();
// If specified, rearrange cache blocks in the copy.
if (contiguousCacheBlocks) {
tsqr.cache_block (nrows_local, ncols, A_copy.get(),
A_local.get(), A_local.lda());
if (b_debug) {
scalarComm->barrier ();
if (scalarComm->rank () == 0)
cerr << "-- Cache-blocked input matrix to factor." << endl;
}
}
else {
deep_copy (A_copy, A_local);
}
const bool testFactorExplicit = true;
if (testFactorExplicit) {
tsqr.factorExplicit (A_copy.view(), Q_local.view(), R.view(),
contiguousCacheBlocks);
if (b_debug) {
scalarComm->barrier ();
if (scalarComm->rank () == 0)
cerr << "-- Finished Tsqr::factorExplicit" << endl;
}
}
else {
// Factor the (copy of the) matrix.
factor_output_type factorOutput =
tsqr.factor (nrows_local, ncols, A_copy.get(), A_copy.lda(),
R.get(), R.lda(), contiguousCacheBlocks);
if (b_debug) {
scalarComm->barrier ();
if (scalarComm->rank () == 0)
cerr << "-- Finished Tsqr::factor" << endl;
}
// Compute the explicit Q factor in Q_local
tsqr.explicit_Q (nrows_local,
ncols, A_copy.get(), A_copy.lda(), factorOutput,
ncols, Q_local.get(), Q_local.lda(),
contiguousCacheBlocks);
if (b_debug) {
scalarComm->barrier ();
if (scalarComm->rank () == 0)
cerr << "-- Finished Tsqr::explicit_Q" << endl;
}
}
// "Un"-cache-block the output, if contiguous cache blocks were
// used. This is only necessary because global_verify() doesn't
// currently support contiguous cache blocks.
if (contiguousCacheBlocks) {
// We can use A_copy as scratch space for un-cache-blocking
// Q_local, since we're done using A_copy for other things.
tsqr.un_cache_block (nrows_local, ncols, A_copy.get(),
A_copy.lda(), Q_local.get());
// Overwrite Q_local with the un-cache-blocked Q factor.
deep_copy (Q_local, A_copy);
if (b_debug) {
scalarComm->barrier ();
if (scalarComm->rank () == 0)
cerr << "-- Un-cache-blocked output Q factor" << endl;
}
}
}
};
/// \function verifyTsqr
/// \brief Test and print to stdout the accuracy of parallel TSQR
///
/// \param which [in] Valid values: "MpiTbbTSQR" (for TBB-parallel
/// node-level TSQR underneath MPI-parallel TSQR), "MpiSeqTSQR"
/// (for cache-blocked sequential node-level TSQR underneath
/// MPI-parallel TSQR)
///
/// \param scalarTypeName [in] Name of the Scalar type
///
/// \param generator [in/out] Normal(0,1) (pseudo)random number
/// generator. Only touched on MPI process 0. Used to generate
/// random test matrices for the factorization.
///
/// \param nrows_global [in] Number of rows in the entire test
/// matrix (over all processes) to generate. The matrix will be
/// divided up in blocks of contiguous rows among the processes.
///
/// \param ncols [in] Number of columns in the test matrix to
/// generate.
///
/// \param ordinalComm [in/out] Object for communicating Ordinal
/// (integer index) objects among the processes
///
/// \param scalarComm [in/out] Object for communicating Scalar
/// (matrix data) objects among the processes
///
/// \param num_cores [in] Number of cores to use per MPI process
/// for Intel TBB parallelism within that process
///
/// \param cache_size_hint [in] Cache size hint (per core) in
/// bytes. If zero, a sensible default is used.
///
/// \param contiguousCacheBlocks [in] Whether cache blocks
/// should be stored contiguously
///
/// \param printFieldNames [in] Whether to print field names (only
/// appliable if not human_readable)
///
/// \param human_readable [in] Whether output should be human
/// readable, or machine parseable
///
/// \param b_debug [in] Whether to print debug output
///
template<class Ordinal, class Scalar, class Generator>
void
verifyTsqr (const std::string& which,
const std::string& scalarTypeName,
Generator& generator,
const Ordinal nrows_global,
const Ordinal ncols,
const Teuchos::RCP< MessengerBase< Ordinal > >& ordinalComm,
const Teuchos::RCP< MessengerBase< Scalar > >& scalarComm,
const int num_cores = 1,
const size_t cache_size_hint = 0,
const bool contiguousCacheBlocks,
const bool printFieldNames,
const bool human_readable = false,
const bool b_debug = false)
{
typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType magnitude_type;
using std::cerr;
using std::cout;
using std::endl;
const bool b_extra_debug = false;
const int nprocs = scalarComm->size();
const int my_rank = scalarComm->rank();
if (b_debug) {
scalarComm->barrier ();
if (my_rank == 0) {
cerr << "tsqr_verify:" << endl;
}
scalarComm->barrier ();
}
const Ordinal nrows_local = numLocalRows (nrows_global, my_rank, nprocs);
// Set up storage for the test problem.
Matrix< Ordinal, Scalar > A_local (nrows_local, ncols);
Matrix< Ordinal, Scalar > Q_local (nrows_local, ncols);
if (std::numeric_limits<Scalar>::has_quiet_NaN) {
A_local.fill (std::numeric_limits<Scalar>::quiet_NaN ());
Q_local.fill (std::numeric_limits<Scalar>::quiet_NaN ());
}
Matrix<Ordinal, Scalar> R (ncols, ncols, Scalar(0));
// Generate the test problem.
distributedTestProblem (generator, A_local, ordinalComm.get(), scalarComm.get());
if (b_debug) {
scalarComm->barrier ();
if (my_rank == 0) {
cerr << "-- Generated test problem." << endl;
}
}
// Make sure that the test problem (the matrix to factor) was
// distributed correctly.
if (b_extra_debug && b_debug) {
if (my_rank == 0) {
cerr << "Test matrix A:" << endl;
}
scalarComm->barrier ();
printGlobalMatrix (cerr, A_local, scalarComm.get(), ordinalComm.get());
scalarComm->barrier ();
}
// Factoring the matrix stored in A_local overwrites it, so we
// make a copy of A_local. Initialize with NaNs to make sure
// that cache blocking works correctly (if applicable).
Matrix< Ordinal, Scalar > A_copy (nrows_local, ncols);
if (std::numeric_limits< Scalar >::has_quiet_NaN) {
A_copy.fill (std::numeric_limits< Scalar >::quiet_NaN ());
}
// actual_cache_size_hint: "cache_size_hint" is just a
// suggestion. TSQR determines the cache size hint itself;
// this remembers it so we can print it out later.
size_t actual_cache_size_hint;
if (which == "MpiTbbTSQR") {
#ifdef HAVE_KOKKOSTSQR_TBB
using Teuchos::RCP;
typedef TSQR::TBB::TbbTsqr< Ordinal, Scalar > node_tsqr_type;
typedef TSQR::DistTsqr< Ordinal, Scalar > dist_tsqr_type;
typedef Tsqr< Ordinal, Scalar, node_tsqr_type, dist_tsqr_type > tsqr_type;
RCP< node_tsqr_type > node_tsqr (new node_tsqr_type (num_cores, cache_size_hint));
RCP< dist_tsqr_type > dist_tsqr (new dist_tsqr_type (scalarComm));
tsqr_type tsqr (node_tsqr, dist_tsqr);
// Compute the factorization and explicit Q factor.
TsqrVerifier< tsqr_type >::verify (tsqr, scalarComm, A_local, A_copy,
Q_local, R, contiguousCacheBlocks,
b_debug);
// Save the "actual" cache block size
actual_cache_size_hint = tsqr.cache_size_hint();
#else
throw std::logic_error("TSQR not built with Intel TBB support");
#endif // HAVE_KOKKOSTSQR_TBB
}
else if (which == "MpiSeqTSQR") {
using Teuchos::RCP;
typedef SequentialTsqr< Ordinal, Scalar > node_tsqr_type;
typedef TSQR::DistTsqr< Ordinal, Scalar > dist_tsqr_type;
typedef Tsqr< Ordinal, Scalar, node_tsqr_type, dist_tsqr_type > tsqr_type;
RCP< node_tsqr_type > node_tsqr (new node_tsqr_type (cache_size_hint));
RCP< dist_tsqr_type > dist_tsqr (new dist_tsqr_type (scalarComm));
tsqr_type tsqr (node_tsqr, dist_tsqr);
// Compute the factorization and explicit Q factor.
TsqrVerifier< tsqr_type >::verify (tsqr, scalarComm, A_local, A_copy,
Q_local, R, contiguousCacheBlocks,
b_debug);
// Save the "actual" cache block size
actual_cache_size_hint = tsqr.cache_size_hint();
}
else {
throw std::logic_error("Unknown TSQR implementation type \"" + which + "\"");
}
// Print out the Q and R factors
if (b_extra_debug && b_debug) {
if (my_rank == 0) {
cerr << endl << "Q factor:" << endl;
}
scalarComm->barrier ();
printGlobalMatrix (cerr, Q_local, scalarComm.get (), ordinalComm.get ());
scalarComm->barrier ();
if (my_rank == 0) {
cerr << endl << "R factor:" << endl;
print_local_matrix (cerr, ncols, ncols, R.get(), R.lda());
cerr << endl;
}
scalarComm->barrier ();
}
// Test accuracy of the resulting factorization
std::vector< magnitude_type > results =
global_verify (nrows_local, ncols, A_local.get(), A_local.lda(),
Q_local.get(), Q_local.lda(), R.get(), R.lda(),
scalarComm.get());
if (b_debug) {
scalarComm->barrier ();
if (my_rank == 0) {
cerr << "-- Finished global_verify" << endl;
}
}
// Print the results on Proc 0.
if (my_rank == 0) {
if (human_readable) {
std::string human_readable_name;
if (which == "MpiSeqTSQR") {
human_readable_name = "MPI parallel / cache-blocked TSQR";
}
else if (which == "MpiTbbTSQR") {
#ifdef HAVE_KOKKOSTSQR_TBB
human_readable_name = "MPI parallel / TBB parallel / cache-blocked TSQR";
#else
throw std::logic_error("TSQR not built with Intel TBB support");
#endif // HAVE_KOKKOSTSQR_TBB
}
else {
throw std::logic_error("Unknown TSQR implementation type \"" + which + "\"");
}
cout << human_readable_name << ":" << endl
<< "Scalar type: " << scalarTypeName << endl
<< "# rows: " << nrows_global << endl
<< "# columns: " << ncols << endl
<< "# MPI processes: " << nprocs << endl;
#ifdef HAVE_KOKKOSTSQR_TBB
if (which == "MpiTbbTSQR")
cout << "# cores per process = " << num_cores << endl;
#endif // HAVE_KOKKOSTSQR_TBB
cout << "Cache size hint in bytes: " << actual_cache_size_hint << endl
<< "Contiguous cache blocks? " << contiguousCacheBlocks << endl
<< "Absolute residual $\\| A - Q R \\|_2: "
<< results[0] << endl
<< "Absolute orthogonality $\\| I - Q^* Q \\|_2$: "
<< results[1] << endl
<< "Test matrix norm $\\| A \\|_F$: "
<< results[2] << endl
<< endl;
}
else {
if (printFieldNames) {
cout << "%"
<< "method"
<< ",scalarType"
<< ",globalNumRows"
<< ",numCols"
<< ",numProcs"
<< ",numCores"
<< ",cacheSizeHint"
<< ",contiguousCacheBlocks"
<< ",absFrobResid"
<< ",absFrobOrthog"
<< ",frobA" << endl;
}
cout << which
<< "," << scalarTypeName
<< "," << nrows_global
<< "," << ncols
<< "," << nprocs;
#ifdef HAVE_KOKKOSTSQR_TBB
if (which == "MpiTbbTSQR") {
cout << "," << num_cores;
} else {
cout << ",1";
}
#else
cout << ",1" << endl;
#endif // HAVE_KOKKOSTSQR_TBB
cout << "," << actual_cache_size_hint
<< "," << contiguousCacheBlocks
<< "," << results[0]
<< "," << results[1]
<< "," << results[2]
<< endl;
}
}
}
template<class TsqrBase, class TimerType>
double
do_tsqr_benchmark (const std::string& which,
TsqrBase& tsqr,
const Teuchos::RCP< MessengerBase< typename TsqrBase::scalar_type > >& messenger,
const Matrix< typename TsqrBase::ordinal_type, typename TsqrBase::scalar_type >& A_local,
Matrix< typename TsqrBase::ordinal_type, typename TsqrBase::scalar_type >& A_copy,
Matrix< typename TsqrBase::ordinal_type, typename TsqrBase::scalar_type >& Q_local,
Matrix< typename TsqrBase::ordinal_type, typename TsqrBase::scalar_type >& R,
const int ntrials,
const bool contiguousCacheBlocks,
const bool human_readable,
const bool b_debug = false)
{
typedef typename TsqrBase::FactorOutput factor_output_type;
typedef typename TsqrBase::ordinal_type ordinal_type;
using std::cerr;
using std::cout;
using std::endl;
const ordinal_type nrows_local = A_local.nrows();
const ordinal_type ncols = A_local.ncols();
if (contiguousCacheBlocks) {
tsqr.cache_block (nrows_local, ncols, A_copy.get(),
A_local.get(), A_local.lda());
if (b_debug) {
messenger->barrier ();
if (messenger->rank () == 0) {
cerr << "-- Cache-blocked input matrix to factor." << endl;
}
}
}
else {
deep_copy (A_copy, A_local);
}
if (b_debug) {
messenger->barrier ();
if (messenger->rank () == 0) {
cerr << "-- Starting timing loop" << endl;
}
}
// Benchmark TSQR for ntrials trials. The answer (the numerical
// results of the factorization) is only valid if ntrials == 1,
// but this is a benchmark and not a verification routine. Call
// tsqr_verify() if you want to determine whether TSQR computes
// the right answer.
//
// Name of timer doesn't matter here; we only need the timing.
TSQR::Test::verifyTimerConcept< TimerType >();
TimerType timer (which);
const bool testFactorExplicit = true;
double tsqr_timing;
if (testFactorExplicit)
{
timer.start();
for (int trial_num = 0; trial_num < ntrials; ++trial_num)
tsqr.factorExplicit (A_copy.view(), Q_local.view(), R.view(),
contiguousCacheBlocks);
tsqr_timing = timer.stop();
}
else
{
timer.start();
for (int trial_num = 0; trial_num < ntrials; ++trial_num)
{
// Factor the matrix and compute the explicit Q factor.
// Don't worry about the fact that we're overwriting the
// input; this is a benchmark, not a numerical verification
// test. (We have the latter implemented as tsqr_verify()
// in this file.) For the same reason, don't worry about
// un-cache-blocking the output (when cache blocks are
// stored contiguously).
factor_output_type factor_output =
tsqr.factor (nrows_local, ncols, A_copy.get(), A_copy.lda(),
R.get(), R.lda(), contiguousCacheBlocks);
tsqr.explicit_Q (nrows_local,
ncols, A_copy.get(), A_copy.lda(), factor_output,
ncols, Q_local.get(), Q_local.lda(),
contiguousCacheBlocks);
// Timings in debug mode likely won't make sense, because
// Proc 0 is outputting the debug messages to cerr.
// Nevertheless, we don't put any "if(b_debug)" calls in the
// timing loop.
}
// Compute the resulting total time (in seconds) to execute
// ntrials runs of Tsqr::factor() and Tsqr::explicit_Q(). The
// time may differ on different MPI processes.
tsqr_timing = timer.stop();
}
if (b_debug)
{
messenger->barrier();
if (messenger->rank() == 0)
cerr << "-- Finished timing loop" << endl;
}
return tsqr_timing;
}
/// \function benchmarkTsqr
/// \brief Benchmark parallel TSQR and report timings to stdout
///
/// Benchmark the MPI-parallel TSQR implementation specified by
/// the "which" parameter (either with cache-blocked TSQR or
/// TBB-parallel cache-blocked TSQR as the node-level
/// implementation), for "ntrials" trials. Print the stdout the
/// cumulative run time (in seconds) for all ntrials trials.
///
/// \param which [in] Valid values: "MpiTbbTSQR" (for TBB-parallel
/// node-level TSQR underneath MPI-parallel TSQR), "MpiSeqTSQR"
/// (for cache-blocked sequential node-level TSQR underneath
/// MPI-parallel TSQR)
///
/// \param scalarTypeName [in] Name of the Scalar type
///
/// \param generator [in/out] Normal(0,1) (pseudo)random number
/// generator. Only touched on MPI process 0. Used to generate
/// random test matrices for the factorization.
///
/// \param ntrials [in] Number of trials to use in the benchmark.
/// Reported timings are cumulative over all trials.
///
/// \param nrows_global [in] Number of rows in the entire test
/// matrix (over all processes) to generate. The matrix will be
/// divided up in blocks of contiguous rows among the processes.
///
/// \param ncols [in] Number of columns in the test matrix to
/// generate.
///
/// \param ordinalComm [in/out] Object for communicating Ordinal
/// (integer index) objects among the processes
///
/// \param scalarComm [in/out] Object for communicating Scalar
/// (matrix data) objects among the processes
///
/// \param num_cores [in] Number of cores to use per MPI process
/// for Intel TBB parallelism within that process
///
/// \param cache_size_hint [in] Cache block size (per core) in
/// bytes. If zero, a sensible default is used.
///
/// \param contiguousCacheBlocks [in] Whether cache blocks
/// should be stored contiguously
///
/// \param printFieldNames [in] Whether to print field names (only
/// appliable if not human_readable)
///
/// \param human_readable [in] Whether output should be human
/// readable, or machine parseable
///
/// \param b_debug [in] Whether to print debug output
///
template<class Ordinal, class Scalar, class Generator, class TimerType>
void
benchmarkTsqr (const std::string& which,
const std::string& scalarTypeName,
Generator& generator,
const int ntrials,
const Ordinal nrows_global,
const Ordinal ncols,
const Teuchos::RCP< MessengerBase< Ordinal > >& ordinalComm,
const Teuchos::RCP< MessengerBase< Scalar > >& scalarComm,
const Ordinal num_cores,
const size_t cache_size_hint,
const bool contiguousCacheBlocks,
const bool printFieldNames,
const bool human_readable,
const bool b_debug)
{
using std::cerr;
using std::cout;
using std::endl;
TSQR::Test::verifyTimerConcept< TimerType >();
const bool b_extra_debug = false;
const int nprocs = scalarComm->size();
const int my_rank = scalarComm->rank();
if (b_debug)
{
scalarComm->barrier();
if (my_rank == 0)
cerr << "tsqr_benchmark:" << endl;
scalarComm->barrier();
}
const Ordinal nrows_local = numLocalRows (nrows_global, my_rank, nprocs);
// Set up storage for the test problem.
Matrix< Ordinal, Scalar > A_local (nrows_local, ncols);
Matrix< Ordinal, Scalar > Q_local (nrows_local, ncols);
if (std::numeric_limits< Scalar >::has_quiet_NaN)
{
A_local.fill (std::numeric_limits< Scalar >::quiet_NaN());
Q_local.fill (std::numeric_limits< Scalar >::quiet_NaN());
}
Matrix< Ordinal, Scalar > R (ncols, ncols, Scalar(0));
// Generate the test problem.
distributedTestProblem (generator, A_local, ordinalComm.get(), scalarComm.get());
if (b_debug)
{
scalarComm->barrier();
if (my_rank == 0)
cerr << "-- Generated test problem." << endl;
}
// Make sure that the test problem (the matrix to factor) was
// distributed correctly.
if (b_extra_debug && b_debug)
{
if (my_rank == 0)
cerr << "Test matrix A:" << endl;
scalarComm->barrier ();
printGlobalMatrix (cerr, A_local, scalarComm.get(), ordinalComm.get());
scalarComm->barrier ();
}
// Factoring the matrix stored in A_local overwrites it, so we
// make a copy of A_local. If specified, rearrange cache blocks
// in the copy. Initialize with NaNs to make sure that cache
// blocking worked correctly.
Matrix< Ordinal, Scalar > A_copy (nrows_local, ncols);
if (std::numeric_limits< Scalar >::has_quiet_NaN)
A_copy.fill (std::numeric_limits< Scalar >::quiet_NaN());
// actual_cache_size_hint: "cache_size_hint" is just a
// suggestion. TSQR determines the cache block size itself;
// this remembers it so we can print it out later.
size_t actual_cache_size_hint;
// Run time (in seconds, as a double-precision floating-point
// value) for TSQR on this MPI node.
double tsqr_timing;
if (which == "MpiTbbTSQR")
{
#ifdef HAVE_KOKKOSTSQR_TBB
using Teuchos::RCP;
typedef TSQR::TBB::TbbTsqr< Ordinal, Scalar > node_tsqr_type;
typedef TSQR::DistTsqr< Ordinal, Scalar > dist_tsqr_type;
typedef Tsqr< Ordinal, Scalar, node_tsqr_type, dist_tsqr_type > tsqr_type;
RCP< node_tsqr_type > nodeTsqr (new node_tsqr_type (num_cores, cache_size_hint));
RCP< dist_tsqr_type > distTsqr (new dist_tsqr_type (scalarComm));
tsqr_type tsqr (nodeTsqr, distTsqr);
// Run the benchmark.
tsqr_timing =
do_tsqr_benchmark< tsqr_type, TimerType > (which, tsqr, scalarComm, A_local,
A_copy, Q_local, R, ntrials,
contiguousCacheBlocks,
human_readable, b_debug);
// Save the "actual" cache block size
actual_cache_size_hint = tsqr.cache_size_hint();
#else
throw std::logic_error("TSQR not built with Intel TBB support");
#endif // HAVE_KOKKOSTSQR_TBB
}
else if (which == "MpiSeqTSQR")
{
using Teuchos::RCP;
typedef SequentialTsqr< Ordinal, Scalar > node_tsqr_type;
typedef TSQR::DistTsqr< Ordinal, Scalar > dist_tsqr_type;
typedef Tsqr< Ordinal, Scalar, node_tsqr_type, dist_tsqr_type > tsqr_type;
// Set up TSQR.
RCP< node_tsqr_type > nodeTsqr (new node_tsqr_type (cache_size_hint));
RCP< dist_tsqr_type > distTsqr (new dist_tsqr_type (scalarComm));
tsqr_type tsqr (nodeTsqr, distTsqr);
// Run the benchmark.
tsqr_timing =
do_tsqr_benchmark< tsqr_type, TimerType > (which, tsqr, scalarComm, A_local,
A_copy, Q_local, R, ntrials,
contiguousCacheBlocks,
human_readable, b_debug);
// Save the "actual" cache block size
actual_cache_size_hint = tsqr.cache_size_hint();
}
else
throw std::logic_error("Unknown TSQR implementation type \"" + which + "\"");
// Find the min and max TSQR timing on all processors.
const double min_tsqr_timing = scalarComm->globalMin (tsqr_timing);
const double max_tsqr_timing = scalarComm->globalMax (tsqr_timing);
// Print the results on Proc 0.
if (my_rank == 0)
{
if (human_readable)
{
std::string human_readable_name;
if (which == "MpiSeqTSQR")
human_readable_name = "MPI parallel / cache-blocked TSQR";
else if (which == "MpiTbbTSQR")
{
#ifdef HAVE_KOKKOSTSQR_TBB
human_readable_name = "MPI parallel / TBB parallel / cache-blocked TSQR";
#else
throw std::logic_error("TSQR not built with Intel TBB support");
#endif // HAVE_KOKKOSTSQR_TBB
}
else
throw std::logic_error("Unknown TSQR implementation type \"" + which + "\"");
cout << human_readable_name << ":" << endl
<< "Scalar type: " << scalarTypeName << endl
<< "# rows: " << nrows_global << endl
<< "# columns: " << ncols << endl
<< "# MPI processes: " << nprocs << endl;
#ifdef HAVE_KOKKOSTSQR_TBB
if (which == "MpiTbbTSQR")
cout << "# cores per process: " << num_cores << endl;
#endif // HAVE_KOKKOSTSQR_TBB
cout << "Cache size hint in bytes: " << actual_cache_size_hint << endl
<< "contiguous cache blocks? " << contiguousCacheBlocks << endl
<< "# trials: " << ntrials << endl
<< "Min total time (s) over all MPI processes: "
<< min_tsqr_timing << endl
<< "Max total time (s) over all MPI processes: "
<< max_tsqr_timing << endl
<< endl;
}
else
{
if (printFieldNames)
{
cout << "%"
<< "method"
<< ",scalarType"
<< ",globalNumRows"
<< ",numCols"
<< ",numProcs"
<< ",numCores"
<< ",cacheSizeHint"
<< ",contiguousCacheBlocks"
<< ",numTrials"
<< ",minTiming"
<< ",maxTiming"
<< endl;
}
cout << which
<< "," << scalarTypeName
<< "," << nrows_global
<< "," << ncols
<< "," << nprocs;
#ifdef HAVE_KOKKOSTSQR_TBB
if (which == "MpiTbbTSQR")
cout << "," << num_cores;
else
cout << ",1";
#else
cout << ",1";
#endif // HAVE_KOKKOSTSQR_TBB
cout << "," << actual_cache_size_hint
<< "," << contiguousCacheBlocks
<< "," << ntrials
<< "," << min_tsqr_timing
<< "," << max_tsqr_timing
<< endl;
}
}
}
} // namespace Test
} // namespace TSQR
#endif // __TSQR_Test_TsqrTest_hpp
|