/usr/include/trilinos/Tsqr_Util.hpp is in libtrilinos-tpetra-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
/// \file Tsqr_Util.hpp
/// \brief Utilities for TSQR (the Tall Skinny QR factorization)
///
#ifndef __TSQR_Tsqr_Util_hpp
#define __TSQR_Tsqr_Util_hpp
#include <Teuchos_ScalarTraits.hpp>
#ifdef HAVE_KOKKOSTSQR_COMPLEX
# include <complex>
#endif // HAVE_KOKKOSTSQR_COMPLEX
#include <algorithm>
#include <ostream>
namespace TSQR {
/// \class ScalarPrinter
/// \brief Print a Scalar value to the given output stream
///
/// \tparam Scalar The type of the value to print.
/// \tparam isComplex Whether Scalar represents a complex number
/// type (such as std::complex<T>).
///
/// C++ (before C++0x) doesn't let me do partial template
/// specialization of functions. Because of that, I can't use a
/// template function; instead, I have to reify the function into a
/// class ("function object"). This is typical Java style, where
/// everything is a noun with a "run()" method; not my favorite, but
/// it's the only way to do it.
///
template<class Scalar, bool isComplex>
class ScalarPrinter {
public:
///
/// Print elt to out
void operator() (std::ostream& out, const Scalar& elt) const;
};
// Partial specialization for real Scalar
template< class Scalar >
class ScalarPrinter< Scalar, false > {
public:
void operator() (std::ostream& out, const Scalar& elt) const {
out << elt;
}
};
// Partial specialization for complex Scalar
template< class Scalar >
class ScalarPrinter< Scalar, true > {
public:
void operator() (std::ostream& out, const Scalar& elt) const {
typedef Teuchos::ScalarTraits<Scalar> STS;
typedef typename STS::magnitudeType magnitude_type;
typedef Teuchos::ScalarTraits<magnitude_type> STM;
const magnitude_type ZERO (0);
const magnitude_type& realPart = std::real (elt);
const magnitude_type& imagPart = std::imag (elt);
out << realPart;
if (imagPart < ZERO) {
out << "-" << STM::magnitude (imagPart) << "*i";
} else if (imagPart > ZERO) {
out << "+" << imagPart << "*i";
}
}
};
template< class LocalOrdinal, class Scalar >
void
print_local_matrix (std::ostream& out,
const LocalOrdinal nrows_local,
const LocalOrdinal ncols,
const Scalar A[],
const LocalOrdinal lda)
{
typedef Teuchos::ScalarTraits<Scalar> STS;
ScalarPrinter<Scalar, STS::isComplex> printer;
for (LocalOrdinal i = 0; i < nrows_local; ++i) {
for (LocalOrdinal j = 0; j < ncols; ++j) {
const Scalar& curElt = A[i + j*lda];
printer (out, curElt);
if (j < ncols - 1) {
out << ", ";
}
}
out << ";" << std::endl;
}
}
template< class Ordinal, class Scalar >
void
copy_matrix (const Ordinal nrows,
const Ordinal ncols,
Scalar* const A,
const Ordinal lda,
const Scalar* const B,
const Ordinal ldb)
{
for (Ordinal j = 0; j < ncols; ++j) {
Scalar* const A_j = &A[j*lda];
const Scalar* const B_j = &B[j*ldb];
std::copy (B_j, B_j + nrows, A_j);
}
}
template< class Ordinal, class Scalar >
void
fill_matrix (const Ordinal nrows,
const Ordinal ncols,
Scalar* const A,
const Ordinal lda,
const Scalar& default_val)
{
for (Ordinal j = 0; j < ncols; ++j) {
Scalar* const A_j = &A[j*lda];
std::fill (A_j, A_j + nrows, default_val);
}
}
template< class Ordinal, class Scalar, class Generator >
void
generate_matrix (const Ordinal nrows,
const Ordinal ncols,
Scalar* const A,
const Ordinal lda,
Generator gen)
{
for (Ordinal j = 0; j < ncols; ++j) {
Scalar* const A_j = &A[j*lda];
std::generate (A_j, A_j + nrows, gen);
}
}
template< class Ordinal, class Scalar >
void
copy_upper_triangle (const Ordinal nrows,
const Ordinal ncols,
Scalar* const R_out,
const Ordinal ldr_out,
const Scalar* const R_in,
const Ordinal ldr_in)
{
if (nrows >= ncols) {
for (Ordinal j = 0; j < ncols; ++j) {
Scalar* const A_j = &R_out[j*ldr_out];
const Scalar* const B_j = &R_in[j*ldr_in];
for (Ordinal i = 0; i <= j; ++i) {
A_j[i] = B_j[i];
}
}
}
else {
copy_upper_triangle (nrows, nrows, R_out, ldr_out, R_in, ldr_in);
for (Ordinal j = nrows; j < ncols; j++) {
Scalar* const A_j = &R_out[j*ldr_out];
const Scalar* const B_j = &R_in[j*ldr_in];
for (Ordinal i = 0; i < nrows; i++)
A_j[i] = B_j[i];
}
}
}
template< class Scalar >
class SumSquare {
public:
Scalar operator() (const Scalar& result, const Scalar& x) const {
return result + x*x;
}
};
#ifdef HAVE_KOKKOSTSQR_COMPLEX
// Specialization for complex numbers
template<class Scalar>
class SumSquare<std::complex<Scalar> > {
public:
Scalar operator() (const std::complex<Scalar>& result,
const std::complex<Scalar>& x) const {
const Scalar absval = std::norm (x);
return result + absval * absval;
}
};
#endif // HAVE_KOKKOSTSQR_COMPLEX
template<class Ordinal, class Scalar>
void
pack_R_factor (const Ordinal nrows,
const Ordinal ncols,
const Scalar R_in[],
const Ordinal ldr_in,
Scalar buffer[])
{
Ordinal count = 0; // current position in output buffer
if (nrows >= ncols) {
for (Ordinal j = 0; j < ncols; ++j) {
for (Ordinal i = 0; i <= j; ++i) {
buffer[count++] = R_in[i + j*ldr_in];
}
}
}
else {
for (Ordinal j = 0; j < nrows; ++j) {
for (Ordinal i = 0; i <= j; ++i) {
buffer[count++] = R_in[i + j*ldr_in];
}
}
}
}
template< class Ordinal, class Scalar >
void
unpack_R_factor (const Ordinal nrows,
const Ordinal ncols,
Scalar R_out[],
const Ordinal ldr_out,
const Scalar buffer[])
{
Ordinal count = 0; // current position in input buffer
if (nrows >= ncols) {
for (Ordinal j = 0; j < ncols; ++j) {
for (Ordinal i = 0; i <= j; ++i) {
R_out[i + j*ldr_out] = buffer[count++];
}
}
}
else {
for (Ordinal j = 0; j < nrows; ++j) {
for (Ordinal i = 0; i <= j; ++i) {
R_out[i + j*ldr_out] = buffer[count++];
}
}
}
}
} // namespace TSQR
#endif // __TSQR_Tsqr_Util_hpp
|