/usr/include/trilinos/Tsqr_printGlobalMatrix.hpp is in libtrilinos-tpetra-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __Tsqr_printGlobalMatrix_hpp
#define __Tsqr_printGlobalMatrix_hpp
#include <Tsqr_MessengerBase.hpp>
#include <Tsqr_Util.hpp>
#include <Tsqr_Matrix.hpp>
#include <Teuchos_ScalarTraits.hpp>
#include <limits>
#include <ostream>
#include <stdexcept>
namespace TSQR {
/// \fn printGlobalMatrix
///
/// Print a dense matrix distributed in block row fashion among all
/// MPI processes in a participating communicator. The given
/// "MessengerBase" communicator wrapper objects should wrap the
/// same underlying communicator.
///
/// \param out [out] Output stream to which to write the matrix (on
/// MPI Proc 0 only, relative to the underlying communicator).
/// \param A_local [in] Each MPI process' part of the matrix.
/// \param scalarComm [in/out] Communicator wrapper for
/// ConstMatrixViewType::scalar_type objects.
/// \param ordinalComm [in/out] Communicator wrapper for
/// ConstMatrixViewType::ordinal_type objects.
template<class ConstMatrixViewType>
void
printGlobalMatrix (std::ostream& out,
const ConstMatrixViewType& A_local,
MessengerBase<typename ConstMatrixViewType::scalar_type>* const scalarComm,
MessengerBase<typename ConstMatrixViewType::ordinal_type>* const ordinalComm)
{
typedef typename ConstMatrixViewType::ordinal_type LocalOrdinal;
typedef typename ConstMatrixViewType::scalar_type Scalar;
typedef Teuchos::ScalarTraits<Scalar> STS;
using std::endl;
const int myRank = scalarComm->rank ();
const int nprocs = scalarComm->size ();
const LocalOrdinal nrowsLocal = A_local.nrows();
const LocalOrdinal ncols = A_local.ncols();
const Scalar quiet_NaN = STS::nan();
if (myRank == 0)
{
// Print the remote matrix data
// out << "Processor " << my_rank << ":" << endl;
print_local_matrix (out, A_local.nrows(), A_local.ncols(),
A_local.get(), A_local.lda());
// Space for remote matrix data. Other processors are allowed
// to have different nrows_local values; we make space as
// necessary.
Matrix<LocalOrdinal, Scalar> A_remote (nrowsLocal, ncols, quiet_NaN);
// Loop through all the other processors in order.
// Fetch their matrix data and print it.
for (int srcProc = 1; srcProc < nprocs; ++srcProc)
{
// Get processor proc's local matrix dimensions
LocalOrdinal dims[2];
ordinalComm->recv (&dims[0], 2, srcProc, 0);
// Make space for the remote matrix data.
//
// mfh 13 Oct 2010: Teuchos::OrdinalTraits does not
// currently have this feature. It's OK to use
// std::numeric_limits, since ordinal types in Trilinos
// are intended to be built-in types (like int or long
// long int). std::numeric_limits only promises to work
// for built-in types, unless someone has defined an
// appropriate specialization. Teuchos::ScalarTraits,
// in contrast, has to work for non-built-in Scalar
// types, like ARPREC or QD floating-point numbers.
if (std::numeric_limits<LocalOrdinal>::is_signed)
{
if (dims[0] <= 0 || dims[1] <= 0)
throw std::runtime_error ("Invalid dimensions of remote matrix");
}
else
{
if (dims[0] == 0 || dims[1] == 0)
throw std::runtime_error ("Invalid dimensions of remote matrix");
}
A_remote.reshape (dims[0], dims[1]);
// Receive the remote matrix data, which we assume is
// stored contiguously.
scalarComm->recv (A_remote.get(), dims[0]*dims[1], srcProc, 0);
// Print the remote matrix data
// out << "Processor " << proc << ":" << endl;
print_local_matrix (out, dims[0], dims[0], A_remote.get(), A_remote.lda());
}
}
else
{
// Send my local matrix dimensions to proc 0.
int rootProc = 0;
LocalOrdinal dims[2];
dims[0] = nrowsLocal;
dims[1] = ncols;
ordinalComm->send (dims, 2, rootProc, 0);
// Create a (contiguous) buffer and copy the data into it.
Matrix< LocalOrdinal, Scalar > A_buf (nrowsLocal, ncols, quiet_NaN);
deep_copy (A_buf, A_local);
// Send the actual data to proc 0.
scalarComm->send (A_buf.get(), nrowsLocal*ncols, rootProc, 0);
}
scalarComm->barrier ();
}
} // namespace TSQR
#endif // __Tsqr_printGlobalMatrix_hpp
|