This file is indexed.

/usr/include/trilinos/Zoltan2_PartitioningSolution.hpp is in libtrilinos-zoltan2-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
// @HEADER
//
// ***********************************************************************
//
//   Zoltan2: A package of combinatorial algorithms for scientific computing
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine      (kddevin@sandia.gov)
//                    Erik Boman        (egboman@sandia.gov)
//                    Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER

/*! \file Zoltan2_PartitioningSolution.hpp
    \brief Defines the PartitioningSolution class.
*/

#ifndef _ZOLTAN2_PARTITIONINGSOLUTION_HPP_
#define _ZOLTAN2_PARTITIONINGSOLUTION_HPP_

namespace Zoltan2 {
template <typename Adapter>
class PartitioningSolution;
}

#include <Zoltan2_Environment.hpp>
#include <Zoltan2_Solution.hpp>
#include <Zoltan2_GreedyMWM.hpp>
#include <Zoltan2_Algorithm.hpp>
#include <Zoltan2_CoordinatePartitioningGraph.hpp>
#include <cmath>
#include <algorithm>
#include <vector>
#include <limits>

#ifdef _MSC_VER
#define NOMINMAX
#include <windows.h>
#endif


namespace Zoltan2 {

/*! \brief A PartitioningSolution is a solution to a partitioning problem.

    It is initialized by a PartitioningProblem,
    written to by an algorithm, and may be read by the user or by
    a data migration routine in an input adapter.

    \todo Problem computes metrics using the Solution.  Should
  Solution have a pointer to the metrics, since it may persist after
  the Problem is gone?
    \todo save an RCB tree, so it can be used in repartitioning, and
                supplied to the caller.
    \todo doxyfy the comments in this file.
*/

template <typename Adapter>
  class PartitioningSolution : public Solution
{
public:

#ifndef DOXYGEN_SHOULD_SKIP_THIS
  typedef typename Adapter::gno_t gno_t;
  typedef typename Adapter::scalar_t scalar_t;
  typedef typename Adapter::lno_t lno_t;
  typedef typename Adapter::part_t part_t;
  typedef typename Adapter::user_t user_t;
#endif

/*! \brief Constructor when part sizes are not supplied.
 *
 *   The Solution constructor may require global communication.
 *   The rest of the Solution methods do not.
 *
 *    \param env the environment for the application
 *    \param comm the communicator for the problem associated with
 *             this solution
 *    \param nUserWeights  the number of weights supplied by the
 *         application for each object.
 *    \param algorithm  Algorithm, if any, used to compute the solution.
 *
 *   It is possible that part sizes were supplied on other processes,
 *   so this constructor does do a check to see if part sizes need
 *   to be globally calculated.
 */

  PartitioningSolution( const RCP<const Environment> &env,
    const RCP<const Comm<int> > &comm,
    int nUserWeights, 
    const RCP<Algorithm<Adapter> > &algorithm = Teuchos::null);

/*! \brief Constructor when part sizes are supplied.
 *
 *   The Solution constructor may require global communication.
 *   The rest of the Solution methods do not.
 *
 *    \param env the environment for the application
 *    \param comm the communicator for the problem associated with
 *                        this solution
 *    \param nUserWeights  the number of weights supplied
 *                         by the application
 *    \param reqPartIds  reqPartIds[i] is a list of
 *          of part numbers for weight index i.
 *    \param reqPartSizes  reqPartSizes[i] is the list
 *          of part sizes for weight i corresponding to parts in
 *          reqPartIds[i]
 *    \param algorithm  Algorithm, if any, used to compute the solution.
 *
 *   If <tt>reqPartIds[i].size()</tt> and <tt>reqPartSizes[i].size()</tt>
 *           are zero for
 *   all processes, it is assumed that part sizes for weight
 *   dimension "i" are uniform.
 *
 *   If across the application there are some part numbers that are not
 *   included in the reqPartIds lists, then those part sizes are assumed
 *   to be 1.0.
 *
 *   \todo handle errors that may arise - like duplicate part numbers
 */

  PartitioningSolution(const RCP<const Environment> &env,
    const RCP<const Comm<int> > &comm,
    int nUserWeights, ArrayView<ArrayRCP<part_t> > reqPartIds,
    ArrayView<ArrayRCP<scalar_t> > reqPartSizes,
    const RCP<Algorithm<Adapter> > &algorithm = Teuchos::null);

  ////////////////////////////////////////////////////////////////////
  // Information that the algorithm may wish to query.

/*! \brief Returns the global number of parts desired in the solution.
 */
  size_t getTargetGlobalNumberOfParts() const { return nGlobalParts_; }

/*! \brief Returns the actual global number of parts provided in setParts().
 */
  size_t getActualGlobalNumberOfParts() const { return nGlobalPartsSolution_; }

/*! \brief Returns the number of parts to be assigned to this process.
 */
  size_t getLocalNumberOfParts() const { return nLocalParts_; }

/*! \brief If parts are divided across processes, return the fraction of
             a part on this process.
    \return zero if parts are not split across processes, approximate
                fraction of the part otherwise.
    \todo More useful to get number of processes owning part?  Or
              not useful at all - remove this?
 */
  scalar_t getLocalFractionOfPart() const { return localFraction_; }

/*! \brief Is the part-to-process distribution is one-to-one.
     \return true if Process p owns part p for all p, and false if the part
                  to process distribution is more complex.

   If this is true, then getPartDistribution() and getProcDistribution()
   return NULL pointers.  If either of the latter two methods is non-NULL,
   then this method returns false.
 */

  bool oneToOnePartDistribution() const { return onePartPerProc_; }

/*! \brief Return a distribution by part.

    \return If any parts are
       divided across processes, then a mapping \c A is returned.
     \c A such that \c A[i] is the lowest numbered process
       owning part \c i.  The length of the array is one greater than the
       global number of parts.
       The value of the last element is the global number of processes.

     Parts are divided across processes only if there are fewer parts
     than processes and the caller did not define "num_local_parts" for
     each process.  In this case, parts are divided somewhat evenly
     across the processes.  This situation is more likely to arise in
     Zoltan2 algorithms than in user applications.

   If either oneToOnePartDistribution() is true or getProcDistribution() is
   non-NULL, then this method returns a NULL pointer.  The three are mutually
   exclusive and collective exhaustive.
 */
  const int *getPartDistribution() const {
    if (partDist_.size() > 0) return &partDist_[0];
    else return NULL;
  }

/*! \brief Return a distribution by process.

    \return If the mapping of parts to processes is not one-to-one, and
      if parts are not divided across processes, then the mapping
      \c A is returned. \c A such that \c A[i] is the first part
      assigned to process \c i.
      (Parts are assigned sequentially to processes.)
      However if <tt> A[i+1]</tt> is equal to \c A[i], there
      are no parts assigned to process \c i.  The length of the array is
      one greater than the number of processes.  The last element of
      the array is the global number of parts.

    If the mapping is one-to-one, or if parts are divided across processes,
    then this method returns NULL pointer, and either
    oneToOnePartDistribution() or getPartDistribution() describes the mapping.
 */
  const part_t *getProcDistribution() const {
    if (procDist_.size() > 0) return &procDist_[0];
    else return NULL;
  }

/*! \brief Get the number of criteria (object weights)
    \return the number of criteria for which the solution has part sizes.
 */
  int getNumberOfCriteria() const { return nWeightsPerObj_; }


/*! \brief Determine if balancing criteria has uniform
                part sizes.  (User can specify differing part sizes.)
    \param idx   A value from 0 to one less than the number of weights per
                   object.
    \return true if part sizes are uniform for this criteria.
 */
  bool criteriaHasUniformPartSizes(int idx) const { return pSizeUniform_[idx];}

/*! \brief Get the size for a given weight index and a given part.

    \param idx   A value from 0 to one less than the number of weights per
                       object.
    \param part  A value from 0 to one less than the global number of parts
                   to be computed
    \return   The size for that part.  Part sizes for a given weight
                    dimension sum to 1.0.

      \todo It would be useful to algorithms to get the sum of
           part sizes from a to b, or the sum or a list of parts.
 */
  scalar_t getCriteriaPartSize(int idx, part_t part) const {
    if (pSizeUniform_[idx])
      return 1.0 / nGlobalParts_;
    else if (pCompactIndex_[idx].size())
      return pSize_[idx][pCompactIndex_[idx][part]];
    else
      return pSize_[idx][part];
  }

/*! \brief Return true if the two weight indices have the same
 *          part size information.

    \param c1   A value from 0 through one less than the number of weights.
    \param c2   A value from 0 through one less than the number of weights.
    \return   If weight index \c c1 and weight index \c c2 have
        the same part size information, the \c true is returned, otherwise
        \c false is returned.

    It may be a problem for some algorithms if there are multiple weight
    dimensions with differing part size constraints to be satisfied.
 */

  bool criteriaHaveSamePartSizes(int c1, int c2) const;

  ////////////////////////////////////////////////////////////////////
  // Method used by the algorithm to set results.

  /*! \brief The algorithm uses setParts to set the solution.
   *
   *   \param gnoList  A list of global numbers.
   *
   *   \param partList  The part assigned to gnoList[i] by the algorithm
   *      should be in partList[i].  The partList is allocated and written
   *      by the algorithm.
   *
   *   \param dataDidNotMove The algorithm did not change the order of the
   *      data provided by the model; that is, it did not move the data
   *      to other processes or reorganize within the process.  Thus,
   *      the gnoList and partList are ordered in the same way as the
   *      array provided by the model.  Setting this flag to true avoids
   *      processing to remap the data to the original process that provided
   *      the data.
   *
   * The global numbers supplied by the algorithm do not need to be
   * those representing the global Ids of that process.  But
   * all global numbers should be assigned a part by exactly one
   * process.
   *
   * setParts() must be called by all processes in the problem, as
   * the part for each global identifier supplied by each process
   * in its InputAdapter is found and saved in this PartitioningSolution.
   */

  void setParts(ArrayRCP<part_t> &partList);

  ////////////////////////////////////////////////////////////////////

  /*! \brief Remap a new partition for maximum overlap with an input partition.
   *
   * Assumptions for this version:
   * input part assignment == processor rank for every local object.
   * assuming nGlobalParts <= num ranks
   * TODO:  Write a version that takes the input part number as input;
   *        this change requires input parts in adapters to be provided in
   *        the Adapter.
   * TODO:  For repartitioning, compare to old remapping results; see Zoltan1.
   */

  void RemapParts();

  ////////////////////////////////////////////////////////////////////
  /* Return the weight of objects staying with a given remap.
   * If remap is NULL, compute weight of objects staying with given partition
   */
  long measure_stays(part_t *remap, int *idx, part_t *adj, long *wgt,
                     part_t nrhs, part_t nlhs)
  {
    long staying = 0;
    for (part_t i = 0; i < nrhs; i++) { 
      part_t k = (remap ? remap[i] : i);
      for (part_t j = idx[k]; j < idx[k+1]; j++) { 
        if (i == (adj[j]-nlhs)) {
          staying += wgt[j];
          break;
        }
      }
    }
    return staying;
  }

  ////////////////////////////////////////////////////////////////////
  // Results that may be queried by the user, by migration methods,
  // or by metric calculation methods.
  // We return raw pointers so users don't have to learn about our
  // pointer wrappers.

  /*! \brief Return the communicator associated with the solution.
   */
  inline const RCP<const Comm<int> > &getCommunicator() const { return comm_;}

  /*! \brief Return the environment associated with the solution.
   */
  inline const RCP<const Environment> &getEnvironment() const { return env_;}

  /*! \brief Returns the part list corresponding to the global ID list.
   */
  const part_t *getPartListView() const {
    if (parts_.size() > 0) return parts_.getRawPtr();
    else                   return NULL;
  }

  /*! \brief Returns the process list corresponding to the global ID list.
      \return The return value is a NULL pointer if part IDs are
                synonomous with process IDs.
   */
  const int *getProcListView() const {
    if (procs_.size() > 0) return procs_.getRawPtr();
    else                   return NULL;
  }


  /*! \brief returns the part box boundary list.
   */
  std::vector<Zoltan2::coordinateModelPartBox<scalar_t, part_t> > &
  getPartBoxesView() const
  {
    return this->algorithm_->getPartBoxesView();
  }

  //!  \brief Return the part overlapping a given point in space; 
  //          when a point lies on a part boundary, the lowest part
  //          number on that boundary is returned.
  //          Note that not all partitioning algorithms will support
  //          this method.
  //
  //   \param dim : the number of dimensions specified for the point in space
  //   \param point : the coordinates of the point in space; array of size dim
  //   \return the part number of a part overlapping the given point
  part_t pointAssign(int dim, scalar_t *point) const
  {
    part_t p;
    try {
      if (this->algorithm_ == Teuchos::null)
        throw std::logic_error("no partitioning algorithm has been run yet");

      p = this->algorithm_->pointAssign(dim, point); 
    }
    Z2_FORWARD_EXCEPTIONS
    return p;
  }

  //!  \brief Return an array of all parts overlapping a given box in space.
  //   This method allocates memory for the return argument, but does not
  //   control that memory.  The user is responsible for freeing the 
  //   memory.
  //
  //   \param dim : (in) the number of dimensions specified for the box
  //   \param lower : (in) the coordinates of the lower corner of the box; 
  //                   array of size dim
  //   \param upper : (in) the coordinates of the upper corner of the box; 
  //                   array of size dim
  //   \param nPartsFound : (out) the number of parts overlapping the box
  //   \param partsFound :  (out) array of parts overlapping the box
  void boxAssign(int dim, scalar_t *lower, scalar_t *upper,
                 size_t &nPartsFound, part_t **partsFound) const
  {
    try {
      if (this->algorithm_ == Teuchos::null)
        throw std::logic_error("no partitioning algorithm has been run yet");

      this->algorithm_->boxAssign(dim, lower, upper, nPartsFound, partsFound); 
    }
    Z2_FORWARD_EXCEPTIONS
  }


  /*! \brief returns communication graph resulting from geometric partitioning.
   */
  void getCommunicationGraph(ArrayRCP <part_t> &comXAdj,
                             ArrayRCP <part_t> &comAdj) const
  {
    try {
      if (this->algorithm_ == Teuchos::null)
        throw std::logic_error("no partitioning algorithm has been run yet");

      this->algorithm_->getCommunicationGraph(this, comXAdj, comAdj);
    }
    Z2_FORWARD_EXCEPTIONS
  }

  /*! \brief Get the parts belonging to a process.
   *  \param procId a process rank
   *  \param numParts on return will be set the number of parts belonging
   *                    to the process.
   *  \param partMin on return will be set to minimum part number
   *  \param partMax on return will be set to maximum part number
   *
   * Normally \c numParts is at least one. But if there are more processes
   * than parts, one of two things can happen.  Either there are processes
   * with no parts, and so \c numParts will be zero, or a part may be
   * split across more than one process, in which \c numParts will
   * be non-zero but less than 1.
   *
   * In the latter case, \c numParts is 1.0 divided by the number of
   * processes that share the part.
   */

  void getPartsForProc(int procId, double &numParts, part_t &partMin,
    part_t &partMax) const
  {
    env_->localInputAssertion(__FILE__, __LINE__, "invalid process id",
      procId >= 0 && procId < comm_->getSize(), BASIC_ASSERTION);

    procToPartsMap(procId, numParts, partMin, partMax);
  }

  /*! \brief Get the processes containing a part.
   *  \param partId a part number from 0 to one less than the global number
   *                of parts.
   *  \param procMin on return will be set to minimum proc number
   *  \param procMax on return will be set to maximum proc number
   *
   * Normally \c procMin and \c procMax are the same value and a part
   * is assigned to one process.  But if there are more processes than
   * parts, it's possible that a part will be divided across more than
   * one process.
   */
  void getProcsForPart(part_t partId, part_t &procMin, part_t &procMax) const
  {
    env_->localInputAssertion(__FILE__, __LINE__, "invalid part id",
      partId >= 0 && partId < nGlobalParts_, BASIC_ASSERTION);

    partToProcsMap(partId, procMin, procMax);
  }

private:
  void partToProc(bool doCheck, bool haveNumLocalParts, bool haveNumGlobalParts,
    int numLocalParts, int numGlobalParts);

  void procToPartsMap(int procId, double &numParts, part_t &partMin,
    part_t &partMax) const;

  void partToProcsMap(part_t partId, int &procMin, int &procMax) const;

  void setPartDistribution();

  void setPartSizes(ArrayView<ArrayRCP<part_t> > reqPartIds,
    ArrayView<ArrayRCP<scalar_t> > reqPartSizes);

  void computePartSizes(int widx, ArrayView<part_t> ids,
    ArrayView<scalar_t> sizes);

  void broadcastPartSizes(int widx);


  RCP<const Environment> env_;             // has application communicator
  const RCP<const Comm<int> > comm_;       // the problem communicator

  //part box boundaries as a result of geometric partitioning algorithm.
  RCP < std::vector <Zoltan2::coordinateModelPartBox <scalar_t, part_t> > > partBoxes;

  part_t nGlobalParts_;// target global number of parts
  part_t nLocalParts_; // number of parts to be on this process

  scalar_t localFraction_; // approx fraction of a part on this process
  int nWeightsPerObj_;      // if user has no weights, this is 1  TODO:  WHY???

  // If process p is to be assigned part p for all p, then onePartPerProc_
  // is true. Otherwise it is false, and either procDist_ or partDist_
  // describes the allocation of parts to processes.
  //
  // If parts are never split across processes, then procDist_ is defined
  // as follows:
  //
  //   partId              = procDist_[procId]
  //   partIdNext          = procDist_[procId+1]
  //   globalNumberOfParts = procDist_[numProcs]
  //
  // meaning that the parts assigned to process procId range from
  // [partId, partIdNext).  If partIdNext is the same as partId, then
  // process procId has no parts.
  //
  // If the number parts is less than the number of processes, and the
  // user did not specify "num_local_parts" for each of the processes, then
  // parts are split across processes, and partDist_ is defined rather than
  // procDist_.
  //
  //   procId              = partDist_[partId]
  //   procIdNext          = partDist_[partId+1]
  //   globalNumberOfProcs = partDist_[numParts]
  //
  // which implies that the part partId is shared by processes in the
  // the range [procId, procIdNext).
  //
  // We use std::vector so we can use upper_bound algorithm

  bool             onePartPerProc_;   // either this is true...
  std::vector<int>      partDist_;      // or this is defined ...
  std::vector<part_t> procDist_;      // or this is defined.
  bool procDistEquallySpread_;        // if procDist_ is used and
                                      // #parts > #procs and
                                      // num_local_parts is not specified,
                                      // parts are evenly distributed to procs

  // In order to minimize the storage required for part sizes, we
  // have three different representations.
  //
  // If the part sizes for weight index w are all the same, then:
  //    pSizeUniform_[w] = true
  //    pCompactIndex_[w].size() = 0
  //    pSize_[w].size() = 0
  //
  // and the size for part p is 1.0 / nparts.
  //
  // If part sizes differ for each part in weight index w, but there
  // are no more than 64 distinct sizes:
  //    pSizeUniform_[w] = false
  //    pCompactIndex_[w].size() = number of parts
  //    pSize_[w].size() = number of different sizes
  //
  // and the size for part p is pSize_[pCompactIndex_[p]].
  //
  // If part sizes differ for each part in weight index w, and there
  // are more than 64 distinct sizes:
  //    pSizeUniform_[w] = false
  //    pCompactIndex_[w].size() = 0
  //    pSize_[w].size() = nparts
  //
  // and the size for part p is pSize_[p].
  //
  // NOTE: If we expect to have similar cases, i.e. a long list of scalars
  //   where it is highly possible that just a few unique values appear,
  //   then we may want to make this a class.  The advantage is that we
  //   save a long list of 1-byte indices instead of a long list of scalars.

  ArrayRCP<bool> pSizeUniform_;
  ArrayRCP<ArrayRCP<unsigned char> > pCompactIndex_;
  ArrayRCP<ArrayRCP<scalar_t> > pSize_;

  ////////////////////////////////////////////////////////////////
  // The algorithm sets these values upon completion.

  ArrayRCP<part_t> parts_;      // part number assigned to localid[i]

  bool haveSolution_;

  part_t nGlobalPartsSolution_; // global number of parts in solution

  ////////////////////////////////////////////////////////////////
  // The solution calculates this from the part assignments,
  // unless onePartPerProc_.

  ArrayRCP<int> procs_;       // process rank assigned to localid[i]

  ////////////////////////////////////////////////////////////////
  // Algorithm used to compute the solution; 
  // needed for post-processing with pointAssign or getCommunicationGraph
  const RCP<Algorithm<Adapter> > algorithm_;  // 
};

////////////////////////////////////////////////////////////////////
// Definitions
////////////////////////////////////////////////////////////////////

template <typename Adapter>
  PartitioningSolution<Adapter>::PartitioningSolution(
    const RCP<const Environment> &env,
    const RCP<const Comm<int> > &comm,
    int nUserWeights,
    const RCP<Algorithm<Adapter> > &algorithm)
    : env_(env), comm_(comm),
      partBoxes(),
      nGlobalParts_(0), nLocalParts_(0),
      localFraction_(0),  nWeightsPerObj_(),
      onePartPerProc_(false), partDist_(), procDist_(),
      procDistEquallySpread_(false),
      pSizeUniform_(), pCompactIndex_(), pSize_(),
      parts_(), haveSolution_(false), nGlobalPartsSolution_(0),
      procs_(), algorithm_(algorithm)
{
  nWeightsPerObj_ = (nUserWeights ? nUserWeights : 1);  // TODO:  WHY??  WHY NOT ZERO?

  setPartDistribution();

  // We must call setPartSizes() because part sizes may have
  // been provided by the user on other processes.

  ArrayRCP<part_t> *noIds = new ArrayRCP<part_t> [nWeightsPerObj_];
  ArrayRCP<scalar_t> *noSizes = new ArrayRCP<scalar_t> [nWeightsPerObj_];
  ArrayRCP<ArrayRCP<part_t> > ids(noIds, 0, nWeightsPerObj_, true);
  ArrayRCP<ArrayRCP<scalar_t> > sizes(noSizes, 0, nWeightsPerObj_, true);

  setPartSizes(ids.view(0, nWeightsPerObj_), sizes.view(0, nWeightsPerObj_));

  env_->memory("After construction of solution");
}

template <typename Adapter>
  PartitioningSolution<Adapter>::PartitioningSolution(
    const RCP<const Environment> &env,
    const RCP<const Comm<int> > &comm,
    int nUserWeights,
    ArrayView<ArrayRCP<part_t> > reqPartIds,
    ArrayView<ArrayRCP<scalar_t> > reqPartSizes,
    const RCP<Algorithm<Adapter> > &algorithm)
    : env_(env), comm_(comm),
      partBoxes(),
      nGlobalParts_(0), nLocalParts_(0),
      localFraction_(0),  nWeightsPerObj_(),
      onePartPerProc_(false), partDist_(), procDist_(),
      procDistEquallySpread_(false),
      pSizeUniform_(), pCompactIndex_(), pSize_(),
      parts_(), haveSolution_(false), nGlobalPartsSolution_(0),
      procs_(), algorithm_(algorithm)
{
  nWeightsPerObj_ = (nUserWeights ? nUserWeights : 1);  // TODO:  WHY?? WHY NOT ZERO?

  setPartDistribution();

  setPartSizes(reqPartIds, reqPartSizes);

  env_->memory("After construction of solution");
}

template <typename Adapter>
  void PartitioningSolution<Adapter>::setPartDistribution()
{
  // Did the caller define num_global_parts and/or num_local_parts?

  const ParameterList &pl = env_->getParameters();
  size_t haveGlobalNumParts=0, haveLocalNumParts=0;
  int numLocal=0, numGlobal=0;

  const Teuchos::ParameterEntry *pe = pl.getEntryPtr("num_global_parts");

  if (pe){
    haveGlobalNumParts = 1;
    nGlobalParts_ = part_t(pe->getValue(&nGlobalParts_));
    numGlobal = nGlobalParts_;
  }

  pe = pl.getEntryPtr("num_local_parts");

  if (pe){
    haveLocalNumParts = 1;
    nLocalParts_ = part_t(pe->getValue(&nLocalParts_));
    numLocal = nLocalParts_;
  }

  try{
    // Sets onePartPerProc_, partDist_, and procDist_

    partToProc(true, haveLocalNumParts, haveGlobalNumParts,
      numLocal, numGlobal);
  }
  Z2_FORWARD_EXCEPTIONS

  int nprocs = comm_->getSize();
  int rank = comm_->getRank();

  if (onePartPerProc_){
    nGlobalParts_ = nprocs;
    nLocalParts_ = 1;
  }
  else if (partDist_.size() > 0){   // more procs than parts
    nGlobalParts_ = partDist_.size() - 1;
    int pstart = partDist_[0];
    for (part_t i=1; i <= nGlobalParts_; i++){
      int pend = partDist_[i];
      if (rank >= pstart && rank < pend){
        int numOwners = pend - pstart;
        nLocalParts_ = 1;
        localFraction_ = 1.0 / numOwners;
        break;
      }
      pstart = pend;
    }
  }
  else if (procDist_.size() > 0){  // more parts than procs
    nGlobalParts_ = procDist_[nprocs];
    nLocalParts_ = procDist_[rank+1] - procDist_[rank];
  }
  else {
    throw std::logic_error("partToProc error");
  }

}

template <typename Adapter>
  void PartitioningSolution<Adapter>::setPartSizes(
    ArrayView<ArrayRCP<part_t> > ids, ArrayView<ArrayRCP<scalar_t> > sizes)
{
  int widx = nWeightsPerObj_;
  bool fail=false;

  size_t *countBuf = new size_t [widx*2];
  ArrayRCP<size_t> counts(countBuf, 0, widx*2, true);

  fail = ((ids.size() != widx) || (sizes.size() != widx));

  for (int w=0; !fail && w < widx; w++){
    counts[w] = ids[w].size();
    if (ids[w].size() != sizes[w].size()) fail=true;
  }

  env_->globalBugAssertion(__FILE__, __LINE__, "bad argument arrays", fail==0,
    COMPLEX_ASSERTION, comm_);

  // Are all part sizes the same?  This is the common case.

  ArrayRCP<scalar_t> *emptySizes= new ArrayRCP<scalar_t> [widx];
  pSize_ = arcp(emptySizes, 0, widx);

  ArrayRCP<unsigned char> *emptyIndices= new ArrayRCP<unsigned char> [widx];
  pCompactIndex_ = arcp(emptyIndices, 0, widx);

  bool *info = new bool [widx];
  pSizeUniform_ = arcp(info, 0, widx);
  for (int w=0; w < widx; w++)
    pSizeUniform_[w] = true;

  if (nGlobalParts_ == 1){
    return;   // there's only one part in the whole problem
  }

  size_t *ptr1 = counts.getRawPtr();
  size_t *ptr2 = counts.getRawPtr() + widx;

  try{
    reduceAll<int, size_t>(*comm_, Teuchos::REDUCE_MAX, widx, ptr1, ptr2);
  }
  Z2_THROW_OUTSIDE_ERROR(*env_);

  bool zero = true;

  for (int w=0; w < widx; w++)
    if (counts[widx+w] > 0){
      zero = false;
      pSizeUniform_[w] = false;
    }

  if (zero) // Part sizes for all criteria are uniform.
    return;

  // Compute the part sizes for criteria for which part sizes were
  // supplied.  Normalize for each criteria so part sizes sum to one.

  int nprocs = comm_->getSize();
  int rank = comm_->getRank();

  for (int w=0; w < widx; w++){
    if (pSizeUniform_[w]) continue;

    // Send all ids and sizes to one process.
    // (There is no simple gather method in Teuchos.)

    part_t length = ids[w].size();
    part_t *allLength = new part_t [nprocs];
    Teuchos::gatherAll<int, part_t>(*comm_, 1, &length,
      nprocs, allLength);

    if (rank == 0){
      int total = 0;
      for (int i=0; i < nprocs; i++)
        total += allLength[i];

      part_t *partNums = new part_t [total];
      scalar_t *partSizes = new scalar_t [total];

      ArrayView<part_t> idArray(partNums, total);
      ArrayView<scalar_t> sizeArray(partSizes, total);

      if (length > 0){
        for (int i=0; i < length; i++){
          *partNums++ = ids[w][i];
          *partSizes++ = sizes[w][i];
        }
      }

      for (int p=1; p < nprocs; p++){
        if (allLength[p] > 0){
          Teuchos::receive<int, part_t>(*comm_, p,
            allLength[p], partNums);
          Teuchos::receive<int, scalar_t>(*comm_, p,
            allLength[p], partSizes);
          partNums += allLength[p];
          partSizes += allLength[p];
        }
      }

      delete [] allLength;

      try{
        computePartSizes(w, idArray, sizeArray);
      }
      Z2_FORWARD_EXCEPTIONS

      delete [] idArray.getRawPtr();
      delete [] sizeArray.getRawPtr();
    }
    else{
      delete [] allLength;
      if (length > 0){
        Teuchos::send<int, part_t>(*comm_, length, ids[w].getRawPtr(), 0);
        Teuchos::send<int, scalar_t>(*comm_, length, sizes[w].getRawPtr(), 0);
      }
    }

    broadcastPartSizes(w);
  }
}

template <typename Adapter>
  void PartitioningSolution<Adapter>::broadcastPartSizes(int widx)
{
  env_->localBugAssertion(__FILE__, __LINE__, "preallocations",
    pSize_.size()>widx &&
    pSizeUniform_.size()>widx && pCompactIndex_.size()>widx,
    COMPLEX_ASSERTION);

  int rank = comm_->getRank();
  int nprocs = comm_->getSize();
  part_t nparts = nGlobalParts_;

  if (nprocs < 2)
    return;

  char flag=0;

  if (rank == 0){
    if (pSizeUniform_[widx] == true)
      flag = 1;
    else if (pCompactIndex_[widx].size() > 0)
      flag = 2;
    else
      flag = 3;
  }

  try{
    Teuchos::broadcast<int, char>(*comm_, 0, 1, &flag);
  }
  Z2_THROW_OUTSIDE_ERROR(*env_);

  if (flag == 1){
    if (rank > 0)
      pSizeUniform_[widx] = true;

    return;
  }

  if (flag == 2){

    // broadcast the indices into the size list

    unsigned char *idxbuf = NULL;

    if (rank > 0){
      idxbuf = new unsigned char [nparts];
      env_->localMemoryAssertion(__FILE__, __LINE__, nparts, idxbuf);
    }
    else{
      env_->localBugAssertion(__FILE__, __LINE__, "index list size",
        pCompactIndex_[widx].size() == nparts, COMPLEX_ASSERTION);
      idxbuf = pCompactIndex_[widx].getRawPtr();
    }

    try{
      // broadcast of unsigned char is not supported
      Teuchos::broadcast<int, char>(*comm_, 0, nparts,
        reinterpret_cast<char *>(idxbuf));
    }
    Z2_THROW_OUTSIDE_ERROR(*env_);

    if (rank > 0)
      pCompactIndex_[widx] = arcp(idxbuf, 0, nparts, true);

    // broadcast the list of different part sizes

    unsigned char maxIdx=0;
    for (part_t p=0; p < nparts; p++)
      if (idxbuf[p] > maxIdx) maxIdx = idxbuf[p];

    int numSizes = maxIdx + 1;

    scalar_t *sizeList = NULL;

    if (rank > 0){
      sizeList = new scalar_t [numSizes];
      env_->localMemoryAssertion(__FILE__, __LINE__, numSizes, sizeList);
    }
    else{
      env_->localBugAssertion(__FILE__, __LINE__, "wrong number of sizes",
        numSizes == pSize_[widx].size(), COMPLEX_ASSERTION);

      sizeList = pSize_[widx].getRawPtr();
    }

    try{
      Teuchos::broadcast<int, scalar_t>(*comm_, 0, numSizes, sizeList);
    }
    Z2_THROW_OUTSIDE_ERROR(*env_);

    if (rank > 0)
      pSize_[widx] = arcp(sizeList, 0, numSizes, true);

    return;
  }

  if (flag == 3){

    // broadcast the size of each part

    scalar_t *sizeList = NULL;

    if (rank > 0){
      sizeList = new scalar_t [nparts];
      env_->localMemoryAssertion(__FILE__, __LINE__, nparts, sizeList);
    }
    else{
      env_->localBugAssertion(__FILE__, __LINE__, "wrong number of sizes",
        nparts == pSize_[widx].size(), COMPLEX_ASSERTION);

      sizeList = pSize_[widx].getRawPtr();
    }

    try{
      Teuchos::broadcast<int, scalar_t >(*comm_, 0, nparts, sizeList);
    }
    Z2_THROW_OUTSIDE_ERROR(*env_);

    if (rank > 0)
      pSize_[widx] = arcp(sizeList, 0, nparts);

    return;
  }
}

template <typename Adapter>
  void PartitioningSolution<Adapter>::computePartSizes(int widx,
    ArrayView<part_t> ids, ArrayView<scalar_t> sizes)
{
  int len = ids.size();

  if (len == 0){
    pSizeUniform_[widx] = true;
    return;
  }

  env_->localBugAssertion(__FILE__, __LINE__, "bad array sizes",
    len>0 && sizes.size()==len, COMPLEX_ASSERTION);

  env_->localBugAssertion(__FILE__, __LINE__, "bad index",
    widx>=0 && widx<nWeightsPerObj_, COMPLEX_ASSERTION);

  env_->localBugAssertion(__FILE__, __LINE__, "preallocations",
    pSize_.size()>widx &&
    pSizeUniform_.size()>widx && pCompactIndex_.size()>widx,
    COMPLEX_ASSERTION);

  // Check ids and sizes and find min, max and average sizes.
  // If sizes are very close to uniform, call them uniform parts.

  part_t nparts = nGlobalParts_;
  unsigned char *buf = new unsigned char [nparts];
  env_->localMemoryAssertion(__FILE__, __LINE__, nparts, buf);
  memset(buf, 0, nparts);
  ArrayRCP<unsigned char> partIdx(buf, 0, nparts, true);

  scalar_t epsilon = 10e-5 / nparts;
  scalar_t min=sizes[0], max=sizes[0], sum=0;

  for (int i=0; i < len; i++){
    part_t id = ids[i];
    scalar_t size = sizes[i];

    env_->localInputAssertion(__FILE__, __LINE__, "invalid part id",
      id>=0 && id<nparts, BASIC_ASSERTION);

    env_->localInputAssertion(__FILE__, __LINE__, "invalid part size", size>=0,
      BASIC_ASSERTION);

    // TODO: we could allow users to specify multiple sizes for the same
    // part if we add a parameter that says what we are to do with them:
    // add them or take the max.

    env_->localInputAssertion(__FILE__, __LINE__,
      "multiple sizes provided for one part", partIdx[id]==0, BASIC_ASSERTION);

    partIdx[id] = 1;    // mark that we have a size for this part

    if (size < min) min = size;
    if (size > max) max = size;
    sum += size;
  }

  if (sum == 0){

    // User has given us a list of parts of size 0, we'll set
    // the rest to them to equally sized parts.

    scalar_t *allSizes = new scalar_t [2];
    env_->localMemoryAssertion(__FILE__, __LINE__, 2, allSizes);

    ArrayRCP<scalar_t> sizeArray(allSizes, 0, 2, true);

    int numNonZero = nparts - len;

    allSizes[0] = 0.0;
    allSizes[1] = 1.0 / numNonZero;

    for (part_t p=0; p < nparts; p++)
      buf[p] = 1;                 // index to default part size

    for (int i=0; i < len; i++)
      buf[ids[i]] = 0;            // index to part size zero

    pSize_[widx] = sizeArray;
    pCompactIndex_[widx] = partIdx;

    return;
  }

  if (max - min <= epsilon){
    pSizeUniform_[widx] = true;
    return;
  }

  // A size for parts that were not specified:
  scalar_t avg = sum / nparts;

  // We are going to merge part sizes that are very close.  This takes
  // computation time now, but can save considerably in the storage of
  // all part sizes on each process.  For example, a common case may
  // be some parts are size 1 and all the rest are size 2.

  scalar_t *tmp = new scalar_t [len];
  env_->localMemoryAssertion(__FILE__, __LINE__, len, tmp);
  memcpy(tmp, sizes.getRawPtr(), sizeof(scalar_t) * len);
  ArrayRCP<scalar_t> partSizes(tmp, 0, len, true);

  std::sort(partSizes.begin(), partSizes.end());

  // create a list of sizes that are unique within epsilon

  Array<scalar_t> nextUniqueSize;
  nextUniqueSize.push_back(partSizes[len-1]);   // largest
  scalar_t curr = partSizes[len-1];
  int avgIndex = len;
  bool haveAvg = false;
  if (curr - avg <= epsilon)
     avgIndex = 0;

  for (int i=len-2; i >= 0; i--){
    scalar_t val = partSizes[i];
    if (curr - val > epsilon){
      nextUniqueSize.push_back(val);  // the highest in the group
      curr = val;
      if (avgIndex==len && val > avg && val - avg <= epsilon){
        // the average would be in this group
        avgIndex = nextUniqueSize.size() - 1;
        haveAvg = true;
      }
    }
  }

  partSizes.clear();

  size_t numSizes = nextUniqueSize.size();
  int sizeArrayLen = numSizes;

  if (numSizes < 64){
    // We can store the size for every part in a compact way.

    // Create a list of all sizes in increasing order

    if (!haveAvg) sizeArrayLen++;   // need to include average

    scalar_t *allSizes = new scalar_t [sizeArrayLen];
    env_->localMemoryAssertion(__FILE__, __LINE__, sizeArrayLen, allSizes);
    ArrayRCP<scalar_t> sizeArray(allSizes, 0, sizeArrayLen, true);

    int newAvgIndex = sizeArrayLen;

    for (int i=numSizes-1, idx=0; i >= 0; i--){

      if (newAvgIndex == sizeArrayLen){

        if (haveAvg && i==avgIndex)
          newAvgIndex = idx;

        else if (!haveAvg && avg < nextUniqueSize[i]){
          newAvgIndex = idx;
          allSizes[idx++] = avg;
        }
      }

      allSizes[idx++] = nextUniqueSize[i];
    }

    env_->localBugAssertion(__FILE__, __LINE__, "finding average in list",
      newAvgIndex < sizeArrayLen, COMPLEX_ASSERTION);

    for (int i=0; i < nparts; i++){
      buf[i] = newAvgIndex;   // index to default part size
    }

    sum = (nparts - len) * allSizes[newAvgIndex];

    for (int i=0; i < len; i++){
      int id = ids[i];
      scalar_t size = sizes[i];
      int index;

      // Find the first size greater than or equal to this size.

      if (size < avg && avg - size <= epsilon)
        index = newAvgIndex;
      else{
        typename ArrayRCP<scalar_t>::iterator found =
          std::lower_bound(sizeArray.begin(), sizeArray.end(), size);

        env_->localBugAssertion(__FILE__, __LINE__, "size array",
          found != sizeArray.end(), COMPLEX_ASSERTION);

        index = found - sizeArray.begin();
      }

      buf[id] = index;
      sum += allSizes[index];
    }

    for (int i=0; i < sizeArrayLen; i++){
      sizeArray[i] /= sum;
    }

    pCompactIndex_[widx] = partIdx;
    pSize_[widx] = sizeArray;
  }
  else{
    // To have access to part sizes, we must store nparts scalar_ts on
    // every process.  We expect this is a rare case.

    tmp = new scalar_t [nparts];
    env_->localMemoryAssertion(__FILE__, __LINE__, nparts, tmp);

    sum += ((nparts - len) * avg);

    for (int i=0; i < nparts; i++){
      tmp[i] = avg/sum;
    }

    for (int i=0; i < len; i++){
      tmp[ids[i]] = sizes[i]/sum;
    }

    pSize_[widx] = arcp(tmp, 0, nparts);
  }
}

template <typename Adapter>
  void PartitioningSolution<Adapter>::setParts(ArrayRCP<part_t> &partList)
{
  env_->debug(DETAILED_STATUS, "Entering setParts");

  size_t len = partList.size();

  // Find the actual number of parts in the solution, which can
  // be more or less than the nGlobalParts_ target.
  // (We may want to compute the imbalance of a given solution with
  // respect to a desired solution.  This solution may have more or
  // fewer parts that the desired solution.)

  part_t lMax = std::numeric_limits<part_t>::min(); 
  part_t lMin = std::numeric_limits<part_t>::max();
  part_t gMax, gMin;

  for (size_t i = 0; i < len; i++) {
    if (partList[i] < lMin) lMin = partList[i];
    if (partList[i] > lMax) lMax = partList[i];
  }
  Teuchos::reduceAll<int, part_t>(*comm_, Teuchos::REDUCE_MIN, 1, &lMin, &gMin);
  Teuchos::reduceAll<int, part_t>(*comm_, Teuchos::REDUCE_MAX, 1, &lMax, &gMax);

  nGlobalPartsSolution_ = gMax - gMin + 1;
  parts_ = partList;

  // Now determine which process gets each object, if not one-to-one.

  if (!onePartPerProc_){

    int *procs = new int [len];
    env_->localMemoryAssertion(__FILE__, __LINE__, len, procs);
    procs_ = arcp<int>(procs, 0, len);

    if (len > 0) {
      part_t *parts = partList.getRawPtr();
  
      if (procDist_.size() > 0){    // parts are not split across procs
  
        int procId;
        for (size_t i=0; i < len; i++){
          partToProcsMap(parts[i], procs[i], procId);
        }
      }
      else{  // harder - we need to split the parts across multiple procs
  
        lno_t *partCounter = new lno_t [nGlobalPartsSolution_];
        env_->localMemoryAssertion(__FILE__, __LINE__, nGlobalPartsSolution_,
          partCounter);
  
        int numProcs = comm_->getSize();
  
        //MD NOTE: there was no initialization for partCounter.
        //I added the line below, correct me if I am wrong.
        memset(partCounter, 0, sizeof(lno_t) * nGlobalPartsSolution_);
  
        for (typename ArrayRCP<part_t>::size_type i=0; i < partList.size(); i++)
          partCounter[parts[i]]++;
  
        lno_t *procCounter = new lno_t [numProcs];
        env_->localMemoryAssertion(__FILE__, __LINE__, numProcs, procCounter);
  
        int proc1;
        int proc2 = partDist_[0];
  
        for (part_t part=1; part < nGlobalParts_; part++){
          proc1 = proc2;
          proc2 = partDist_[part+1];
          int numprocs = proc2 - proc1;
  
          double dNum = partCounter[part];
          double dProcs = numprocs;
  
          //cout << "dNum:" << dNum << " dProcs:" << dProcs << endl;
          double each = floor(dNum/dProcs);
          double extra = fmod(dNum,dProcs);
  
          for (int proc=proc1, i=0; proc<proc2; proc++, i++){
            if (i < extra)
              procCounter[proc] = lno_t(each) + 1;
            else
              procCounter[proc] = lno_t(each);
          }
        }
  
        delete [] partCounter;
  
        for (typename ArrayRCP<part_t>::size_type i=0; i < partList.size(); i++){
          if (partList[i] >= nGlobalParts_){
            // Solution has more parts that targeted.  These
            // objects just remain on this process.
            procs[i] = comm_->getRank();
            continue;
          }
          part_t partNum = parts[i];
          proc1 = partDist_[partNum];
          proc2 = partDist_[partNum + 1];
  
          int proc;
          for (proc=proc1; proc < proc2; proc++){
            if (procCounter[proc] > 0){
              procs[i] = proc;
              procCounter[proc]--;
              break;
            }
          }
          env_->localBugAssertion(__FILE__, __LINE__, "part to proc",
            proc < proc2, COMPLEX_ASSERTION);
        }
  
        delete [] procCounter;
      }
    }
  }

  // Now that parts_ info is back on home process, remap the parts.
  // TODO:  The parts will be inconsistent with the proc assignments after
  // TODO:  remapping.  This problem will go away after we separate process
  // TODO:  mapping from setParts.  But for MueLu's use case, the part
  // TODO:  remapping is all that matters; they do not use the process mapping.
  int doRemap = 0;
  const Teuchos::ParameterEntry *pe =
                 env_->getParameters().getEntryPtr("remap_parts");
  if (pe) doRemap = pe->getValue(&doRemap);
  if (doRemap) RemapParts();

  haveSolution_ = true;

  env_->memory("After Solution has processed algorithm's answer");
  env_->debug(DETAILED_STATUS, "Exiting setParts");
}


template <typename Adapter>
  void PartitioningSolution<Adapter>::procToPartsMap(int procId,
    double &numParts, part_t &partMin, part_t &partMax) const
{
  if (onePartPerProc_){
    numParts = 1.0;
    partMin = partMax = procId;
  }
  else if (procDist_.size() > 0){
    partMin = procDist_[procId];
    partMax = procDist_[procId+1] - 1;
    numParts = procDist_[procId+1] - partMin;
  }
  else{
    // find the first p such that partDist_[p] > procId

    std::vector<int>::const_iterator entry;
    entry = std::upper_bound(partDist_.begin(), partDist_.end(), procId);

    size_t partIdx = entry - partDist_.begin();
    int numProcs = partDist_[partIdx] - partDist_[partIdx-1];
    partMin = partMax = int(partIdx) - 1;
    numParts = 1.0 / numProcs;
  }
}

template <typename Adapter>
  void PartitioningSolution<Adapter>::partToProcsMap(part_t partId,
    int &procMin, int &procMax) const
{
  if (partId >= nGlobalParts_){
    // setParts() may be given an initial solution which uses a
    // different number of parts than the desired solution.  It is
    // still a solution.  We keep it on this process.
    procMin = procMax = comm_->getRank();
  }
  else if (onePartPerProc_){
    procMin = procMax = int(partId);
  }
  else if (procDist_.size() > 0){
    if (procDistEquallySpread_) {
      // Avoid binary search.
      double fProcs = comm_->getSize();
      double fParts = nGlobalParts_;
      double each = fParts / fProcs;
      procMin = int(partId / each);
      while (procDist_[procMin] > partId) procMin--;
      while (procDist_[procMin+1] <= partId) procMin++;
      procMax = procMin;
    }
    else {
      // find the first p such that procDist_[p] > partId.
      // For now, do a binary search.

      typename std::vector<part_t>::const_iterator entry;
      entry = std::upper_bound(procDist_.begin(), procDist_.end(), partId);

      size_t procIdx = entry - procDist_.begin();
      procMin = procMax = int(procIdx) - 1;
    }
  }
  else{
    procMin = partDist_[partId];
    procMax = partDist_[partId+1] - 1;
  }
}

template <typename Adapter>
  bool PartitioningSolution<Adapter>::criteriaHaveSamePartSizes(
    int c1, int c2) const
{
  if (c1 < 0 || c1 >= nWeightsPerObj_ || c2 < 0 || c2 >= nWeightsPerObj_ )
    throw std::logic_error("criteriaHaveSamePartSizes error");

  bool theSame = false;

  if (c1 == c2)
    theSame = true;

  else if (pSizeUniform_[c1] == true && pSizeUniform_[c2] == true)
    theSame = true;

  else if (pCompactIndex_[c1].size() == pCompactIndex_[c2].size()){
    theSame = true;
    bool useIndex = pCompactIndex_[c1].size() > 0;
    if (useIndex){
      for (part_t p=0; theSame && p < nGlobalParts_; p++)
        if (pSize_[c1][pCompactIndex_[c1][p]] !=
            pSize_[c2][pCompactIndex_[c2][p]])
          theSame = false;
    }
    else{
      for (part_t p=0; theSame && p < nGlobalParts_; p++)
        if (pSize_[c1][p] != pSize_[c2][p])
          theSame = false;
    }
  }

  return theSame;
}

/*! \brief  Compute the assignment of parts to processes.
 *    \param doCheck  if true, do a global check to reconcile the
 *       numLocalParts and numGlobalParts values on all processes.
 *       If false, we assume numLocalParts and numGlobalParts are
 *       the same across processes.
 *   \param haveNumLocalParts true if this process set the num_local_parts
 *         parameter, false otherwise
 *   \param numLocalParts the number of local parts specified for this
 *        process as a parameter, if any
 *   \param haveNumGlobalParts true if this process set the num_global_parts
 *         parameter, false otherwise
 *   \param numGlobalParts the number of global parts specified by this
 *        process as a parameter, if any
 */

template <typename Adapter>
  void PartitioningSolution<Adapter>::partToProc(
    bool doCheck, bool haveNumLocalParts, bool haveNumGlobalParts,
    int numLocalParts, int numGlobalParts)
{
#ifdef _MSC_VER
	typedef SSIZE_T ssize_t;
#endif
  int nprocs = comm_->getSize();
  ssize_t reducevals[4];
  ssize_t sumHaveGlobal=0, sumHaveLocal=0;
  ssize_t sumGlobal=0, sumLocal=0;
  ssize_t maxGlobal=0, maxLocal=0;
  ssize_t vals[4] = {haveNumGlobalParts, haveNumLocalParts,
      numGlobalParts, numLocalParts};

  partDist_.clear();
  procDist_.clear();

  if (doCheck){

    try{
      reduceAll<int, ssize_t>(*comm_, Teuchos::REDUCE_SUM, 4, vals, reducevals);
    }
    Z2_THROW_OUTSIDE_ERROR(*env_);

    sumHaveGlobal = reducevals[0];
    sumHaveLocal = reducevals[1];
    sumGlobal = reducevals[2];
    sumLocal = reducevals[3];

    env_->localInputAssertion(__FILE__, __LINE__,
      "Either all procs specify num_global/local_parts or none do",
      (sumHaveGlobal == 0 || sumHaveGlobal == nprocs) &&
      (sumHaveLocal == 0 || sumHaveLocal == nprocs),
      BASIC_ASSERTION);
  }
  else{
    if (haveNumLocalParts)
      sumLocal = numLocalParts * nprocs;
    if (haveNumGlobalParts)
      sumGlobal = numGlobalParts * nprocs;

    sumHaveGlobal = haveNumGlobalParts ? nprocs : 0;
    sumHaveLocal = haveNumLocalParts ? nprocs : 0;

    maxLocal = numLocalParts;
    maxGlobal = numGlobalParts;
  }

  if (!haveNumLocalParts && !haveNumGlobalParts){
    onePartPerProc_ = true;   // default if user did not specify
    return;
  }

  if (haveNumGlobalParts){
    if (doCheck){
      vals[0] = numGlobalParts;
      vals[1] = numLocalParts;
      try{
        reduceAll<int, ssize_t>(
          *comm_, Teuchos::REDUCE_MAX, 2, vals, reducevals);
      }
      Z2_THROW_OUTSIDE_ERROR(*env_);

      maxGlobal = reducevals[0];
      maxLocal = reducevals[1];

      env_->localInputAssertion(__FILE__, __LINE__,
        "Value for num_global_parts is different on different processes.",
        maxGlobal * nprocs == sumGlobal, BASIC_ASSERTION);
    }

    if (sumLocal){
      env_->localInputAssertion(__FILE__, __LINE__,
        "Sum of num_local_parts does not equal requested num_global_parts",
        sumLocal == numGlobalParts, BASIC_ASSERTION);

      if (sumLocal == nprocs && maxLocal == 1){
        onePartPerProc_ = true;   // user specified one part per proc
        return;
      }
    }
    else{
      if (maxGlobal == nprocs){
        onePartPerProc_ = true;   // user specified num parts is num procs
        return;
      }
    }
  }

  // If we are here, we do not have #parts == #procs.

  if (sumHaveLocal == nprocs){
    //
    // We will go by the number of local parts specified.
    //

    try{
      procDist_.resize(nprocs+1);
    }
    catch (std::exception &e){
      throw(std::bad_alloc());
    }

    part_t *procArray = &procDist_[0];

    try{
      part_t tmp = part_t(numLocalParts);
      gatherAll<int, part_t>(*comm_, 1, &tmp, nprocs, procArray + 1);
    }
    Z2_THROW_OUTSIDE_ERROR(*env_);

    procArray[0] = 0;

    for (int proc=0; proc < nprocs; proc++)
      procArray[proc+1] += procArray[proc];
  }
  else{
    //
    // We will allocate global number of parts to the processes.
    //
    double fParts = numGlobalParts;
    double fProcs = nprocs;

    if (fParts < fProcs){

      try{
        partDist_.resize(size_t(fParts+1));
      }
      catch (std::exception &e){
        throw(std::bad_alloc());
      }

      int *partArray = &partDist_[0];

      double each = floor(fProcs / fParts);
      double extra = fmod(fProcs, fParts);
      partDist_[0] = 0;

      for (part_t part=0; part < numGlobalParts; part++){
        int numOwners = int(each + ((part<extra) ? 1 : 0));
        partArray[part+1] = partArray[part] + numOwners;
      }

      env_->globalBugAssertion(__FILE__, __LINE__, "#parts != #procs",
        partDist_[numGlobalParts] == nprocs, COMPLEX_ASSERTION, comm_);
    }
    else if (fParts > fProcs){

      // User did not specify local number of parts per proc;
      // Distribute the parts evenly among the procs.

      procDistEquallySpread_ = true;

      try{
        procDist_.resize(size_t(fProcs+1));
      }
      catch (std::exception &e){
        throw(std::bad_alloc());
      }

      part_t *procArray = &procDist_[0];

      double each = floor(fParts / fProcs);
      double extra = fmod(fParts, fProcs);
      procArray[0] = 0;

      for (int proc=0; proc < nprocs; proc++){
        part_t numParts = part_t(each + ((proc<extra) ? 1 : 0));
        procArray[proc+1] = procArray[proc] + numParts;
      }

      env_->globalBugAssertion(__FILE__, __LINE__, "#parts != #procs",
        procDist_[nprocs] == numGlobalParts, COMPLEX_ASSERTION, comm_);
    }
    else{
      env_->globalBugAssertion(__FILE__, __LINE__,
        "should never get here", 1, COMPLEX_ASSERTION, comm_);
    }
  }
}

////////////////////////////////////////////////////////////////////
// Remap a new part assignment vector for maximum overlap with an input
// part assignment.
//
// Assumptions for this version:
//   input part assignment == processor rank for every local object.
//   assuming nGlobalParts_ <= num ranks
// TODO:  Write a version that takes the input part number as input;
//        this change requires input parts in adapters to be provided in
//        the Adapter.
// TODO:  For repartitioning, compare to old remapping results; see Zoltan1.

template <typename Adapter>
void PartitioningSolution<Adapter>::RemapParts()
{
  size_t len = parts_.size();

  part_t me = comm_->getRank();
  int np = comm_->getSize();

  if (np < nGlobalParts_) {
    if (me == 0)
      std::cout << "Remapping not yet supported for "
           << "num_global_parts " << nGlobalParts_
           << " > num procs " << np << std::endl;
    return;
  }
  // Build edges of a bipartite graph with np + nGlobalParts_ vertices,
  // and edges between a process vtx and any parts to which that process'
  // objects are assigned.
  // Weight edge[parts_[i]] by the number of objects that are going from
  // this rank to parts_[i].
  // We use a std::map, assuming the number of unique parts in the parts_ array
  // is small to keep the binary search efficient.
  // TODO We use the count of objects to move; should change to SIZE of objects
  // to move; need SIZE function in Adapter.

  std::map<part_t, long> edges;
  long lstaying = 0;  // Total num of local objects staying if we keep the
                      // current mapping. TODO:  change to SIZE of local objs
  long gstaying = 0;  // Total num of objects staying in the current partition

  for (size_t i = 0; i < len; i++) {
    edges[parts_[i]]++;                // TODO Use obj size instead of count
    if (parts_[i] == me) lstaying++;    // TODO Use obj size instead of count
  }

  Teuchos::reduceAll<int, long>(*comm_, Teuchos::REDUCE_SUM, 1,
                                &lstaying, &gstaying);
//TODO  if (gstaying == Adapter::getGlobalNumObjs()) return;  // Nothing to do

  part_t *remap = NULL;

  int nedges = edges.size();

  // Gather the graph to rank 0.
  part_t tnVtx = np + nGlobalParts_;  // total # vertices
  int *idx = NULL;    // Pointer index into graph adjacencies
  int *sizes = NULL;  // nedges per rank
  if (me == 0) {
    idx = new int[tnVtx+1];
    sizes = new int[np];
    sizes[0] = nedges;
  }
  if (np > 1)
    Teuchos::gather<int, int>(&nedges, 1, sizes, 1, 0, *comm_);

  // prefix sum to build the idx array
  if (me == 0) {
    idx[0] = 0;
    for (int i = 0; i < np; i++)
      idx[i+1] = idx[i] + sizes[i];
  }

  // prepare to send edges
  int cnt = 0;
  part_t *bufv = NULL;
  long *bufw = NULL;
  if (nedges) {
    bufv = new part_t[nedges];
    bufw = new long[nedges];
    // Create buffer with edges (me, part[i]) and weight edges[parts_[i]].
    for (typename std::map<part_t, long>::iterator it = edges.begin();
         it != edges.end(); it++) {
      bufv[cnt] = it->first;  // target part
      bufw[cnt] = it->second; // weight
      cnt++;
    }
  }

  // Prepare to receive edges on rank 0
  part_t *adj = NULL;
  long *wgt = NULL;
  if (me == 0) {
//SYM    adj = new part_t[2*idx[np]];  // need 2x space to symmetrize later
//SYM    wgt = new long[2*idx[np]];  // need 2x space to symmetrize later
    adj = new part_t[idx[np]];
    wgt = new long[idx[np]];
  }

  Teuchos::gatherv<int, part_t>(bufv, cnt, adj, sizes, idx, 0, *comm_);
  Teuchos::gatherv<int, long>(bufw, cnt, wgt, sizes, idx, 0, *comm_);
  delete [] bufv;
  delete [] bufw;

  // Now have constructed graph on rank 0.
  // Call the matching algorithm

  int doRemap;
  if (me == 0) {
    // We have the "LHS" vertices of the bipartite graph; need to create
    // "RHS" vertices.
    for (int i = 0; i < idx[np]; i++) {
      adj[i] += np;  // New RHS vertex number; offset by num LHS vertices
    }

    // Build idx for RHS vertices
    for (part_t i = np; i < tnVtx; i++) {
      idx[i+1] = idx[i];  // No edges for RHS vertices
    }

#ifdef KDDKDD_DEBUG
    cout << "IDX ";
    for (part_t i = 0; i <= tnVtx; i++) std::cout << idx[i] << " ";
    std::cout << std::endl;

    std::cout << "ADJ ";
    for (part_t i = 0; i < idx[tnVtx]; i++) std::cout << adj[i] << " ";
    std::cout << std::endl;

    std::cout << "WGT ";
    for (part_t i = 0; i < idx[tnVtx]; i++) std::cout << wgt[i] << " ";
    std::cout << std::endl;
#endif

    // Perform matching on the graph
    part_t *match = new part_t[tnVtx];
    for (part_t i = 0; i < tnVtx; i++) match[i] = i;
    part_t nmatches =
             Zoltan2::GreedyMWM<part_t, long>(idx, adj, wgt, tnVtx, match);

#ifdef KDDKDD_DEBUG
    std::cout << "After matching:  " << nmatches << " found" << std::endl;
    for (part_t i = 0; i < tnVtx; i++)
      std::cout << "match[" << i << "] = " << match[i]
           << ((match[i] != i &&
               (i < np && match[i] != i+np))
                  ? " *" : " ")
           << std::endl;
#endif

    // See whether there were nontrivial changes in the matching.
    bool nontrivial = false;
    if (nmatches) {
      for (part_t i = 0; i < np; i++) {
        if ((match[i] != i) && (match[i] != (i+np))) {
          nontrivial = true;
          break;
        }
      }
    }

    // Process the matches
    if (nontrivial) {
      remap = new part_t[nGlobalParts_];
      for (part_t i = 0; i < nGlobalParts_; i++) remap[i] = -1;

      bool *used = new bool[np];
      for (part_t i = 0; i < np; i++) used[i] = false;

      // First, process all matched parts
      for (part_t i = 0; i < nGlobalParts_; i++) {
        part_t tmp = i + np;
        if (match[tmp] != tmp) {
          remap[i] = match[tmp];
          used[match[tmp]] = true;
        }
      }

      // Second, process unmatched parts; keep same part number if possible
      for (part_t i = 0; i < nGlobalParts_; i++) {
        if (remap[i] > -1) continue;
        if (!used[i]) {
          remap[i] = i;
          used[i] = true;
        }
      }

      // Third, process unmatched parts; give them the next unused part
      for (part_t i = 0, uidx = 0; i < nGlobalParts_; i++) {
        if (remap[i] > -1) continue;
        while (used[uidx]) uidx++;
        remap[i] = uidx;
        used[uidx] = true;
      }
      delete [] used;
    }
    delete [] match;

#ifdef KDDKDD_DEBUG
    cout << "Remap vector: ";
    for (part_t i = 0; i < nGlobalParts_; i++) cout << remap[i] << " ";
    std::cout << std::endl;
#endif

    long newgstaying = measure_stays(remap, idx, adj, wgt,
                                                      nGlobalParts_, np);
    doRemap = (newgstaying > gstaying);
    std::cout << "gstaying " << gstaying << " measure(input) "
         << measure_stays(NULL, idx, adj, wgt, nGlobalParts_, np)
         << " newgstaying " << newgstaying
         << " nontrivial " << nontrivial
         << " doRemap " << doRemap << std::endl;
  }
  delete [] idx;
  delete [] sizes;
  delete [] adj;
  delete [] wgt;

  Teuchos::broadcast<int, int>(*comm_, 0, 1, &doRemap);

  if (doRemap) {
    if (me != 0) remap = new part_t[nGlobalParts_];
    Teuchos::broadcast<int, part_t>(*comm_, 0, nGlobalParts_, remap);
    for (size_t i = 0; i < len; i++) {
      parts_[i] = remap[parts_[i]];
    }
  }

  delete [] remap;  // TODO May want to keep for repartitioning as in Zoltan
}


}  // namespace Zoltan2

#endif