/usr/include/tulip/GlCatmullRomCurve.h is in libtulip-dev 4.8.0dfsg-2+b7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | /*
*
* This file is part of Tulip (www.tulip-software.org)
*
* Authors: David Auber and the Tulip development Team
* from LaBRI, University of Bordeaux
*
* Tulip is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Tulip is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
*/
#ifndef GLCATMULLROMCURVE_H_
#define GLCATMULLROMCURVE_H_
#include <vector>
#include <tulip/AbstractGlCurve.h>
namespace tlp {
/**
* @ingroup OpenGL
* @brief A class to draw a Catmull-Rom curve
*
* This class allow to draw a Catmull-Rom curve, a smooth curve which passes through all its control points.
* Catmull-Rom splines are a family of cubic interpolating splines formulated such that the tangent at each
* control point is calculated using the previous and next control point point of the spline.
* Catmull-Rom splines have C^1 continuity, local control, and interpolation, but do not lie within the convex
* hull of their control points.
*/
class TLP_GL_SCOPE GlCatmullRomCurve : public AbstractGlCurve {
enum ParameterizationType {UNIFORM, CHORD_LENGTH, CENTRIPETAL};
public :
GlCatmullRomCurve();
/**
* @brief GlCatmullRomCurve constructor
*
* @param controlPoints a vector of control points (size must be greater or equal to 4)
* @param startColor the color at the start of the curve
* @param endColor the color at the end of the curve
* @param startSize the width at the start of the curve
* @param endSize the width at the end of the curve
* @param closedCurve if true, the curve will be closed and a bezier segment will be drawn between the last and first control point
* @param paramType curve parameterization type (GlCatmullRomCurve::UNIFORM | GlCatmullRomCurve::CENTRIPETAL | GlCatmullRomCurve::CHORD_LENGTH (default))
* @param nbCurvePoints the number of curve points to generate
*/
GlCatmullRomCurve(const std::vector<Coord> &controlPoints, const Color &startColor, const Color &endColor,
const float startSize, const float endSize, const bool closedCurve = false,
const unsigned int nbCurvePoints = 200, const ParameterizationType paramType = CENTRIPETAL);
~GlCatmullRomCurve();
void setParameterizationType(const ParameterizationType paramType) {
this->paramType = paramType;
}
void drawCurve(std::vector<Coord> &controlPoints, const Color &startColor, const Color &endColor, const float startSize, const float endSize, const unsigned int nbCurvePoints=200);
void setClosedCurve(const bool closedCurve) {
this->closedCurve = closedCurve;
}
protected :
void setCurveVertexShaderRenderingSpecificParameters();
Coord computeCurvePointOnCPU(const std::vector<Coord> &controlPoints, float t);
void computeCurvePointsOnCPU(const std::vector<Coord> &controlPoints, std::vector<Coord> &curvePoints, unsigned int nbCurvePoints);
private :
bool closedCurve;
float totalLength;
float alpha;
ParameterizationType paramType;
};
}
#endif /* GLCATMULLROMCURVE_H_ */
|