This file is indexed.

/usr/include/intervaltree/IntervalTree.h is in libvcflib-dev 1.0.0~rc1+dfsg1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#ifndef __INTERVAL_TREE_H
#define __INTERVAL_TREE_H

#include <vector>
#include <algorithm>
#include <iostream>
#include <memory>

template <class T, typename K = std::size_t>
class Interval {
public:
    K start;
    K stop;
    T value;
    Interval(K s, K e, const T& v)
        : start(s)
        , stop(e)
        , value(v)
    { }
};

template <class T, typename K>
K intervalStart(const Interval<T,K>& i) {
    return i.start;
}

template <class T, typename K>
K intervalStop(const Interval<T,K>& i) {
    return i.stop;
}

template <class T, typename K>
  std::ostream& operator<<(std::ostream& out, Interval<T,K>& i) {
    out << "Interval(" << i.start << ", " << i.stop << "): " << i.value;
    return out;
}

template <class T, typename K = std::size_t>
class IntervalStartSorter {
public:
    bool operator() (const Interval<T,K>& a, const Interval<T,K>& b) {
        return a.start < b.start;
    }
};

template <class T, typename K = std::size_t>
class IntervalTree {

public:
    typedef Interval<T,K> interval;
    typedef std::vector<interval> intervalVector;
    typedef IntervalTree<T,K> intervalTree;

    intervalVector intervals;
    std::unique_ptr<intervalTree> left;
    std::unique_ptr<intervalTree> right;
    K center;

    IntervalTree<T,K>(void)
        : left(nullptr)
        , right(nullptr)
        , center(0)
    { }

private:
    std::unique_ptr<intervalTree> copyTree(const intervalTree& orig){
        return std::unique_ptr<intervalTree>(new intervalTree(orig));
    }
public:

    IntervalTree<T,K>(const intervalTree& other)
    :   intervals(other.intervals),
        left(other.left ? copyTree(*other.left) : nullptr),
        right(other.right ? copyTree(*other.right) : nullptr),
        center(other.center)
    {
    }

public:

    IntervalTree<T,K>& operator=(const intervalTree& other) {
        center = other.center;
        intervals = other.intervals;
        left = other.left ? copyTree(*other.left) : nullptr;
        right = other.right ? copyTree(*other.right) : nullptr;
        return *this;
    }

    // Note: changes the order of ivals
    IntervalTree<T,K>(
            intervalVector& ivals,
            std::size_t depth = 16,
            std::size_t minbucket = 64,
            K leftextent = 0,
            K rightextent = 0,
            std::size_t maxbucket = 512
            )
        : left(nullptr)
        , right(nullptr)
    {

        --depth;
        IntervalStartSorter<T,K> intervalStartSorter;
        if (depth == 0 || (ivals.size() < minbucket && ivals.size() < maxbucket)) {
            std::sort(ivals.begin(), ivals.end(), intervalStartSorter);
            intervals = ivals;
        } else {
            if (leftextent == 0 && rightextent == 0) {
                // sort intervals by start
              std::sort(ivals.begin(), ivals.end(), intervalStartSorter);
            }

            K leftp = 0;
            K rightp = 0;
            K centerp = 0;

            if (leftextent || rightextent) {
                leftp = leftextent;
                rightp = rightextent;
            } else {
                leftp = ivals.front().start;
                std::vector<K> stops;
                stops.resize(ivals.size());
                transform(ivals.begin(), ivals.end(), stops.begin(), intervalStop<T,K>);
                rightp = *max_element(stops.begin(), stops.end());
            }

            //centerp = ( leftp + rightp ) / 2;
            centerp = ivals.at(ivals.size() / 2).start;
            center = centerp;

            intervalVector lefts;
            intervalVector rights;

            for (typename intervalVector::const_iterator i = ivals.begin(); i != ivals.end(); ++i) {
                const interval& interval = *i;
                if (interval.stop < center) {
                    lefts.push_back(interval);
                } else if (interval.start > center) {
                    rights.push_back(interval);
                } else {
                    intervals.push_back(interval);
                }
            }

            if (!lefts.empty()) {
                left = std::unique_ptr<intervalTree>(new intervalTree(lefts, depth, minbucket, leftp, centerp));
            }
            if (!rights.empty()) {
                right = std::unique_ptr<intervalTree>(new intervalTree(rights, depth, minbucket, centerp, rightp));
            }
        }
    }

    intervalVector findOverlapping(K start, K stop) const {
	intervalVector ov;
	this->findOverlapping(start, stop, ov);
	return ov;
    }

    void findOverlapping(K start, K stop, intervalVector& overlapping) const {
        if (!intervals.empty() && ! (stop < intervals.front().start)) {
            for (typename intervalVector::const_iterator i = intervals.begin(); i != intervals.end(); ++i) {
                const interval& interval = *i;
                if (interval.stop >= start && interval.start <= stop) {
                    overlapping.push_back(interval);
                }
            }
        }

        if (left && start <= center) {
            left->findOverlapping(start, stop, overlapping);
        }

        if (right && stop >= center) {
            right->findOverlapping(start, stop, overlapping);
        }

    }

    intervalVector findContained(K start, K stop) const {
	intervalVector contained;
	this->findContained(start, stop, contained);
	return contained;
    }

    void findContained(K start, K stop, intervalVector& contained) const {
        if (!intervals.empty() && ! (stop < intervals.front().start)) {
            for (typename intervalVector::const_iterator i = intervals.begin(); i != intervals.end(); ++i) {
                const interval& interval = *i;
                if (interval.start >= start && interval.stop <= stop) {
                    contained.push_back(interval);
                }
            }
        }

        if (left && start <= center) {
            left->findContained(start, stop, contained);
        }

        if (right && stop >= center) {
            right->findContained(start, stop, contained);
        }

    }

    ~IntervalTree(void) = default;

};

#endif