This file is indexed.

/usr/include/vl/mathop.h is in libvlfeat-dev 0.9.20+dfsg0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/** @file mathop.h
 ** @brief Math operations (@ref mathop)
 ** @author Andrea Vedaldi, David Novotny
 **/

/*
Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.
All rights reserved.

This file is part of the VLFeat library and is made available under
the terms of the BSD license (see the COPYING file).
*/

#ifndef VL_MATHOP_H
#define VL_MATHOP_H

#include "generic.h"
#include <math.h>
#include <float.h>

/** @brief Euler constant*/
#define VL_E 2.718281828459045

/** @brief Logarithm of 2 (math constant)*/
#define VL_LOG_OF_2 0.693147180559945

/** @brief Pi (math constant) */
#define VL_PI 3.141592653589793

/** @brief IEEE single precision epsilon (math constant)
 **
 ** <code>1.0F + VL_EPSILON_F</code> is the smallest representable
 ** single precision number greater than @c 1.0F. Numerically,
 ** ::VL_EPSILON_F is equal to @f$ 2^{-23} @f$.
 **
 **/
#define VL_EPSILON_F 1.19209290E-07F

/** @brief IEEE double precision epsilon (math constant)
 **
 ** <code>1.0 + VL_EPSILON_D</code> is the smallest representable
 ** double precision number greater than @c 1.0. Numerically,
 ** ::VL_EPSILON_D is equal to @f$ 2^{-52} @f$.
 **/
#define VL_EPSILON_D 2.220446049250313e-16

/*
   For the code below: An ANSI C compiler takes the two expressions,
   LONG_VAR and CHAR_VAR, and implicitly casts them to the type of the
   first member of the union. Refer to K&R Second Edition Page 148,
   last paragraph.
*/

/** @internal @brief IEEE single precision quiet NaN constant */
static union { vl_uint32 raw ; float value ; }
  const vl_nan_f =
    { 0x7FC00000UL } ;

/** @internal @brief IEEE single precision infinity constant */
static union { vl_uint32 raw ; float value ; }
  const vl_infinity_f =
    { 0x7F800000UL } ;

/** @internal @brief IEEE double precision quiet NaN constant */
static union { vl_uint64 raw ; double value ; }
  const vl_nan_d =
#ifdef VL_COMPILER_MSC
    { 0x7FF8000000000000ui64 } ;
#else
    { 0x7FF8000000000000ULL } ;
#endif

/** @internal @brief IEEE double precision infinity constant */
static union { vl_uint64 raw ; double value ; }
  const vl_infinity_d =
#ifdef VL_COMPILER_MSC
    { 0x7FF0000000000000ui64 } ;
#else
    { 0x7FF0000000000000ULL } ;
#endif

/** @brief IEEE single precision NaN (not signaling) */
#define VL_NAN_F (vl_nan_f.value)

/** @brief IEEE single precision positive infinity (not signaling) */
#define VL_INFINITY_F (vl_infinity_f.value)

/** @brief IEEE double precision NaN (not signaling) */
#define VL_NAN_D (vl_nan_d.value)

/** @brief IEEE double precision positive infinity (not signaling) */
#define VL_INFINITY_D (vl_infinity_d.value)

/* ---------------------------------------------------------------- */

/** @brief Fast <code>mod(x, 2 * VL_PI)</code>
 **
 ** @param x input value.
 ** @return <code>mod(x, 2 * VL_PI)</code>
 **
 ** The function is optimized for small absolute values of @a x.
 **
 ** The result is guaranteed to be not smaller than 0. However, due to
 ** finite numerical precision and rounding errors, the result can be
 ** equal to 2 * VL_PI (for instance, if @c x is a very small negative
 ** number).
 **/

VL_INLINE float
vl_mod_2pi_f (float x)
{
  while (x > (float)(2 * VL_PI)) x -= (float) (2 * VL_PI) ;
  while (x < 0.0F) x += (float) (2 * VL_PI);
  return x ;
}

/** @brief Fast <code>mod(x, 2 * VL_PI)</code>
 ** @see vl_mod_2pi_f
 **/

VL_INLINE double
vl_mod_2pi_d (double x)
{
  while (x > 2.0 * VL_PI) x -= 2 * VL_PI ;
  while (x < 0.0) x += 2 * VL_PI ;
  return x ;
}

/** @brief Floor and convert to integer
 ** @param x argument.
 ** @return Similar to @c (int) floor(x)
 **/

VL_INLINE long int
vl_floor_f (float x)
{
  long int xi = (long int) x ;
  if (x >= 0 || (float) xi == x) return xi ;
  else return xi - 1 ;
}

/** @brief Floor and convert to integer
 ** @see vl_floor_f
 **/

VL_INLINE long int
vl_floor_d (double x)
{
  long int xi = (long int) x ;
  if (x >= 0 || (double) xi == x) return xi ;
  else return xi - 1 ;
}

/** @brief Ceil and convert to integer
 ** @param x argument.
 ** @return @c lceilf(x)
 **/

VL_INLINE long int
vl_ceil_f (float x)
{
#ifdef VL_COMPILER_GNUC
  return (long int) __builtin_ceilf(x) ;
#else
  return (long int) ceilf(x) ;
#endif
}

/** @brief Ceil and convert to integer
 ** @see vl_ceil_f
 **/

VL_INLINE long int
vl_ceil_d (double x)
{
#ifdef VL_COMPILER_GNUC
  return __builtin_ceil(x) ;
#else
  return (long int) ceil(x) ;
#endif
}

/** @brief Round
 ** @param x argument.
 ** @return @c lroundf(x)
 ** This function is either the same or similar to C99 @c lroundf().
 **/

VL_INLINE long int
vl_round_f (float x)
{
#ifdef VL_COMPILER_GNUC
  return __builtin_lroundf(x) ;
#elif VL_COMPILER_MSC
  if (x >= 0.0F) {
    return vl_floor_f(x + 0.5F) ;
  } else {
    return vl_ceil_f(x - 0.5F) ;
  }
#else
  return lroundf(x) ;
#endif
}

/** @brief Round
 ** @param x argument.
 ** @return @c lround(x)
 ** This function is either the same or similar to C99 @c lround().
 **/

VL_INLINE long int
vl_round_d (double x)
{
#ifdef VL_COMPILER_GNUC
  return __builtin_lround(x) ;
#elif VL_COMPILER_MSC
  if (x >= 0.0) {
    return vl_floor_d(x + 0.5) ;
  } else {
    return vl_ceil_d(x - 0.5) ;
  }
#else
  return lround(x) ;
#endif
}

/** @brief Fast @c abs(x)
 ** @param x argument.
 ** @return @c abs(x)
 **/

VL_INLINE float
vl_abs_f (float x)
{
#ifdef VL_COMPILER_GNUC
  return __builtin_fabsf (x) ;
#else
  return fabsf(x) ;
#endif
}

/** @brief Fast @c abs(x)
 ** @sa vl_abs_f
 **/

VL_INLINE double
vl_abs_d (double x)
{
#ifdef VL_COMPILER_GNUC
  return __builtin_fabs (x) ;
#else
  return fabs(x) ;
#endif
}

/** @brief Base-2 logaritghm
 ** @param x argument.
 ** @return @c log(x).
 **/

VL_INLINE double
vl_log2_d (double x)
{
#ifdef VL_COMPILER_GNUC
  return __builtin_log2(x) ;
#elif VL_COMPILER_MSC
  return log(x) / 0.693147180559945 ;
#else
  return log2(x) ;
#endif
}

/** @copydoc vl_log2_d */
VL_INLINE float
vl_log2_f (float x)
{
#ifdef VL_COMPILER_GNUC
  return __builtin_log2f (x) ;
#elif VL_COMPILER_MSC
  return logf(x) / 0.6931472F ;
#else
  return log2(x) ;
#endif
}

/** @brief Square root.
 ** @param x argument.
 ** @return @c sqrt(x).
 **/

VL_INLINE double
vl_sqrt_d (double x)
{
#ifdef VL_COMPILER_GNUC
  return __builtin_sqrt(x) ;
#else
  return sqrt(x) ;
#endif
}

/** @copydoc vl_sqrt_d */
VL_INLINE float
vl_sqrt_f (float x)
{
#ifdef VL_COMPILER_GNUC
  return __builtin_sqrtf(x) ;
#else
  return sqrtf(x) ;
#endif
}


/** @brief Check whether a floating point value is NaN
 ** @param x argument.
 ** @return true if @a x is NaN.
 **/
VL_INLINE vl_bool
vl_is_nan_f (float x)
{
#ifdef VL_COMPILER_GNUC
  return __builtin_isnan (x) ;
#elif VL_COMPILER_MSC
  return _isnan(x) ;
#else
  return isnan(x) ;
#endif
}

/** @copydoc vl_is_nan_f */
VL_INLINE vl_bool
vl_is_nan_d (double x)
{
#ifdef VL_COMPILER_GNUC
  return __builtin_isnan (x) ;
#elif VL_COMPILER_MSC
  return _isnan(x) ;
#else
  return isnan(x) ;
#endif
}

/** @brief Check whether a floating point value is infinity
 ** @param x argument.
 ** @return true if @a x is infinity.
 **/
VL_INLINE vl_bool
vl_is_inf_f (float x)
{
#ifdef VL_COMPILER_GNUC
  return __builtin_isinf (x) ;
#elif VL_COMPILER_MSC
  return ! _finite(x) ;
#else
  return isinf(x) ;
#endif
}

/** @copydoc vl_is_inf_f */
VL_INLINE vl_bool
vl_is_inf_d (double x)
{
#ifdef VL_COMPILER_GNUC
  return __builtin_isinf (x) ;
#elif VL_COMPILER_MSC
  return ! _finite(x) ;
#else
  return isinf(x) ;
#endif
}

/** ------------------------------------------------------------------
 ** @brief Fast @c atan2 approximation
 ** @param y argument.
 ** @param x argument.
 **
 ** The function computes a relatively rough but fast approximation of
 ** @c atan2(y,x).
 **
 ** @par Algorithm
 **
 ** The algorithm approximates the function @f$ f(r)=atan((1-r)/(1+r))
 ** @f$, @f$ r \in [-1,1] @f$ with a third order polynomial @f$
 ** f(r)=c_0 + c_1 r + c_2 r^2 + c_3 r^3 @f$.  To fit the polynomial
 ** we impose the constraints
 **
 ** @f{eqnarray*}
 ** f(+1) &=& c_0 + c_1 + c_2 + c_3  = atan(0)       = 0,\\
 ** f(-1) &=& c_0 - c_1 + c_2 - c_3  = atan(\infty)  = \pi/2,\\
 ** f(0)  &=& c_0                    = atan(1)       = \pi/4.
 ** @f}
 **
 ** The last degree of freedom is fixed by minimizing the @f$
 ** l^{\infty} @f$ error, which yields
 **
 ** @f[
 ** c_0=\pi/4, \quad
 ** c_1=-0.9675, \quad
 ** c_2=0, \quad
 ** c_3=0.1821,
 ** @f]
 **
 ** with maximum error of 0.0061 radians at 0.35 degrees.
 **
 ** @return Approximation of @c atan2(y,x).
 **/

VL_INLINE float
vl_fast_atan2_f (float y, float x)
{
  float angle, r ;
  float const c3 = 0.1821F ;
  float const c1 = 0.9675F ;
  float abs_y    = vl_abs_f (y) + VL_EPSILON_F ;

  if (x >= 0) {
    r = (x - abs_y) / (x + abs_y) ;
    angle = (float) (VL_PI / 4) ;
  } else {
    r = (x + abs_y) / (abs_y - x) ;
    angle = (float) (3 * VL_PI / 4) ;
  }
  angle += (c3*r*r - c1) * r ;
  return (y < 0) ? - angle : angle ;
}

/** @brief Fast @c atan2 approximation
 ** @sa vl_fast_atan2_f
 **/

VL_INLINE double
vl_fast_atan2_d (double y, double x)
{
  double angle, r ;
  double const c3 = 0.1821 ;
  double const c1 = 0.9675 ;
  double abs_y = vl_abs_d (y) + VL_EPSILON_D ;

  if (x >= 0) {
    r = (x - abs_y) / (x + abs_y) ;
    angle = VL_PI / 4 ;
  } else {
    r = (x + abs_y) / (abs_y - x) ;
    angle = 3 * VL_PI / 4 ;
  }
  angle += (c3*r*r - c1) * r ;
  return (y < 0) ? - angle : angle ;
}

/** ------------------------------------------------------------------
 ** @brief Fast @c resqrt approximation
 ** @param x argument.
 ** @return approximation of @c resqrt(x).
 **
 ** The function quickly computes an approximation of @f$ x^{-1/2}
 ** @f$.
 **
 ** @par Algorithm
 **
 ** The goal is to compute @f$ y = x^{-1/2} @f$, which we do by
 ** finding the solution of @f$ 0 = f(y) = y^{-2} - x @f$ by two Newton
 ** steps. Each Newton iteration is given by
 **
 ** @f[
 **   y \leftarrow
 **   y - \frac{f(y)}{\frac{df(y)}{dy}} =
 **   y + \frac{1}{2} (y-xy^3) =
 **   \frac{y}{2} \left( 3 - xy^2 \right)
 ** @f]
 **
 ** which yields a simple polynomial update rule.
 **
 ** The clever bit (attributed to either J. Carmack or G. Tarolli) is
 ** the way an initial guess @f$ y \approx x^{-1/2} @f$ is chosen.
 **
 ** @see <a href="http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf">Inverse Sqare Root</a>.
 **
 **/

VL_INLINE float
vl_fast_resqrt_f (float x)
{
  /* 32-bit version */
  union {
    float x ;
    vl_int32  i ;
  } u ;

  float xhalf = (float) 0.5 * x ;

  /* convert floating point value in RAW integer */
  u.x = x ;

  /* gives initial guess y0 */
  u.i = 0x5f3759df - (u.i >> 1);
  /*u.i = 0xdf59375f - (u.i>>1);*/

  /* two Newton steps */
  u.x = u.x * ( (float) 1.5  - xhalf*u.x*u.x) ;
  u.x = u.x * ( (float) 1.5  - xhalf*u.x*u.x) ;
  return u.x ;
}

/** @brief Fast @c resqrt approximation
 ** @sa vl_fast_resqrt_d
 **/

VL_INLINE double
vl_fast_resqrt_d (double x)
{
  /* 64-bit version */
  union {
    double x ;
    vl_int64  i ;
  } u ;

  double xhalf = (double) 0.5 * x ;

  /* convert floating point value in RAW integer */
  u.x = x ;

  /* gives initial guess y0 */
#ifdef VL_COMPILER_MSC
  u.i = 0x5fe6ec85e7de30dai64 - (u.i >> 1) ;
#else
  u.i = 0x5fe6ec85e7de30daLL - (u.i >> 1) ;
#endif

  /* two Newton steps */
  u.x = u.x * ( (double) 1.5  - xhalf*u.x*u.x) ;
  u.x = u.x * ( (double) 1.5  - xhalf*u.x*u.x) ;
  return u.x ;
}

/** ------------------------------------------------------------------
 ** @brief Fast @c sqrt approximation
 ** @param x argument.
 ** @return approximation of @c sqrt(x).
 **
 ** The function uses ::vl_fast_resqrt_f
 ** (or ::vl_fast_resqrt_d) to compute <code>x *
 ** vl_fast_resqrt_f(x)</code>.
 **/

VL_INLINE float
vl_fast_sqrt_f (float x)
{
  return (x < 1e-8) ? 0 : x * vl_fast_resqrt_f (x) ;
}

/** @brief Fast @c sqrt approximation
 ** @copydoc vl_fast_sqrt_f
 **/

VL_INLINE double
vl_fast_sqrt_d (float x)
{
  return (x < 1e-8) ? 0 : x * vl_fast_resqrt_d (x) ;
}

/** @brief Fast integer @c sqrt approximation
 ** @param x non-negative integer.
 ** @return largest integer $y$ such that $y^2 \leq x$.
 ** @sa @ref mathop-sqrti "Algorithm"
 **/
VL_INLINE vl_uint64 vl_fast_sqrt_ui64 (vl_uint64 x) ;

/** @brief Fast @c sqrt approximation
 ** @copydoc vl_fast_sqrt_ui64 */
VL_INLINE vl_uint32 vl_fast_sqrt_ui32 (vl_uint32 x) ;

/** @brief Fast @c sqrt approximation
 ** @copydoc vl_fast_sqrt_ui64 */
VL_INLINE vl_uint16 vl_fast_sqrt_ui16 (vl_uint16 x) ;

/** @brief Fast @c sqrt approximation
 ** @copydoc vl_fast_sqrt_ui64 */
VL_INLINE vl_uint8  vl_fast_sqrt_ui8  (vl_uint8  x) ;

#define VL_FAST_SQRT_UI(T,SFX)                                       \
VL_INLINE T                                                          \
vl_fast_sqrt_ ## SFX (T x)                                           \
{                                                                    \
  T y = 0 ;                                                          \
  T tmp = 0 ;                                                        \
  int twice_k ;                                                      \
  for (twice_k = 8 * sizeof(T) - 2 ;                                 \
       twice_k >= 0 ; twice_k -= 2) {                                \
    y <<= 1 ; /* y = 2 * y */                                        \
    tmp = (2*y + 1) << twice_k ;                                     \
    if (x >= tmp) {                                                  \
      x -= tmp ;                                                     \
      y += 1 ;                                                       \
    }                                                                \
  }                                                                  \
  return y ;                                                         \
}

VL_FAST_SQRT_UI(vl_uint64,ui64)
VL_FAST_SQRT_UI(vl_uint32,ui32)
VL_FAST_SQRT_UI(vl_uint16,ui16)
VL_FAST_SQRT_UI(vl_uint8,ui8)

/* ---------------------------------------------------------------- */
/*                                Vector distances and similarities */
/* ---------------------------------------------------------------- */

/** @typedef VlFloatVectorComparisonFunction
 ** @brief Pointer to a function to compare vectors of floats
 **/
typedef float (*VlFloatVectorComparisonFunction)(vl_size dimension, float const * X, float const * Y) ;

/** @typedef VlDoubleVectorComparisonFunction
 ** @brief Pointer to a function to compare vectors of doubles
 **/
typedef double (*VlDoubleVectorComparisonFunction)(vl_size dimension, double const * X, double const * Y) ;

/** @typedef VlFloatVector3ComparisonFunction
 ** @brief Pointer to a function to compare 3 vectors of doubles
 **/
typedef float (*VlFloatVector3ComparisonFunction)(vl_size dimension, float const * X, float const * Y, float const * Z) ;

/** @typedef VlDoubleVector3ComparisonFunction
 ** @brief Pointer to a function to compare 3 vectors of doubles
 **/
typedef double (*VlDoubleVector3ComparisonFunction)(vl_size dimension, double const * X, double const * Y, double const * Z) ;

/** @brief Vector comparison types */
enum _VlVectorComparisonType {
  VlDistanceL1,        /**< l1 distance (squared intersection metric) */
  VlDistanceL2,        /**< squared l2 distance */
  VlDistanceChi2,      /**< squared Chi2 distance */
  VlDistanceHellinger, /**< squared Hellinger's distance */
  VlDistanceJS,        /**< squared Jensen-Shannon distance */
  VlDistanceMahalanobis,     /**< squared mahalanobis distance */
  VlKernelL1,          /**< intersection kernel */
  VlKernelL2,          /**< l2 kernel */
  VlKernelChi2,        /**< Chi2 kernel */
  VlKernelHellinger,   /**< Hellinger's kernel */
  VlKernelJS           /**< Jensen-Shannon kernel */
} ;

/** @brief Vector comparison types */
typedef enum _VlVectorComparisonType VlVectorComparisonType ;

/** @brief Get the symbolic name of a vector comparison type
 ** @param type vector comparison type.
 ** @return data symbolic name.
 **/

VL_INLINE char const *
vl_get_vector_comparison_type_name (int type)
{
  switch (type) {
    case VlDistanceL1   : return "l1" ;
    case VlDistanceL2   : return "l2" ;
    case VlDistanceChi2 : return "chi2" ;
    case VlDistanceMahalanobis  : return "mahalanobis" ;
    case VlKernelL1     : return "kl1" ;
    case VlKernelL2     : return "kl2" ;
    case VlKernelChi2   : return "kchi2" ;
    default: return NULL ;
  }
}

VL_EXPORT VlFloatVectorComparisonFunction
vl_get_vector_comparison_function_f (VlVectorComparisonType type) ;

VL_EXPORT VlDoubleVectorComparisonFunction
vl_get_vector_comparison_function_d (VlVectorComparisonType type) ;

VL_EXPORT VlFloatVector3ComparisonFunction
vl_get_vector_3_comparison_function_f (VlVectorComparisonType type) ;

VL_EXPORT VlDoubleVector3ComparisonFunction
vl_get_vector_3_comparison_function_d (VlVectorComparisonType type) ;


VL_EXPORT void
vl_eval_vector_comparison_on_all_pairs_f (float * result, vl_size dimension,
                                          float const * X, vl_size numDataX,
                                          float const * Y, vl_size numDataY,
                                          VlFloatVectorComparisonFunction function) ;

VL_EXPORT void
vl_eval_vector_comparison_on_all_pairs_d (double * result, vl_size dimension,
                                          double const * X, vl_size numDataX,
                                          double const * Y, vl_size numDataY,
                                          VlDoubleVectorComparisonFunction function) ;

/* ---------------------------------------------------------------- */
/*                                               Numerical analysis */
/* ---------------------------------------------------------------- */

VL_EXPORT void
vl_svd2 (double* S, double *U, double *V, double const *M) ;

VL_EXPORT void
vl_lapack_dlasv2 (double *smin,
                  double *smax,
                  double *sv,
                  double *cv,
                  double *su,
                  double *cu,
                  double f,
                  double g,
                  double h) ;


VL_EXPORT int
vl_solve_linear_system_3 (double * x, double const * A, double const *b) ;

VL_EXPORT int
vl_solve_linear_system_2 (double * x, double const * A, double const *b) ;

VL_EXPORT int
vl_gaussian_elimination (double * A, vl_size numRows, vl_size numColumns) ;

/* VL_MATHOP_H */
#endif