/usr/include/votca/tools/linalg.h is in libvotca-tools-dev 1.3.0-2+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | /*
* Copyright 2009-2011 The VOTCA Development Team (http://www.votca.org)
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#ifndef __VOTCA_TOOLS_LINALG_H
#define __VOTCA_TOOLS_LINALG_H
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/symmetric.hpp>
namespace votca { namespace tools {
namespace ub = boost::numeric::ublas;
/**
* \brief inverts A
* @param A symmetric positive definite matrix
* @param V inverse matrix
*
* This function wraps the inversion of a matrix
*/
void linalg_invert( ub::matrix<double> &A, ub::matrix<double> &V );
/**
* \brief determines Cholesky decomposition of matrix A
* @param A symmetric positive definite matrix
*
* This function wraps the Cholesky decomposition
*/
void linalg_cholesky_decompose( ub::matrix<double> &A );
/**
* \brief solves A*x=b
* @param x storage for x
* @param A symmetric positive definite matrix for linear system
* @param b inhomogeniety
* @param if A is not symmetric positive definite throws error code
*
* This function wraps the cholesky linear system solver
*/
void linalg_cholesky_solve(ub::vector<double> &x, ub::matrix<double> &A, ub::vector<double> &b);
/**
* \brief solves A*x=b
* @param x storage for x
* @param A matrix for linear equation system
* @param b inhomogenity
* @param residual if non-zero, residual will be stored here
*
* This function wrapps the qrsolver
*/
void linalg_qrsolve(ub::vector<double> &x, ub::matrix<double> &A, ub::vector<double> &b, ub::vector<double> *residual=NULL);
/**
* \brief solves A*x=b under the constraint B*x = 0
* @param x storage for x
* @param A matrix for linear equation system
* @param b inhomogenity
* @param constr constrained condition B (or is it the transposed one? check that)
*
* This function wraps the qrsolver under constraints
*/
void linalg_constrained_qrsolve(ub::vector<double> &x, ub::matrix<double> &A, ub::vector<double> &b, ub::matrix<double> &constr);
/**
* \brief eigenvalues of a symmetric matrix A*x=E*x
* @param A symmetric matrix
* @param E vector of eigenvalues
* @param V matrix of eigenvalues
*
* This function wraps gsl_eigen_symmv / DSYEV
* note that the eigenvalues/eigenvectors are UNSORTED
*
*/
bool linalg_eigenvalues_symmetric( ub::symmetric_matrix<double> &A, ub::vector<double> &E, ub::matrix<double> &V );
/**
* \brief eigenvalues of a symmetric matrix A*x=E*x
* @param A matrix
* @param E vector of eigenvalues
* @param V matrix of eigenvalues
*
* This function wraps gsl_eigen_symmv / DSYEV
*
*/
bool linalg_eigenvalues( ub::matrix<double> &A, ub::vector<double> &E, ub::matrix<double> &V );
/**
* \brief eigenvalues of a symmetric matrix A*x=E*x
* @param E vector of eigenvalues
* @param V input: matrix to diagonalize
* @param V output: eigenvectors
*
* This function wrapps gsl_eigen_symmv / DSYEV
*
*/
bool linalg_eigenvalues( ub::vector<double> &E, ub::matrix<double> &V );
/**
* \brief eigenvalues of a symmetric matrix A*x=E*x
* @param E vector of eigenvalues
* @param V input: matrix to diagonalize
* @param V output: eigenvectors
*
* This function wrapps gsl_eigen_symmv / DSYEV
*
*/
bool linalg_eigenvalues( ub::vector<float> &E, ub::matrix<float> &V );
/**
* \brief eigenvalues of a symmetric matrix A*x=E*x
* @param E vector of eigenvalues
* @param V input: matrix to diagonalize
* @param V output: eigenvectors
*
* This function wrapps gsl_eigen_symmv / DSYEV
*
*/
bool linalg_eigenvalues( ub::matrix<double> &A, ub::vector<double> &E, ub::matrix<double> &V , int nmax );
/**
* \brief eigenvalues of a symmetric matrix A*x=E*x single precision
* @param E vector of eigenvalues
* @param V input: matrix to diagonalize
* @param V output: eigenvectors
*
* This function wrapps gsl_eigen_symmv / DSYEV
*
*/
bool linalg_eigenvalues( ub::matrix<float> &A, ub::vector<float> &E, ub::matrix<float> &V , int nmax );
/**
* \brief eigenvalues of a symmetric matrix A*x=E*B*x double precision
* @param E vector of eigenvalues
* @param A input: matrix to diagonalize
* @param B input: overlap matrix
* @param V output: eigenvectors
*
* This function wrapps eigen_gensymmv / dsygv
*
*/
bool linalg_eigenvalues_general( ub::matrix<double> &A,ub::matrix<double> &B, ub::vector<double> &E, ub::matrix<double> &V);
}}
#endif /* __VOTCA_TOOLS_LINALG_H */
|