/usr/include/vtk-6.3/vtkAlgorithm.h is in libvtk6-dev 6.3.0+dfsg1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkAlgorithm.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkAlgorithm - Superclass for all sources, filters, and sinks in VTK.
// .SECTION Description
// vtkAlgorithm is the superclass for all sources, filters, and sinks
// in VTK. It defines a generalized interface for executing data
// processing algorithms. Pipeline connections are associated with
// input and output ports that are independent of the type of data
// passing through the connections.
//
// Instances may be used independently or within pipelines with a
// variety of architectures and update mechanisms. Pipelines are
// controlled by instances of vtkExecutive. Every vtkAlgorithm
// instance has an associated vtkExecutive when it is used in a
// pipeline. The executive is responsible for data flow.
#ifndef vtkAlgorithm_h
#define vtkAlgorithm_h
#include "vtkCommonExecutionModelModule.h" // For export macro
#include "vtkObject.h"
class vtkAbstractArray;
class vtkAlgorithmInternals;
class vtkAlgorithmOutput;
class vtkCollection;
class vtkDataArray;
class vtkDataObject;
class vtkExecutive;
class vtkInformation;
class vtkInformationInformationVectorKey;
class vtkInformationIntegerKey;
class vtkInformationStringKey;
class vtkInformationStringVectorKey;
class vtkInformationVector;
class vtkProgressObserver;
class VTKCOMMONEXECUTIONMODEL_EXPORT vtkAlgorithm : public vtkObject
{
public:
static vtkAlgorithm *New();
vtkTypeMacro(vtkAlgorithm,vtkObject);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Values used for setting the desired output precision for various
// algorithms. Currently, the following algorithms support changing their
// output precision: vtkAppendFilter, vtkAppendPoints, vtkContourFilter,
// vtkContourGrid, vtkCutter, vtkGridSynchronizedTemplates3D,
// vtkPolyDataNormals, vtkSynchronizedTemplatesCutter3D,
// vtkTableBasedClipDataSet, vtkThreshold, vtkTransformFilter, and
// vtkTransformPolyData.
//
// SINGLE_PRECISION - Output single-precision floating-point (i.e. float)
// DOUBLE_PRECISION - Output double-precision floating-point (i.e. double)
// DEFAULT_PRECISION - Output precision should match the input precision.
enum DesiredOutputPrecision
{
SINGLE_PRECISION,
DOUBLE_PRECISION,
DEFAULT_PRECISION
};
// Description:
// Check whether this algorithm has an assigned executive. This
// will NOT create a default executive.
int HasExecutive();
// Description:
// Get this algorithm's executive. If it has none, a default
// executive will be created.
vtkExecutive* GetExecutive();
// Description:
// Set this algorithm's executive. This algorithm is removed from
// any executive to which it has previously been assigned and then
// assigned to the given executive.
virtual void SetExecutive(vtkExecutive* executive);
// Description:
// Upstream/Downstream requests form the generalized interface
// through which executives invoke a algorithm's functionality.
// Upstream requests correspond to information flow from the
// algorithm's outputs to its inputs. Downstream requests
// correspond to information flow from the algorithm's inputs to its
// outputs.
//
// A downstream request is defined by the contents of the request
// information object. The input to the request is stored in the
// input information vector passed to ProcessRequest. The results
// of an downstream request are stored in the output information
// vector passed to ProcessRequest.
//
// An upstream request is defined by the contents of the request
// information object. The input to the request is stored in the
// output information vector passed to ProcessRequest. The results
// of an upstream request are stored in the input information vector
// passed to ProcessRequest.
//
// It returns the boolean status of the pipeline (false
// means failure).
virtual int ProcessRequest(vtkInformation* request,
vtkInformationVector** inInfo,
vtkInformationVector* outInfo);
// Description:
// Version of ProcessRequest() that is wrapped. This converts the
// collection to an array and calls the other version.
int ProcessRequest(vtkInformation* request,
vtkCollection* inInfo,
vtkInformationVector* outInfo);
// Description:
// A special version of ProcessRequest meant specifically for the
// pipeline modified time request. See
// vtkExecutive::ComputePipelineMTime() for details.
virtual int
ComputePipelineMTime(vtkInformation* request,
vtkInformationVector** inInfoVec,
vtkInformationVector* outInfoVec,
int requestFromOutputPort,
unsigned long* mtime);
// Description:
// This method gives the algorithm a chance to modify the contents of a
// request before or after (specified in the when argument) it is
// forwarded. The default implementation is empty. Returns 1 on success,
// 0 on failure. When can be either vtkExecutive::BeforeForward or
// vtkExecutive::AfterForward.
virtual int ModifyRequest(vtkInformation* request, int when);
// Description:
// Get the information object associated with an input port. There
// is one input port per kind of input to the algorithm. Each input
// port tells executives what kind of data and downstream requests
// this algorithm can handle for that input.
vtkInformation* GetInputPortInformation(int port);
// Description:
// Get the information object associated with an output port. There
// is one output port per output from the algorithm. Each output
// port tells executives what kind of upstream requests this
// algorithm can handle for that output.
vtkInformation* GetOutputPortInformation(int port);
// Description:
// Set/Get the information object associated with this algorithm.
vtkGetObjectMacro(Information, vtkInformation);
virtual void SetInformation(vtkInformation*);
// Description:
// Get the number of input ports used by the algorithm.
int GetNumberOfInputPorts();
// Description:
// Get the number of output ports provided by the algorithm.
int GetNumberOfOutputPorts();
// Description:
// Participate in garbage collection.
virtual void Register(vtkObjectBase* o);
virtual void UnRegister(vtkObjectBase* o);
// Description:
// Set/Get the AbortExecute flag for the process object. Process objects
// may handle premature termination of execution in different ways.
vtkSetMacro(AbortExecute,int);
vtkGetMacro(AbortExecute,int);
vtkBooleanMacro(AbortExecute,int);
// Description:
// Set/Get the execution progress of a process object.
vtkSetClampMacro(Progress,double,0.0,1.0);
vtkGetMacro(Progress,double);
// Description:
// Update the progress of the process object. If a ProgressMethod exists,
// executes it. Then set the Progress ivar to amount. The parameter amount
// should range between (0,1).
void UpdateProgress(double amount);
// Description:
// Set the current text message associated with the progress state.
// This may be used by a calling process/GUI.
// Note: Because SetProgressText() is called from inside RequestData()
// it does not modify the algorithm object. Algorithms are not
// allowed to modify themselves from inside RequestData().
void SetProgressText(const char* ptext);
vtkGetStringMacro(ProgressText);
// Description:
// The error code contains a possible error that occurred while
// reading or writing the file.
vtkGetMacro( ErrorCode, unsigned long );
// left public for performance since it is used in inner loops
int AbortExecute;
// Description:
// Keys used to specify input port requirements.
// \ingroup InformationKeys
static vtkInformationIntegerKey* INPUT_IS_OPTIONAL();
// Description:
// \ingroup InformationKeys
static vtkInformationIntegerKey* INPUT_IS_REPEATABLE();
// Description:
// \ingroup InformationKeys
static vtkInformationInformationVectorKey* INPUT_REQUIRED_FIELDS();
// Description:
// \ingroup InformationKeys
static vtkInformationStringVectorKey* INPUT_REQUIRED_DATA_TYPE();
// Description:
// \ingroup InformationKeys
static vtkInformationInformationVectorKey* INPUT_ARRAYS_TO_PROCESS();
// Description:
// \ingroup InformationKeys
static vtkInformationIntegerKey* INPUT_PORT();
// Description:
// \ingroup InformationKeys
static vtkInformationIntegerKey* INPUT_CONNECTION();
// Description:
// This key tells the executive that a particular output port
// is capable of producing an arbitrary subextent of the whole
// extent. Many image sources and readers fall into this category
// but some such as the legacy structured data readers cannot
// support this feature.
// \ingroup InformationKeys
static vtkInformationIntegerKey* CAN_PRODUCE_SUB_EXTENT();
// Description:
// Key that tells the pipeline that a particular algorithm
// can or cannot handle piece request. If a filter cannot handle
// piece requests and is asked for a piece, the executive will
// flag an error. If a structured data source cannot handle piece
// requests but can produce sub-extents (CAN_PRODUCE_SUB_EXTENT),
// the executive will use an extent translator to split the extent
// into pieces. Otherwise, if a source cannot handle piece requests,
// the executive will ask for the whole data for piece 0 and not
// execute the source for other pieces.
// \ingroup InformationKeys
static vtkInformationIntegerKey* CAN_HANDLE_PIECE_REQUEST();
// Description:
// Set the input data arrays that this algorithm will
// process. Specifically the idx array that this algorithm will process
// (starting from 0) is the array on port, connection with the specified
// association and name or attribute type (such as SCALARS). The
// fieldAssociation refers to which field in the data object the array is
// stored. See vtkDataObject::FieldAssociations for detail.
virtual void SetInputArrayToProcess(int idx, int port, int connection,
int fieldAssociation,
const char *name);
virtual void SetInputArrayToProcess(int idx, int port, int connection,
int fieldAssociation,
int fieldAttributeType);
virtual void SetInputArrayToProcess(int idx, vtkInformation *info);
// Description:
// String based versions of SetInputArrayToProcess(). Because
// fieldAssociation and fieldAttributeType are enums, they cannot be
// easily accessed from scripting language. These methods provides an
// easy and safe way of passing association and attribute type
// information. Field association is one of the following:
// @verbatim
// vtkDataObject::FIELD_ASSOCIATION_POINTS
// vtkDataObject::FIELD_ASSOCIATION_CELLS
// vtkDataObject::FIELD_ASSOCIATION_NONE
// vtkDataObject::FIELD_ASSOCIATION_POINTS_THEN_CELLS
// @endverbatim
// Attribute type is one of the following:
// @verbatim
// vtkDataSetAttributes::SCALARS
// vtkDataSetAttributes::VECTORS
// vtkDataSetAttributes::NORMALS
// vtkDataSetAttributes::TCOORDS
// vtkDataSetAttributes::TENSORS
// @endverbatim
// If the last argument is not an attribute type, it is assumed to
// be an array name.
virtual void SetInputArrayToProcess(int idx, int port, int connection,
const char* fieldAssociation,
const char* attributeTypeorName);
// Description:
// Get the info object for the specified input array to this algorithm
vtkInformation *GetInputArrayInformation(int idx);
// from here down are convenience methods that really are executive methods
// Description:
// Remove all the input data.
void RemoveAllInputs();
// Description:
// Get the data object that will contain the algorithm output for
// the given port.
vtkDataObject* GetOutputDataObject(int port);
// Description:
// Get the data object that will contain the algorithm input for the given
// port and given connection.
vtkDataObject *GetInputDataObject(int port,
int connection);
// Description:
// Set the connection for the given input port index. Each input
// port of a filter has a specific purpose. A port may have zero or
// more connections and the required number is specified by each
// filter. Setting the connection with this method removes all
// other connections from the port. To add more than one connection
// use AddInputConnection().
//
// The input for the connection is the output port of another
// filter, which is obtained with GetOutputPort(). Typical usage is
//
// filter2->SetInputConnection(0, filter1->GetOutputPort(0)).
virtual void SetInputConnection(int port, vtkAlgorithmOutput* input);
virtual void SetInputConnection(vtkAlgorithmOutput* input);
// Description:
// Add a connection to the given input port index. See
// SetInputConnection() for details on input connections. This
// method is the complement to RemoveInputConnection() in that it
// adds only the connection specified without affecting other
// connections. Typical usage is
//
// filter2->AddInputConnection(0, filter1->GetOutputPort(0)).
virtual void AddInputConnection(int port, vtkAlgorithmOutput* input);
virtual void AddInputConnection(vtkAlgorithmOutput* input);
// Description:
// Remove a connection from the given input port index. See
// SetInputConnection() for details on input connection. This
// method is the complement to AddInputConnection() in that it
// removes only the connection specified without affecting other
// connections. Typical usage is
//
// filter2->RemoveInputConnection(0, filter1->GetOutputPort(0)).
virtual void RemoveInputConnection(int port, vtkAlgorithmOutput* input);
// Description:
// Remove a connection given by index idx.
virtual void RemoveInputConnection(int port, int idx);
// Description:
// Removes all input connections.
virtual void RemoveAllInputConnections(int port);
// Description:
// Sets the data-object as an input on the given port index. Setting the input with
// this method removes all other connections from the port. Internally, this
// method creates a vtkTrivialProducer instance and sets that as the
// input-connection for the given port. It is safe to call this method repeatedly
// with the same input data object. The MTime of the vtkAlgorithm will not
// change unless the data object changed.
virtual void SetInputDataObject(int port, vtkDataObject* data);
virtual void SetInputDataObject(vtkDataObject* data)
{ this->SetInputDataObject(0, data); }
// Description:
// Add the data-object as an input to this given port. This will add a new
// input connection on the specified port without affecting any existing
// connections on the same input port.
virtual void AddInputDataObject(int port, vtkDataObject* data);
virtual void AddInputDataObject(vtkDataObject* data)
{ this->AddInputDataObject(0, data); }
// Description:
// Get a proxy object corresponding to the given output port of this
// algorithm. The proxy object can be passed to another algorithm's
// SetInputConnection(), AddInputConnection(), and
// RemoveInputConnection() methods to modify pipeline connectivity.
vtkAlgorithmOutput* GetOutputPort(int index);
vtkAlgorithmOutput* GetOutputPort() {
return this->GetOutputPort(0); }
// Description:
// Get the number of inputs currently connected to a port.
int GetNumberOfInputConnections(int port);
// Description:
// Get the total number of inputs for this algorithm
int GetTotalNumberOfInputConnections();
// Description:
// Get the algorithm output port connected to an input port.
vtkAlgorithmOutput* GetInputConnection(int port, int index);
// Description:
// Returns the algorithm and the output port index of
// that algorithm connected to a port-index pair.
vtkAlgorithm* GetInputAlgorithm(int port, int index, int& algPort);
// Description:
// Returns the algorithm connected to a port-index pair.
vtkAlgorithm* GetInputAlgorithm(int port, int index);
// Description:
// Equivalent to GetInputAlgorithm(0, 0).
vtkAlgorithm* GetInputAlgorithm()
{
return this->GetInputAlgorithm(0, 0);
}
// Description:
// Returns the executive associated with a particular input
// connection.
vtkExecutive* GetInputExecutive(int port, int index);
// Description:
// Equivalent to GetInputExecutive(0, 0)
vtkExecutive* GetInputExecutive()
{
return this->GetInputExecutive(0, 0);
}
// Description:
// Return the information object that is associated with
// a particular input connection. This can be used to get
// meta-data coming from the REQUEST_INFORMATION pass and set
// requests for the REQUEST_UPDATE_EXTENT pass. NOTE:
// Do not use this in any of the pipeline passes. Use
// the information objects passed as arguments instead.
vtkInformation* GetInputInformation(int port, int index);
// Description:
// Equivalent to GetInputInformation(0, 0)
vtkInformation* GetInputInformation()
{
return this->GetInputInformation(0, 0);
}
// Description:
// Return the information object that is associated with
// a particular output port. This can be used to set
// meta-data coming during the REQUEST_INFORMATION. NOTE:
// Do not use this in any of the pipeline passes. Use
// the information objects passed as arguments instead.
vtkInformation* GetOutputInformation(int port);
// Description:
// Bring this algorithm's outputs up-to-date.
virtual void Update(int port);
virtual void Update();
// Description:
// Bring the algorithm's information up-to-date.
virtual void UpdateInformation();
// Description:
// Create output object(s).
virtual void UpdateDataObject();
// Description::
// Propagate meta-data upstream.
virtual void PropagateUpdateExtent();
// Description:
// Bring this algorithm's outputs up-to-date.
virtual void UpdateWholeExtent();
// Description:
// Convenience routine to convert from a linear ordering of input
// connections to a port/connection pair.
void ConvertTotalInputToPortConnection(int ind, int& port, int& conn);
//======================================================================
//The following block of code is to support old style VTK applications. If
//you are using these calls there are better ways to do it in the new
//pipeline
//======================================================================
// Description:
// Turn release data flag on or off for all output ports.
virtual void SetReleaseDataFlag(int);
virtual int GetReleaseDataFlag();
void ReleaseDataFlagOn();
void ReleaseDataFlagOff();
//========================================================================
// Description:
// This detects when the UpdateExtent will generate no data
// This condition is satisfied when the UpdateExtent has
// zero volume (0,-1,...) or the UpdateNumberOfPieces is 0.
// The source uses this call to determine whether to call Execute.
int UpdateExtentIsEmpty(vtkInformation *pinfo, vtkDataObject *output);
int UpdateExtentIsEmpty(vtkInformation *pinfo, int extentType);
// Description:
// If the DefaultExecutivePrototype is set, a copy of it is created
// in CreateDefaultExecutive() using NewInstance().
static void SetDefaultExecutivePrototype(vtkExecutive* proto);
// Description:
// If the whole output extent is required, this method can be called to set
// the output update extent to the whole extent. This method assumes that
// the whole extent is known (that UpdateInformation has been called).
int SetUpdateExtentToWholeExtent(int port);
// Description:
// Convenience function equivalent to SetUpdateExtentToWholeExtent(0)
// This method assumes that the whole extent is known (that UpdateInformation
// has been called).
int SetUpdateExtentToWholeExtent();
// Description:
// Set the output update extent in terms of piece and ghost levels.
void SetUpdateExtent(int port,
int piece,int numPieces, int ghostLevel);
// Description:
// Convenience function equivalent to SetUpdateExtent(0, piece,
// numPieces, ghostLevel)
void SetUpdateExtent(int piece,int numPieces, int ghostLevel)
{
this->SetUpdateExtent(0, piece, numPieces, ghostLevel);
}
// Description:
// Set the output update extent for data objects that use 3D extents
void SetUpdateExtent(int port, int extent[6]);
// Description:
// Convenience function equivalent to SetUpdateExtent(0, extent)
void SetUpdateExtent(int extent[6])
{
this->SetUpdateExtent(0, extent);
}
// Description:
// These functions return the update extent for output ports that
// use 3D extents. Where port is not specified, it is assumed to
// be 0.
int* GetUpdateExtent()
{
return this->GetUpdateExtent(0);
}
int* GetUpdateExtent(int port);
void GetUpdateExtent(int& x0, int& x1, int& y0, int& y1,
int& z0, int& z1)
{
this->GetUpdateExtent(0, x0, x1, y0, y1, z0, z1);
}
void GetUpdateExtent(int port,
int& x0, int& x1, int& y0, int& y1,
int& z0, int& z1);
void GetUpdateExtent(int extent[6])
{
this->GetUpdateExtent(0, extent);
}
void GetUpdateExtent(int port, int extent[6]);
// Description:
// These functions return the update extent for output ports that
// use piece extents. Where port is not specified, it is assumed to
// be 0.
int GetUpdatePiece()
{
return this->GetUpdatePiece(0);
}
int GetUpdatePiece(int port);
int GetUpdateNumberOfPieces()
{
return this->GetUpdateNumberOfPieces(0);
}
int GetUpdateNumberOfPieces(int port);
int GetUpdateGhostLevel()
{
return this->GetUpdateGhostLevel(0);
}
int GetUpdateGhostLevel(int port);
// Description:
// If an ProgressObserver is set, the algorithm will report
// progress through it rather than directly. This means that
// it will call UpdateProgress() on the ProgressObserver rather
// than itself report it and set progress.
// This is most useful in situations where multiple threads
// are executing an algorithm at the same time and want to
// handle progress locally.
void SetProgressObserver(vtkProgressObserver*);
vtkGetObjectMacro(ProgressObserver, vtkProgressObserver);
protected:
vtkAlgorithm();
~vtkAlgorithm();
// Keys used to indicate that input/output port information has been
// filled.
static vtkInformationIntegerKey* PORT_REQUIREMENTS_FILLED();
// Arbitrary extra information associated with this algorithm
vtkInformation* Information;
// Description:
// Fill the input port information objects for this algorithm. This
// is invoked by the first call to GetInputPortInformation for each
// port so subclasses can specify what they can handle.
virtual int FillInputPortInformation(int port, vtkInformation* info);
// Description:
// Fill the output port information objects for this algorithm.
// This is invoked by the first call to GetOutputPortInformation for
// each port so subclasses can specify what they can handle.
virtual int FillOutputPortInformation(int port, vtkInformation* info);
// Description:
// Set the number of input ports used by the algorithm.
virtual void SetNumberOfInputPorts(int n);
// Description:
// Set the number of output ports provided by the algorithm.
virtual void SetNumberOfOutputPorts(int n);
// Helper methods to check input/output port index ranges.
int InputPortIndexInRange(int index, const char* action);
int OutputPortIndexInRange(int index, const char* action);
// Description:
// Get the assocition of the actual data array for the input array specified
// by idx, this is only reasonable during the REQUEST_DATA pass.
int GetInputArrayAssociation(int idx, vtkInformationVector **inputVector);
// Description:
// Filters that have multiple connections on one port can use
// this signature. This will override the connection id that the
// user set in SetInputArrayToProcess() with the connection id
// passed. This way, the user specifies one array to process and
// that information is used to obtain arrays for all the connection
// on the port with the appropriate connection id substituted.
int GetInputArrayAssociation(int idx, int connection,
vtkInformationVector **inputVector);
int GetInputArrayAssociation(int idx, vtkDataObject* input);
// Description:
// Get the actual data array for the input array specified by idx, this is
// only reasonable during the REQUEST_DATA pass
vtkDataArray *GetInputArrayToProcess(int idx,vtkInformationVector **inputVector);
vtkDataArray *GetInputArrayToProcess(int idx,
vtkInformationVector **inputVector,
int& association);
// Description:
// Filters that have multiple connections on one port can use
// this signature. This will override the connection id that the
// user set in SetInputArrayToProcess() with the connection id
// passed. This way, the user specifies one array to process and
// that information is used to obtain arrays for all the connection
// on the port with the appropriate connection id substituted.
vtkDataArray *GetInputArrayToProcess(int idx,
int connection,
vtkInformationVector **inputVector);
vtkDataArray *GetInputArrayToProcess(int idx,
int connection,
vtkInformationVector **inputVector,
int& association);
vtkDataArray *GetInputArrayToProcess(int idx,
vtkDataObject* input);
vtkDataArray *GetInputArrayToProcess(int idx,
vtkDataObject* input,
int& association);
// Description:
// Get the actual data array for the input array specified by idx, this is
// only reasonable during the REQUEST_DATA pass
vtkAbstractArray *GetInputAbstractArrayToProcess(int idx,vtkInformationVector **inputVector);
vtkAbstractArray *GetInputAbstractArrayToProcess
(int idx, vtkInformationVector **inputVector, int& association);
// Description:
// Filters that have multiple connections on one port can use
// this signature. This will override the connection id that the
// user set in SetInputArrayToProcess() with the connection id
// passed. This way, the user specifies one array to process and
// that information is used to obtain arrays for all the connection
// on the port with the appropriate connection id substituted.
vtkAbstractArray *GetInputAbstractArrayToProcess(int idx,
int connection,
vtkInformationVector **inputVector);
vtkAbstractArray *GetInputAbstractArrayToProcess(int idx,
int connection,
vtkInformationVector **inputVector,
int& association);
vtkAbstractArray *GetInputAbstractArrayToProcess(int idx,
vtkDataObject* input);
vtkAbstractArray *GetInputAbstractArrayToProcess(int idx,
vtkDataObject* input,
int& association);
// Description:
// This method takes in an index (as specified in SetInputArrayToProcess)
// and a pipeline information vector. It then finds the information about
// input array idx and then uses that information to find the field
// information from the relevant field in the pifo vector (as done by
// vtkDataObject::GetActiveFieldInformation)
vtkInformation *GetInputArrayFieldInformation(int idx,
vtkInformationVector **inputVector);
// Description:
// Create a default executive.
// If the DefaultExecutivePrototype is set, a copy of it is created
// in CreateDefaultExecutive() using NewInstance().
// Otherwise, vtkStreamingDemandDrivenPipeline is created.
virtual vtkExecutive* CreateDefaultExecutive();
// Description:
// The error code contains a possible error that occurred while
// reading or writing the file.
vtkSetMacro( ErrorCode, unsigned long );
unsigned long ErrorCode;
// Progress/Update handling
double Progress;
char *ProgressText;
// Garbage collection support.
virtual void ReportReferences(vtkGarbageCollector*);
// executive methods below
// Description:
// Replace the Nth connection on the given input port. For use only
// by this class and subclasses. If this is used to store a NULL
// input then the subclass must be able to handle NULL inputs in its
// ProcessRequest method.
virtual void SetNthInputConnection(int port, int index,
vtkAlgorithmOutput* input);
// Description:
// Set the number of input connections on the given input port. For
// use only by this class and subclasses. If this is used to store
// a NULL input then the subclass must be able to handle NULL inputs
// in its ProcessRequest method.
virtual void SetNumberOfInputConnections(int port, int n);
static vtkExecutive* DefaultExecutivePrototype;
// Description:
// These methods are used by subclasses to implement methods to
// set data objects directly as input. Internally, they create
// a vtkTrivialProducer that has the data object as output and
// connect it to the algorithm.
void SetInputDataInternal(int port, vtkDataObject *input)
{ this->SetInputDataObject(port, input); }
void AddInputDataInternal(int port, vtkDataObject *input)
{ this->AddInputDataObject(port, input); }
vtkProgressObserver* ProgressObserver;
private:
vtkExecutive* Executive;
vtkInformationVector* InputPortInformation;
vtkInformationVector* OutputPortInformation;
vtkAlgorithmInternals* AlgorithmInternal;
static void ConnectionAdd(vtkAlgorithm* producer, int producerPort,
vtkAlgorithm* consumer, int consumerPort);
static void ConnectionRemove(vtkAlgorithm* producer, int producerPort,
vtkAlgorithm* consumer, int consumerPort);
static void ConnectionRemoveAllInput(vtkAlgorithm* consumer, int port);
static void ConnectionRemoveAllOutput(vtkAlgorithm* producer, int port);
private:
vtkAlgorithm(const vtkAlgorithm&); // Not implemented.
void operator=(const vtkAlgorithm&); // Not implemented.
};
#endif
|