This file is indexed.

/usr/include/vtk-6.3/vtkGenericCellTessellator.h is in libvtk6-dev 6.3.0+dfsg1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkGenericCellTessellator.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkGenericCellTessellator - helper class to perform cell tessellation
// .SECTION Description
// vtkGenericCellTessellator is a helper class to perform adaptive tessellation
// of particular cell topologies. The major purpose for this class is to
// transform higher-order cell types (e.g., higher-order finite elements)
// into linear cells that can then be easily visualized by VTK. This class
// works in conjunction with the vtkGenericDataSet and vtkGenericAdaptorCell
// classes.
//
// This algorithm is based on edge subdivision. An error metric along each
// edge is evaluated, and if the error is greater than some tolerance, the
// edge is subdivided (as well as all connected 2D and 3D cells). The process
// repeats until the error metric is satisfied.
//
// A significant issue addressed by this algorithm is to insure face
// compatibility across neigboring cells. That is, diagonals due to face
// triangulation must match to insure that the mesh is compatible. The
// algorithm employs a precomputed table to accelerate the tessellation
// process. The table was generated with the help of vtkOrderedTriangulator;
// the basic idea is that the choice of diagonal is made by considering the
// relative value of the point ids.


#ifndef vtkGenericCellTessellator_h
#define vtkGenericCellTessellator_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkObject.h"

class vtkCellArray;
class vtkDoubleArray;
class vtkCollection;
class vtkGenericAttributeCollection;
class vtkGenericAdaptorCell;
class vtkGenericCellIterator;
class vtkPointData;
class vtkGenericDataSet;

//-----------------------------------------------------------------------------
//
// The tessellation object
class VTKCOMMONDATAMODEL_EXPORT vtkGenericCellTessellator : public vtkObject
{
public:
  vtkTypeMacro(vtkGenericCellTessellator,vtkObject);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Tessellate a face of a 3D `cell'. The face is specified by the
  // index value.
  // The result is a set of smaller linear triangles in `cellArray' with
  // `points' and point data `internalPd'.
  // \pre cell_exists: cell!=0
  // \pre valid_dimension: cell->GetDimension()==3
  // \pre valid_index_range: (index>=0) && (index<cell->GetNumberOfBoundaries(2))
  // \pre att_exists: att!=0
  // \pre points_exists: points!=0
  // \pre cellArray_exists: cellArray!=0
  // \pre internalPd_exists: internalPd!=0
  virtual void TessellateFace(vtkGenericAdaptorCell *cell,
                              vtkGenericAttributeCollection *att,
                              vtkIdType index,
                              vtkDoubleArray *points,
                              vtkCellArray *cellArray,
                              vtkPointData *internalPd)=0;

  // Description:
  // Tessellate a 3D `cell'. The result is a set of smaller linear
  // tetrahedra in `cellArray' with `points' and point data `internalPd'.
  // \pre cell_exists: cell!=0
  // \pre valid_dimension: cell->GetDimension()==3
  // \pre att_exists: att!=0
  // \pre points_exists: points!=0
  // \pre cellArray_exists: cellArray!=0
  // \pre internalPd_exists: internalPd!=0
  virtual void Tessellate(vtkGenericAdaptorCell *cell,
                          vtkGenericAttributeCollection *att,
                          vtkDoubleArray *points,
                          vtkCellArray *cellArray,
                          vtkPointData *internalPd )=0;

  // Description:
  // Triangulate a 2D `cell'. The result is a set of smaller linear triangles
  // in `cellArray' with `points' and point data `internalPd'.
  // \pre cell_exists: cell!=0
  // \pre valid_dimension: cell->GetDimension()==2
  // \pre att_exists: att!=0
  // \pre points_exists: points!=0
  // \pre cellArray_exists: cellArray!=0
  // \pre internalPd_exists: internalPd!=0
  virtual void Triangulate(vtkGenericAdaptorCell *cell,
                           vtkGenericAttributeCollection *att,
                           vtkDoubleArray *points,
                           vtkCellArray *cellArray,
                           vtkPointData *internalPd)=0;

  // Description:
  // Specify the list of error metrics used to decide if an edge has to be
  // splitted or not. It is a collection of vtkGenericSubdivisionErrorMetric-s.
  virtual void SetErrorMetrics(vtkCollection *someErrorMetrics);
  vtkGetObjectMacro(ErrorMetrics,vtkCollection);

  // Description:
  // Initialize the tessellator with a data set `ds'.
  virtual void Initialize(vtkGenericDataSet *ds)=0;

  // Description:
  // Init the error metric with the dataset. Should be called in each filter
  // before any tessellation of any cell.
  void InitErrorMetrics(vtkGenericDataSet *ds);

  // Description:
  // If true, measure the quality of the fixed subdivision.
  vtkGetMacro(Measurement,int);
  vtkSetMacro(Measurement,int);

  // Description:
  // Get the maximum error measured after the fixed subdivision.
  // \pre errors_exists: errors!=0
  // \pre valid_size: sizeof(errors)==GetErrorMetrics()->GetNumberOfItems()
  void GetMaxErrors(double *errors);

protected:
  vtkGenericCellTessellator();
  ~vtkGenericCellTessellator();

  // Description:
  // Does the edge need to be subdivided according to at least one error
  // metric? The edge is defined by its `leftPoint' and its `rightPoint'.
  // `leftPoint', `midPoint' and `rightPoint' have to be initialized before
  // calling RequiresEdgeSubdivision().
  // Their format is global coordinates, parametric coordinates and
  // point centered attributes: xyx rst abc de...
  // `alpha' is the normalized abscissa of the midpoint along the edge.
  // (close to 0 means close to the left point, close to 1 means close to the
  // right point)
  // \pre leftPoint_exists: leftPoint!=0
  // \pre midPoint_exists: midPoint!=0
  // \pre rightPoint_exists: rightPoint!=0
  // \pre clamped_alpha: alpha>0 && alpha<1
  // \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
  //          =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
  int RequiresEdgeSubdivision(double *left, double *mid, double *right,
                              double alpha);


  // Description:
  // Update the max error of each error metric according to the error at the
  // mid-point. The type of error depends on the state
  // of the concrete error metric. For instance, it can return an absolute
  // or relative error metric.
  // See RequiresEdgeSubdivision() for a description of the arguments.
  // \pre leftPoint_exists: leftPoint!=0
  // \pre midPoint_exists: midPoint!=0
  // \pre rightPoint_exists: rightPoint!=0
  // \pre clamped_alpha: alpha>0 && alpha<1
  // \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
  //          =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
  virtual void UpdateMaxError(double *leftPoint, double *midPoint,
                              double *rightPoint, double alpha);

  // Description:
  // Reset the maximal error of each error metric. The purpose of the maximal
  // error is to measure the quality of a fixed subdivision.
  void ResetMaxErrors();

  // Description:
  // List of error metrics. Collection of vtkGenericSubdivisionErrorMetric
  vtkCollection *ErrorMetrics;

  // Description:
  // Send the current cell to error metrics. Should be called at the beginning
  // of the implementation of Tessellate(), Triangulate()
  // or TessellateFace()
  // \pre cell_exists: cell!=0
  void SetGenericCell(vtkGenericAdaptorCell *cell);

  vtkGenericDataSet *DataSet;

  int Measurement; // if true, measure the quality of the fixed subdivision.
  double *MaxErrors; // max error for each error metric, for measuring the
  // quality of a fixed subdivision.
  int MaxErrorsCapacity;

private:
  vtkGenericCellTessellator(const vtkGenericCellTessellator&);  // Not implemented.
  void operator=(const vtkGenericCellTessellator&);  // Not implemented.
};

#endif