/usr/include/vtk-6.3/vtkTemporalStreamTracer.h is in libvtk6-dev 6.3.0+dfsg1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkTemporalStreamTracer.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkTemporalStreamTracer - A Parallel Particle tracer for unsteady vector fields
// .SECTION Description
// vtkTemporalStreamTracer is a filter that integrates a vector field to generate
//
//
// .SECTION See Also
// vtkRibbonFilter vtkRuledSurfaceFilter vtkInitialValueProblemSolver
// vtkRungeKutta2 vtkRungeKutta4 vtkRungeKutta45 vtkStreamTracer
#ifndef vtkTemporalStreamTracer_h
#define vtkTemporalStreamTracer_h
#include "vtkFiltersFlowPathsModule.h" // For export macro
#include "vtkSmartPointer.h" // For protected ivars.
#include "vtkStreamTracer.h"
//BTX
#include <vector> // STL Header
#include <list> // STL Header
//ETX
class vtkMultiProcessController;
class vtkMultiBlockDataSet;
class vtkDataArray;
class vtkDoubleArray;
class vtkGenericCell;
class vtkIntArray;
class vtkTemporalInterpolatedVelocityField;
class vtkPoints;
class vtkCellArray;
class vtkDoubleArray;
class vtkFloatArray;
class vtkIntArray;
class vtkCharArray;
class vtkAbstractParticleWriter;
//BTX
namespace vtkTemporalStreamTracerNamespace
{
typedef struct { double x[4]; } Position;
typedef struct {
// These are used during iteration
Position CurrentPosition;
int CachedDataSetId[2];
vtkIdType CachedCellId[2];
int LocationState;
// These are computed scalars we might display
int SourceID;
int TimeStepAge;
int InjectedPointId;
int InjectedStepId;
int UniqueParticleId;
// These are useful to track for debugging etc
int ErrorCode;
float age;
// these are needed across time steps to compute vorticity
float rotation;
float angularVel;
float time;
float speed;
} ParticleInformation;
typedef std::vector<ParticleInformation> ParticleVector;
typedef ParticleVector::iterator ParticleIterator;
typedef std::list<ParticleInformation> ParticleDataList;
typedef ParticleDataList::iterator ParticleListIterator;
};
//ETX
class VTKFILTERSFLOWPATHS_EXPORT vtkTemporalStreamTracer : public vtkStreamTracer
{
public:
vtkTypeMacro(vtkTemporalStreamTracer,vtkStreamTracer);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Construct object using 2nd order Runge Kutta
static vtkTemporalStreamTracer *New();
// Description:
// Set/Get the TimeStep. This is the primary means of advancing
// the particles. The TimeStep should be animated and this will drive
// the pipeline forcing timesteps to be fetched from upstream.
vtkSetMacro(TimeStep,unsigned int);
vtkGetMacro(TimeStep,unsigned int);
// Description:
// To get around problems with the Paraview Animation controls
// we can just animate the time step and ignore the TIME_ requests
vtkSetMacro(IgnorePipelineTime, int);
vtkGetMacro(IgnorePipelineTime, int);
vtkBooleanMacro(IgnorePipelineTime, int);
// Description:
// If the data source does not have the correct time values
// present on each time step - setting this value to non unity can
// be used to adjust the time step size from 1s pre step to
// 1x_TimeStepResolution : Not functional in this version.
// Broke it @todo, put back time scaling
vtkSetMacro(TimeStepResolution,double);
vtkGetMacro(TimeStepResolution,double);
// Description:
// When animating particles, it is nice to inject new ones every Nth step
// to produce a continuous flow. Setting ForceReinjectionEveryNSteps to a
// non zero value will cause the particle source to reinject particles
// every Nth step even if it is otherwise unchanged.
// Note that if the particle source is also animated, this flag will be
// redundant as the particles will be reinjected whenever the source changes
// anyway
vtkSetMacro(ForceReinjectionEveryNSteps,int);
vtkGetMacro(ForceReinjectionEveryNSteps,int);
//BTX
enum Units
{
TERMINATION_TIME_UNIT,
TERMINATION_STEP_UNIT
};
//ETX
// Description:
// Setting TerminationTime to a positive value will cause particles
// to terminate when the time is reached. Use a vlue of zero to
// diable termination. The units of time should be consistent with the
// primary time variable.
vtkSetMacro(TerminationTime,double);
vtkGetMacro(TerminationTime,double);
// Description:
// The units of TerminationTime may be actual 'Time' units as described
// by the data, or just TimeSteps of iteration.
vtkSetMacro(TerminationTimeUnit,int);
vtkGetMacro(TerminationTimeUnit,int);
void SetTerminationTimeUnitToTimeUnit()
{this->SetTerminationTimeUnit(TERMINATION_TIME_UNIT);};
void SetTerminationTimeUnitToStepUnit()
{this->SetTerminationTimeUnit(TERMINATION_STEP_UNIT);};
// Description:
// if StaticSeeds is set and the mesh is static,
// then every time particles are injected we can re-use the same
// injection information. We classify particles according to
// processor just once before start.
// If StaticSeeds is set and a moving seed source is specified
// the motion will be ignored and results will not be as expected.
vtkSetMacro(StaticSeeds,int);
vtkGetMacro(StaticSeeds,int);
vtkBooleanMacro(StaticSeeds,int);
// Description:
// if StaticMesh is set, many optimizations for cell caching
// can be assumed. if StaticMesh is not set, the algorithm
// will attempt to find out if optimizations can be used, but
// setting it to true will force all optimizations.
// Do not Set StaticMesh to true if a dynamic mesh is being used
// as this will invalidate all results.
vtkSetMacro(StaticMesh,int);
vtkGetMacro(StaticMesh,int);
vtkBooleanMacro(StaticMesh,int);
// Description:
// Set/Get the Writer associated with this Particle Tracer
// Ideally a parallel IO capable vtkH5PartWriter should be used
// which will collect particles from all parallel processes
// and write them to a single HDF5 file.
virtual void SetParticleWriter(vtkAbstractParticleWriter *pw);
vtkGetObjectMacro(ParticleWriter, vtkAbstractParticleWriter);
// Description:
// Set/Get the filename to be used with the particle writer when
// dumping particles to disk
vtkSetStringMacro(ParticleFileName);
vtkGetStringMacro(ParticleFileName);
// Description:
// Set/Get the filename to be used with the particle writer when
// dumping particles to disk
vtkSetMacro(EnableParticleWriting,int);
vtkGetMacro(EnableParticleWriting,int);
vtkBooleanMacro(EnableParticleWriting,int);
// Description:
// Provide support for multiple see sources
void AddSourceConnection(vtkAlgorithmOutput* input);
void RemoveAllSources();
protected:
vtkTemporalStreamTracer();
~vtkTemporalStreamTracer();
//
// Make sure the pipeline knows what type we expect as input
//
virtual int FillInputPortInformation(int port, vtkInformation* info);
//
// The usual suspects
//
virtual int ProcessRequest(vtkInformation* request,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector);
//
// Store any information we need in the output and fetch what we can
// from the input
//
virtual int RequestInformation(vtkInformation* request,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector);
//
// Compute input time steps given the output step
//
virtual int RequestUpdateExtent(vtkInformation* request,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector);
//
// what the pipeline calls for each time step
//
virtual int RequestData(vtkInformation* request,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector);
//
// these routines are internally called to actually generate the output
//
virtual int ProcessInput(vtkInformationVector** inputVector);
virtual int GenerateOutput(vtkInformationVector** inputVector,
vtkInformationVector* outputVector);
//
// Initialization of input (vector-field) geometry
//
int InitializeInterpolator();
int SetTemporalInput(vtkDataObject *td, int index);
//BTX
//
// Description : Test the list of particles to see if they are
// inside our data. Add good ones to passed list and set count to the
// number that passed
void TestParticles(
vtkTemporalStreamTracerNamespace::ParticleVector &candidates,
vtkTemporalStreamTracerNamespace::ParticleVector &passed,
int &count);
// Description : Before starting the particle trace, classify
// all the injection/seed points according to which processor
// they belong to. This saves us retesting at every injection time
// providing 1) The volumes are static, 2) the seed points are static
// If either are non static, then this step is skipped.
virtual void AssignSeedsToProcessors(
vtkDataSet *source, int sourceID, int ptId,
vtkTemporalStreamTracerNamespace::ParticleVector &LocalSeedPoints,
int &LocalAssignedCount);
// Description : once seeds have been assigned to a process, we
// give each one a uniqu ID. We need to use MPI to find out
// who is using which numbers.
virtual void AssignUniqueIds(
vtkTemporalStreamTracerNamespace::ParticleVector &LocalSeedPoints);
// Description : copy list of particles from a vector used for testing particles
// and sending between processors, into a list, which is used as the master
// list on this processor
void UpdateParticleList(
vtkTemporalStreamTracerNamespace::ParticleVector &candidates);
// Description : Perform a GatherV operation on a vector of particles
// this is used during classification of seed points and also between iterations
// of the main loop as particles leave each processor domain
virtual void TransmitReceiveParticles(
vtkTemporalStreamTracerNamespace::ParticleVector &outofdomain,
vtkTemporalStreamTracerNamespace::ParticleVector &received,
bool removeself);
// Description : The main loop performing Runge-Kutta integration of a single
// particle between the two times supplied.
void IntegrateParticle(
vtkTemporalStreamTracerNamespace::ParticleListIterator &it,
double currenttime, double terminationtime,
vtkInitialValueProblemSolver* integrator);
// Description : When particle leave the domain, they must be collected
// and sent to the other processors for possible continuation.
// These routines manage the collection and sending after each main iteration.
// RetryWithPush adds a small pusj to aparticle along it's current velocity
// vector, this helps get over cracks in dynamic/rotating meshes
bool RetryWithPush(
vtkTemporalStreamTracerNamespace::ParticleInformation &info,
double velocity[3], double delT);
// if the particle is added to send list, then returns value is 1,
// if it is kept on this process after a retry return value is 0
bool SendParticleToAnotherProcess(
vtkTemporalStreamTracerNamespace::ParticleInformation &info,
double point1[4], double delT);
void AddParticleToMPISendList(
vtkTemporalStreamTracerNamespace::ParticleInformation &info);
// Description : This is an old routine kept for possible future use.
// In dnamic meshes, particles might leave the domain and need to be extrapolated across
// a gap between the meshes before they re-renter another domain
// dodgy rotating meshes need special care....
bool ComputeDomainExitLocation(
double pos[4], double p2[4], double intersection[4],
vtkGenericCell *cell);
//
//ETX
//
//Track internally which round of RequestData it is--between 0 and 2
int RequestIndex;
// Track which process we are
int UpdatePiece;
int UpdateNumPieces;
// Important for Caching of Cells/Ids/Weights etc
int AllFixedGeometry;
int StaticMesh;
int StaticSeeds;
// Support 'pipeline' time or manual SetTimeStep
unsigned int TimeStep;
unsigned int ActualTimeStep;
int IgnorePipelineTime;
unsigned int NumberOfInputTimeSteps;
//BTX
std::vector<double> InputTimeValues;
std::vector<double> OutputTimeValues;
//ETX
// more time management
double EarliestTime;
double CurrentTimeSteps[2];
double TimeStepResolution;
// Particle termination after time
double TerminationTime;
int TerminationTimeUnit;
// Particle injection+Reinjection
int ForceReinjectionEveryNSteps;
bool ReinjectionFlag;
int ReinjectionCounter;
vtkTimeStamp ParticleInjectionTime;
// Particle writing to disk
vtkAbstractParticleWriter *ParticleWriter;
char *ParticleFileName;
int EnableParticleWriting;
//BTX
// The main lists which are held during operation- between time step updates
unsigned int NumberOfParticles;
vtkTemporalStreamTracerNamespace::ParticleDataList ParticleHistories;
vtkTemporalStreamTracerNamespace::ParticleVector LocalSeeds;
//ETX
//BTX
//
// Scalar arrays that are generated as each particle is updated
//
vtkSmartPointer<vtkFloatArray> ParticleAge;
vtkSmartPointer<vtkIntArray> ParticleIds;
vtkSmartPointer<vtkCharArray> ParticleSourceIds;
vtkSmartPointer<vtkIntArray> InjectedPointIds;
vtkSmartPointer<vtkIntArray> InjectedStepIds;
vtkSmartPointer<vtkIntArray> ErrorCode;
vtkSmartPointer<vtkFloatArray> ParticleVorticity;
vtkSmartPointer<vtkFloatArray> ParticleRotation;
vtkSmartPointer<vtkFloatArray> ParticleAngularVel;
vtkSmartPointer<vtkDoubleArray> cellVectors;
vtkSmartPointer<vtkPointData> OutputPointData;
int InterpolationCount;
// The output geometry
vtkSmartPointer<vtkCellArray> ParticleCells;
vtkSmartPointer<vtkPoints> OutputCoordinates;
// List used for transmitting between processors during parallel operation
vtkTemporalStreamTracerNamespace::ParticleVector MPISendList;
// The velocity interpolator
vtkSmartPointer<vtkTemporalInterpolatedVelocityField> Interpolator;
// The input datasets which are stored by time step 0 and 1
vtkSmartPointer<vtkMultiBlockDataSet> InputDataT[2];
vtkSmartPointer<vtkDataSet> DataReferenceT[2];
// Cache bounds info for each dataset we will use repeatedly
typedef struct {
double b[6];
} bounds;
std::vector<bounds> CachedBounds[2];
// utility function we use to test if a point is inside any of our local datasets
bool InsideBounds(double point[]);
//ETX
// global Id counter used to give particles a stamp
vtkIdType UniqueIdCounter;
vtkIdType UniqueIdCounterMPI;
// for debugging only;
int substeps;
private:
// Description:
// Hide this because we require a new interpolator type
void SetInterpolatorPrototype(vtkAbstractInterpolatedVelocityField*) {}
private:
vtkTemporalStreamTracer(const vtkTemporalStreamTracer&); // Not implemented.
void operator=(const vtkTemporalStreamTracer&); // Not implemented.
};
#endif
|