/usr/include/libwildmagic/Wm5Polynomial1.h is in libwildmagic-dev 5.13-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | // Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2011/03/27)
#ifndef WM5POLYNOMIAL1_H
#define WM5POLYNOMIAL1_H
#include "Wm5MathematicsLIB.h"
#include "Wm5Math.h"
#include "Wm5Memory.h"
namespace Wm5
{
template <typename Real>
class Polynomial1
{
public:
// Construction and destruction.
Polynomial1 (int degree = -1);
Polynomial1 (const Polynomial1& poly);
~Polynomial1 ();
// Member access.
void SetDegree (int degree);
inline int GetDegree () const;
inline operator const Real* () const;
inline operator Real* ();
inline const Real& operator[] (int i) const;
inline Real& operator[] (int i);
// Assignment.
Polynomial1& operator= (const Polynomial1& poly);
// Evaluation of the polynomial, p(t).
Real operator() (Real t) const;
// Arithmetic operations.
Polynomial1 operator+ (const Polynomial1& poly) const;
Polynomial1 operator- (const Polynomial1& poly) const;
Polynomial1 operator* (const Polynomial1& poly) const;
Polynomial1 operator+ (Real scalar) const; // input is degree 0 poly
Polynomial1 operator- (Real scalar) const; // input is degree 0 poly
Polynomial1 operator* (Real scalar) const;
Polynomial1 operator/ (Real scalar) const;
Polynomial1 operator- () const;
// scalar*poly
friend Polynomial1<Real> operator* (Real scalar,
const Polynomial1<Real>& poly)
{
return poly*scalar;
}
// Arithmetic updates.
Polynomial1& operator += (const Polynomial1& poly);
Polynomial1& operator -= (const Polynomial1& poly);
Polynomial1& operator *= (const Polynomial1& poly);
Polynomial1& operator += (Real scalar); // input is degree 0 poly
Polynomial1& operator -= (Real scalar); // input is degree 0 poly
Polynomial1& operator *= (Real scalar);
Polynomial1& operator /= (Real scalar);
// Compute the derivative of the polynomial.
Polynomial1 GetDerivative () const;
// Inversion ( invpoly[i] = poly[degree-i] for 0 <= i <= degree ).
Polynomial1 GetInversion () const;
// Reduce the degree by eliminating all (nearly) zero leading coefficients
// and by making the leading coefficient one. The input parameter is
// the threshold for specifying that a coefficient is effectively zero.
void Compress (Real epsilon);
// If 'this' is P(t) and the divisor is D(t) with degree(P) >= degree(D),
// then P(t) = Q(t)*D(t)+R(t) where Q(t) is the quotient with
// degree(Q) = degree(P) - degree(D) and R(t) is the remainder with
// degree(R) < degree(D). If this routine is called with
// degree(P) < degree(D), then Q = 0 and R = P are returned. The value
// of epsilon is used as a threshold on the coefficients of the remainder
// polynomial. If smaller, the coefficient is assumed to be zero.
void Divide (const Polynomial1& divisor, Polynomial1& quotient,
Polynomial1& remainder, Real epsilon) const;
protected:
int mDegree;
Real* mCoeff;
};
#include "Wm5Polynomial1.inl"
typedef Polynomial1<float> Polynomial1f;
typedef Polynomial1<double> Polynomial1d;
}
#endif
|