This file is indexed.

/usr/include/libwildmagic/Wm5Polynomial1.h is in libwildmagic-dev 5.13-1+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
// Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2011/03/27)

#ifndef WM5POLYNOMIAL1_H
#define WM5POLYNOMIAL1_H

#include "Wm5MathematicsLIB.h"
#include "Wm5Math.h"
#include "Wm5Memory.h"

namespace Wm5
{

template <typename Real>
class Polynomial1
{
public:
    // Construction and destruction.
    Polynomial1 (int degree = -1);
    Polynomial1 (const Polynomial1& poly);
    ~Polynomial1 ();

    // Member access.
    void SetDegree (int degree);
    inline int GetDegree () const;
    inline operator const Real* () const;
    inline operator Real* ();
    inline const Real& operator[] (int i) const;
    inline Real& operator[] (int i);

    // Assignment.
    Polynomial1& operator= (const Polynomial1& poly);

    // Evaluation of the polynomial, p(t).
    Real operator() (Real t) const;

    // Arithmetic operations.
    Polynomial1 operator+ (const Polynomial1& poly) const;
    Polynomial1 operator- (const Polynomial1& poly) const;
    Polynomial1 operator* (const Polynomial1& poly) const;
    Polynomial1 operator+ (Real scalar) const;  // input is degree 0 poly
    Polynomial1 operator- (Real scalar) const;  // input is degree 0 poly
    Polynomial1 operator* (Real scalar) const;
    Polynomial1 operator/ (Real scalar) const;
    Polynomial1 operator- () const;

    // scalar*poly
    friend Polynomial1<Real> operator* (Real scalar,
        const Polynomial1<Real>& poly)
    {
        return poly*scalar;
    }

    // Arithmetic updates.
    Polynomial1& operator += (const Polynomial1& poly);
    Polynomial1& operator -= (const Polynomial1& poly);
    Polynomial1& operator *= (const Polynomial1& poly);
    Polynomial1& operator += (Real scalar);  // input is degree 0 poly
    Polynomial1& operator -= (Real scalar);  // input is degree 0 poly
    Polynomial1& operator *= (Real scalar);
    Polynomial1& operator /= (Real scalar);

    // Compute the derivative of the polynomial.
    Polynomial1 GetDerivative () const;

    // Inversion ( invpoly[i] = poly[degree-i] for 0 <= i <= degree ).
    Polynomial1 GetInversion () const;

    // Reduce the degree by eliminating all (nearly) zero leading coefficients
    // and by making the leading coefficient one.  The input parameter is
    // the threshold for specifying that a coefficient is effectively zero.
    void Compress (Real epsilon);

    // If 'this' is P(t) and the divisor is D(t) with degree(P) >= degree(D),
    // then P(t) = Q(t)*D(t)+R(t) where Q(t) is the quotient with
    // degree(Q) = degree(P) - degree(D) and R(t) is the remainder with
    // degree(R) < degree(D).  If this routine is called with
    // degree(P) < degree(D), then Q = 0 and R = P are returned.  The value
    // of epsilon is used as a threshold on the coefficients of the remainder
    // polynomial.  If smaller, the coefficient is assumed to be zero.
    void Divide (const Polynomial1& divisor, Polynomial1& quotient,
        Polynomial1& remainder, Real epsilon) const;

protected:
    int mDegree;
    Real* mCoeff;
};

#include "Wm5Polynomial1.inl"

typedef Polynomial1<float> Polynomial1f;
typedef Polynomial1<double> Polynomial1d;

}

#endif