/usr/include/libwildmagic/Wm5SingularValueDecompositionGTE.h is in libwildmagic-dev 5.13-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | // Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.12.0 (2014/07/02)
// NOTE: This code was written for the upcoming Geometric Tools Engine but
// has been back-ported to Wild Magic 5 to replace its badly implemented
// version.
#ifndef WM5SINGULARVALUEDECOMPOSITIONGTE_H
#define WM5SINGULARVALUEDECOMPOSITIONGTE_H
#include "Wm5MathematicsLIB.h"
// The SingularValueDecomposition class is an implementation of Algorithm
// 8.3.2 (The SVD Algorithm) described in "Matrix Computations, 2nd
// edition" by G. H. Golub and Charles F. Van Loan, The Johns Hopkins
// Press, Baltimore MD, Fourth Printing 1993. Algorithm 5.4.2 (Householder
// Bidiagonalization) is used to reduce A to bidiagonal B. Algorithm 8.3.1
// (Golub-Kahan SVD Step) is used for the iterative reduction from bidiagonal
// to diagonal. If A is the original matrix, S is the matrix whose diagonal
// entries are the singular values, and U and V are corresponding matrices,
// then theoretically U^T*A*V = S. Numerically, we have errors
// E = U^T*A*V - S. Algorithm 8.3.2 mentions that one expects |E| is
// approximately u*|A|, where |M| denotes the Frobenius norm of M and where
// u is the unit roundoff for the floating-point arithmetic: 2^{-23} for
// 'float', which is FLT_EPSILON = 1.192092896e-7f, and 2^{-52} for'double',
// which is DBL_EPSILON = 2.2204460492503131e-16.
//
// The condition |a(i,i+1)| <= epsilon*(|a(i,i) + a(i+1,i+1)|) used to
// determine when the reduction decouples to smaller problems is implemented
// as: sum = |a(i,i)| + |a(i+1,i+1)|; sum + |a(i,i+1)| == sum. The idea is
// that the superdiagonal term is small relative to its diagonal neighbors,
// and so it is effectively zero. The unit tests have shown that this
// interpretation of decoupling is effective.
//
// The condition |a(i,i)| <= epsilon*|B| used to determine when the
// reduction decouples (with a zero singular value) is implemented using
// the Frobenius norm of B and epsilon = multiplier*u, where for now the
// multiplier is hard-coded in Solve(...) as 8.
//
// The authors suggest that once you have the bidiagonal matrix, a practical
// implementation will store the diagonal and superdiagonal entries in linear
// arrays, ignoring the theoretically zero values not in the 2-band. This is
// good for cache coherence, and we have used the suggestion. The essential
// parts of the Householder u-vectors are stored in the lower-triangular
// portion of the matrix and the essential parts of the Householder v-vectors
// are stored in the upper-triangular portion of the matrix. To avoid having
// to recompute 2/Dot(u,u) and 2/Dot(v,v) when constructing orthogonal U and
// V, we store these quantities in additional memory during bidiagonalization.
//
// For matrices with randomly generated values in [0,1], the unit tests
// produce the following information for N-by-N matrices.
//
// N |A| |E| |E|/|A| iterations
// -------------------------------------------
// 2 1.4831 4.1540e-16 2.8007e-16 1
// 3 2.1065 3.5024e-16 1.6626e-16 4
// 4 2.4979 7.4605e-16 2.9867e-16 6
// 5 3.6591 1.8305e-15 5.0025e-16 9
// 6 4.0572 2.0571e-15 5.0702e-16 10
// 7 4.7745 2.9057e-15 6.0859e-16 12
// 8 5.1964 2.7958e-15 5.3803e-16 13
// 9 5.7599 3.3128e-15 5.7514e-16 16
// 10 6.2700 3.7209e-15 5.9344e-16 16
// 11 6.8220 5.0580e-15 7.4142e-16 18
// 12 7.4540 5.2493e-15 7.0422e-16 21
// 13 8.1225 5.6043e-15 6.8997e-16 24
// 14 8.5883 5.8553e-15 6.8177e-16 26
// 15 9.1337 6.9663e-15 7.6270e-16 27
// 16 9.7884 9.1358e-15 9.3333e-16 29
// 17 10.2407 8.2715e-15 8.0771e-16 34
// 18 10.7147 8.9748e-15 8.3761e-16 33
// 19 11.1887 1.0094e-14 9.0220e-16 32
// 20 11.7739 9.7000e-15 8.2386e-16 35
// 21 12.2822 1.1217e-14 9.1329e-16 36
// 22 12.7649 1.1071e-14 8.6732e-16 37
// 23 13.3366 1.1271e-14 8.4513e-16 41
// 24 13.8505 1.2806e-14 9.2460e-16 43
// 25 14.4332 1.3081e-14 9.0637e-16 43
// 26 14.9301 1.4882e-14 9.9680e-16 46
// 27 15.5214 1.5571e-14 1.0032e-15 48
// 28 16.1029 1.7553e-14 1.0900e-15 49
// 29 16.6407 1.6219e-14 9.7467e-16 53
// 30 17.1891 1.8560e-14 1.0797e-15 55
// 31 17.7773 1.8522e-14 1.0419e-15 56
//
// The singularvalues and |E|/|A| values were compared to those generated by
// Mathematica Version 9.0; Wolfram Research, Inc., Champaign IL, 2012.
// The results were all comparable with singular values agreeing to a large
// number of decimal places.
//
// Timing on an Intel (R) Core (TM) i7-3930K CPU @ 3.20 GHZ (in seconds)
// for NxN matrices:
//
// N |E|/|A| iters bidiag QR U-and-V comperr
// -------------------------------------------------------
// 512 3.8632e-15 848 0.341 0.016 1.844 2.203
// 1024 5.6456e-15 1654 4.279 0.032 18.765 20.844
// 2048 7.5499e-15 3250 40.421 0.141 186.607 213.216
//
// where iters is the number of QR steps taken, bidiag is the computation
// of the Householder reflection vectors, U-and-V is the composition of
// Householder reflections and Givens rotations to obtain the orthogonal
// matrices of the decomposigion, and comperr is the computation E =
// U^T*A*V - S.
namespace Wm5
{
template <typename Real>
class WM5_MATHEMATICS_ITEM SingularValueDecompositionGTE
{
public:
// The solver processes MxN symmetric matrices, where M >= N > 1
// ('numRows' is M and 'numCols' is N) and the matrix is stored in
// row-major order. The maximum number of iterations ('maxIterations')
// must be specified for the reduction of a bidiagonal matrix to a
// diagonal matrix. The goal is to compute MxM orthogonal U, NxN
// orthogonal V, and MxN matrix S for which U^T*A*V = S. The only
// nonzero entries of S are on the diagonal; the diagonal entries are
// the singular values of the original matrix.
SingularValueDecompositionGTE(int numRows, int numCols,
unsigned int maxIterations);
// A copy of the MxN input is made internally. The order of the singular
// values is specified by sortType: -1 (decreasing), 0 (no sorting), or +1
// (increasing). When sorted, the columns of the orthogonal matrices
// are ordered accordingly. The return value is the number of iterations
// consumed when convergence occurred, 0xFFFFFFFF when convergence did not
// occur or 0 when N <= 1 or M < N was passed to the constructor.
unsigned int Solve(Real const* input, int sortType);
// Get the singular values of the matrix passed to Solve(...). The input
// 'singularValues' must have N elements.
void GetSingularValues(Real* singularValues) const;
// Accumulate the Householder reflections, the Givens rotations, and the
// diagonal fix-up matrix to compute the orthogonal matrices U and V for
// which U^T*A*V = S. The input uMatrix must be MxM and the input vMatrix
// must be NxN, both stored in row-major order.
void GetU(Real* uMatrix) const;
void GetV(Real* vMatrix) const;
private:
// Bidiagonalize using Householder reflections. On input, mMatrix is a
// copy of the input matrix and has one extra row. On output, the
// diagonal and superdiagonal contain the bidiagonalized results. The
// lower-triangular portion stores the essential parts of the Householder
// u vectors (the elements of u after the leading 1-valued component) and
// the upper-triangular portion stores the essential parts of the
// Householder v vectors. To avoid recomputing 2/Dot(u,u) and 2/Dot(v,v),
// these quantities are stored in mTwoInvUTU and mTwoInvVTV.
void Bidiagonalize();
// A helper for generating Givens rotation sine and cosine robustly.
void GetSinCos(Real u, Real v, Real& cs, Real& sn);
// Test for (effectively) zero-valued diagonal entries (through all but
// the last). For each such entry, the B matrix decouples. Perform
// that decoupling. If there are no zero-valued entries, then the
// Golub-Kahan step must be performed.
bool DiagonalEntriesNonzero(int imin, int imax, Real threshold);
// This is Algorithm 8.3.1 in "Matrix Computations, 2nd edition" by
// G. H. Golub and C. F. Van Loan.
void DoGolubKahanStep(int imin, int imax);
// The diagonal entries are not guaranteed to be nonnegative during the
// construction. After convergence to a diagonal matrix S, test for
// negative entries and build a diagonal matrix that reverses the sign
// on the S-entry.
void EnsureNonnegativeDiagonal();
// Sort the singular values and compute the corresponding permutation of
// the indices of the array storing the singular values. The permutation
// is used for reordering the singular values and the corresponding
// columns of the orthogonal matrix in the calls to GetSingularValues(...)
// and GetOrthogonalMatrices(...).
void ComputePermutation(int sortType);
// The number rows and columns of the matrices to be processed.
int mNumRows, mNumCols;
// The maximum number of iterations for reducing the bidiagonal matrix
// to a diagonal matrix.
unsigned int mMaxIterations;
// The internal copy of a matrix passed to the solver. See the comments
// about function Bidiagonalize() about what is stored in the matrix.
std::vector<Real> mMatrix; // MxN elements
// After the initial bidiagonalization by Householder reflections, we no
// longer need the full mMatrix. Copy the diagonal and superdiagonal
// entries to linear arrays in order to be cache friendly.
std::vector<Real> mDiagonal; // N elements
std::vector<Real> mSuperdiagonal; // N-1 elements
// The Givens rotations used to reduce the initial bidiagonal matrix to
// a diagonal matrix. A rotation is the identity with the following
// replacement entries: R(index0,index0) = cs, R(index0,index1) = sn,
// R(index1,index0) = -sn, and R(index1,index1) = cs. If N is the
// number of matrix columns and K is the maximum number of iterations, the
// maximum number of right or left Givens rotations is K*(N-1). The
// maximum amount of memory is allocated to store these. However, we also
// potentially need left rotations to decouple the matrix when a diagonal
// terms are zero. Worst case is a number of matrices quadratic in N, so
// for now we just use std::vector<Rotation> whose initial capacity is
// K*(N-1).
struct WM5_MATHEMATICS_ITEM GivensRotation
{
GivensRotation();
GivensRotation(int inIndex0, int inIndex1, Real inCs, Real inSn);
int index0, index1;
Real cs, sn;
};
std::vector<GivensRotation> mRGivens;
std::vector<GivensRotation> mLGivens;
// The diagonal matrix that is used to convert S-entries to nonnegative.
std::vector<Real> mFixupDiagonal; // N elements
// When sorting is requested, the permutation associated with the sort is
// stored in mPermutation. When sorting is not requested, mPermutation[0]
// is set to -1. mVisited is used for finding cycles in the permutation.
struct SortItem
{
Real singularValue;
int index;
bool operator<(SortItem const& item) const
{
return singularValue < item.singularValue;
}
bool operator>(SortItem const& item) const
{
return singularValue > item.singularValue;
}
};
std::vector<int> mPermutation; // N elements
mutable std::vector<int> mVisited; // N elements
// Temporary storage to compute Householder reflections and to support
// sorting of columns of the orthogonal matrices.
std::vector<Real> mTwoInvUTU; // N elements
std::vector<Real> mTwoInvVTV; // N-2 elements
mutable std::vector<Real> mUVector; // M elements
mutable std::vector<Real> mVVector; // N elements
mutable std::vector<Real> mWVector; // max(M,N) elements
};
typedef SingularValueDecompositionGTE<float> SingularValueDecompositionGTEf;
typedef SingularValueDecompositionGTE<double> SingularValueDecompositionGTEd;
}
#endif
|