/usr/include/libwildmagic/Wm5TriangulateEC.h is in libwildmagic-dev 5.13-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 | // Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.1 (2010/10/01)
#ifndef WM5TRIANGULATEEC_H
#define WM5TRIANGULATEEC_H
#include "Wm5MathematicsLIB.h"
#include "Wm5Query2.h"
#include "Wm5Vector2.h"
namespace Wm5
{
template <typename Real>
class WM5_MATHEMATICS_ITEM TriangulateEC
{
public:
// This class implements triangulation of polygons using ear clipping.
// The method is O(n^2) for n input points. There are five constructors.
// The query type and epsilon parameters are discussed later. In all
// cases, the output is
//
// triangles:
// An array of 3*T indices representing T triangles. Each triple
// (i0,i1,i2) corresponds to the triangle (P[i0],P[i1],P[i2]),
// where P is the 'positions' input. These triangles are all
// counterclockwise ordered.
//
// TriangulateEC(positions,queryType,epsilon,triangles)
// positions:
// An array of n vertex positions for a simple polygon. The
// polygon is (P[0],P[1],...,P[n-1]).
//
// TriangulateEC(positions,queryType,epsilon,polygon,triangles)
// positions:
// An array of vertex positions, not necessarily the exact set of
// positions for the polygon vertices.
// polygon:
// An array of n indices into 'positions'. If the array is
// (I[0],I[1],...,I[n-1]), the polygon vertices are
// (P[I[0]],P[I[1]],...,P[I[n-1]]).
//
// TriangulateEC(positions,queryType,epsilon,outerPolygon,innerPolygon,
// triangles)
// positions:
// An array of vertex positions, not necessarily the exact set of
// positions for the polygon vertices.
// outerPolygon:
// An array of n indices into 'positions' for the outer polygon.
// If the array is (I[0],I[1],...,I[n-1]), the outer polygon
// vertices are (P[I[0]],P[I[1]],...,P[I[n-1]]).
// innerPolygon:
// An array of m indices into 'positions' for the inner polygon.
// The inner polygon must be strictly inside the outer polygon.
// If the array is (J[0],J[1],...,J[m-1]), the inner polygon
// vertices are (P[J[0]],P[J[1]],...,P[J[m-1]]).
//
// TriangulateEC(positions,queryType,epsilon,outerPolygon,innerPolygons,
// triangles)
// positions:
// An array of vertex positions, not necessarily the exact set of
// positions for the polygon vertices.
// outerPolygon:
// An array of n indices into 'positions' for the outer polygon.
// If the array is (I[0],I[1],...,I[n-1]), the outer polygon
// vertices are (P[I[0]],P[I[1]],...,P[I[n-1]]).
// innerPolygons:
// An array of arrays of indices, each index array representing
// an inner polygon. The inner polygons must be nonoverlapping and
// strictly contained in the outer polygon. If innerPolygons[i]
// is the array (J[0],J[1],...,J[m-1]), the inner polygon
// vertices are (P[J[0]],P[J[1]],...,P[J[m-1]]).
//
// TriangulateEC(positions,queryType,epsilon,tree,triangles)
// positions:
// An array of vertex positions, not necessarily the exact set of
// positions for the polygon vertices.
// tree:
// A hierarchy of nested polygons. The root node corresponds to
// the outermost outer polygon. The child nodes of the root
// correspond to inner polygons contained by the outer polygon.
// Each inner polygon may itself contain outer polygons, and
// those outer polygons may themselves contain inner polygons.
//
// You have a choice of speed versus accuracy. The fastest choice is
// Query::QT_INT64, but it gives up a lot of precision, scaling the points
// to [0,2^{20}]^3. The choice Query::QT_INTEGER gives up less precision,
// scaling the points to [0,2^{24}]^3. The choice Query::QT_RATIONAL uses
// exact arithmetic, but is the slowest choice. The choice Query::QT_REAL
// uses floating-point arithmetic, but is not robust in all cases. The
// choice Query::QT_FILTERED uses floating-point arithmetic to compute
// determinants whose signs are of interest. If the floating-point value
// is nearly zero, the determinant is recomputed using exact rational
// arithmetic in order to correctly classify the sign. The hope is to
// have an exact result computed faster than with all rational arithmetic.
// The value fEpsilon is used only for the Query::QT_FILTERED case and
// should be in [0,1]. If 0, the method defaults to all exact rational
// arithmetic. If 1, the method defaults to all floating-point
// arithmetic. Generally, if M is the maximum absolute value of a
// determinant and if d is the current determinant value computed as a
// floating-point quantity, the recalculation with rational arithmetic
// occurs when |d| < epsilon*M.
// Convenient typedefs.
typedef std::vector<Vector2<Real> > Positions;
typedef std::vector<int> Indices;
typedef std::vector<Indices*> IndicesArray;
typedef std::map<int,int> IndexMap;
// The input 'positions' represents an array of vertices for a simple
// polygon. The vertices are positions[0] through positions[n-1], where
// the polygon has n vertices that are listed in counterclockwise order.
TriangulateEC (const Positions& positions, Query::Type queryType,
Real epsilon, Indices& triangles);
// The input 'positions' represents an array of vertices that contains the
// vertices of a simple polygon. The input 'polygon' represents a simple
// polygon whose vertices are positions[polygon[0]] through
// positions[polygon[m-1]], where the polygon has m vertices that are
// listed in counterclockwise order.
TriangulateEC (const Positions& positions, Query::Type queryType,
Real epsilon, const Indices& polygon, Indices& triangles);
// The input 'positions' is a shared array of vertices that contains the
// vertices for two simple polygons, an outer polygon and an inner
// polygon. The inner polygon must be strictly inside the outer polygon.
// The input 'outer' represents the outer polygon whose vertices are
// positions[outer[0]] through positions[outer[n-1]], where the outer
// polygon has n vertices that are listed in counterclockwise order. The
// input 'inner' represents the inner polygon whose vertices are
// positions[inner[0]] through positions[inner[m-1]], where the inner
// polygon has m vertices that are listed in clockwise order.
TriangulateEC (const Positions& positions, Query::Type queryType,
Real epsilon, const Indices& outer, const Indices& inner,
Indices& triangles);
// The input 'positions' is a shared array of vertices that contains the
// vertices for multiple simple polygons, an outer polygon and one or more
// inner polygons. The inner polygons must be nonoverlapping and strictly
// inside the outer polygon. The input 'outer' represents the outer
// polygon whose vertices are positions[outer[0]] through
// positions[outer[n-1]], where the outer polygon has n vertices that are
// listed in counterclockwise order. The input element 'inners[i]'
// represents the i-th inner polygon whose vertices are
// positions[inners[i][0]] through positions[inners[i][m-1]], where this
// polygon has m vertices that are listed in clockwise order.
TriangulateEC (const Positions& positions, Query::Type queryType,
Real epsilon, const Indices& outer, const IndicesArray& inners,
Indices& triangles);
// A tree of nested polygons. The root node corresponds to an outer
// polygon. The children of the root correspond to inner polygons, which
// are nonoverlapping polygons strictly contained in the outer polygon.
// Each inner polygon may itself contain an outer polygon, thus leading
// to a hierarchy of polygons. The outer polygons have vertices listed
// in counterclockwise order. The inner polygons have vertices listed in
// clockwise order.
class WM5_MATHEMATICS_ITEM Tree
{
public:
Indices Polygon;
std::vector<Tree*> Child;
};
// The input 'positions' is a shared array of vertices that contains the
// vertices for multiple simple polygons in a tree of polygons.
TriangulateEC (const Positions& positions, Query::Type queryType,
Real epsilon, const Tree* tree, Indices& triangles);
~TriangulateEC ();
// Helper function to delete Tree objects. Call this only if all tree
// nodes were dynamically allocated.
static void Delete (Tree*& root);
private:
// Create the query object and scaled positions to be used during
// triangulation. Extra elements are required when triangulating polygons
// with holes. These are preallocated to avoid dynamic resizing during
// the triangulation.
void InitializePositions (const Positions& positions,
Query::Type queryType, Real epsilon, int extraElements);
// Create the vertex objects that store the various lists required by the
// ear-clipping algorithm.
void InitializeVertices (int numVertices, const int* indices);
// Apply ear clipping to the input polygon. Polygons with holes are
// preprocessed to obtain an index array that is nearly a simple polygon.
// This outer polygon has a pair of coincident edges per inner polygon.
void DoEarClipping (int numVertices, const int* indices,
Indices& triangles);
// This function is used to help determine a pair of visible vertices
// for the purpose of triangulating polygons with holes. The query is
// point-in-triangle, but is encapsulated here to use the same type of
// query object that the user specified in the constructors.
int TriangleQuery (const Vector2<Real>& position, Query::Type queryType,
Real epsilon, const Vector2<Real> triangle[3]) const;
// Given an outer polygon that contains an inner polygon, this function
// determines a pair of visible vertices and inserts two coincident edges
// to generate a nearly simple polygon.
void CombinePolygons (Query::Type queryType, Real epsilon,
int nextElement, const Indices& outer, const Indices& inner,
IndexMap& indexMap, Indices& combined);
// Two extra elements are needed in the position array per outer-inners
// polygon. This function computes the total number of extra elements
// needed for the input tree. This number is passed to the function
// InitializePositions.
static int GetExtraElements (const Tree* tree);
// Given an outer polygon that contains a set of nonoverlapping inner
// polygons, this function determines pairs of visible vertices and
// inserts coincident edges to generate a nearly simple polygon. It
// repeatedly calls CombinePolygons for each inner polygon of the outer
// polygon.
void ProcessOuterAndInners (Query::Type queryType, Real epsilon,
const Indices& outer, const IndicesArray& inners,
int& nextElement, IndexMap& indexMap, Indices& combined);
// The insertion of coincident edges to obtain a nearly simple polygon
// requires duplication of vertices in order that the ear-clipping
// algorithm work correctly. After the triangulation, the indices of
// the duplicated vertices are converted to the original indices.
void RemapIndices (const IndexMap& indexMap, Indices& triangles) const;
// Doubly linked lists for storing specially tagged vertices.
class Vertex
{
public:
Vertex ();
int Index; // index of vertex in position array
bool IsConvex, IsEar;
int VPrev, VNext; // vertex links for polygon
int SPrev, SNext; // convex/reflex vertex links (disjoint lists)
int EPrev, ENext; // ear links
};
Vertex& V (int i);
bool IsConvex (int i);
bool IsEar (int i);
void InsertAfterC (int i); // insert convex vertex
void InsertAfterR (int i); // insert reflex vertesx
void InsertEndE (int i); // insert ear at end of list
void InsertAfterE (int i); // insert ear after efirst
void InsertBeforeE (int i); // insert ear before efirst
void RemoveV (int i); // remove vertex
int RemoveE (int i); // remove ear at i
void RemoveR (int i); // remove reflex vertex
// The doubly linked list.
std::vector<Vertex> mVertices;
int mCFirst, mCLast; // linear list of convex vertices
int mRFirst, mRLast; // linear list of reflex vertices
int mEFirst, mELast; // cyclical list of ears
// For robust determinant calculation.
Query2<Real>* mQuery;
std::vector<Vector2<Real> >mSPositions;
};
}
#endif
|