/usr/share/doc/nettle-dev/nettle.html is in nettle-dev 3.3-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- This manual is for the Nettle library (version 3.2), a
low-level cryptographic library.
Originally written 2001 by Niels Möller, updated 2015.
This manual is placed in the public domain. You may freely copy it, in
whole or in part, with or without modification. Attribution is
appreciated, but not required. -->
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Nettle: a low-level cryptographic library</title>
<meta name="description" content="Nettle: a low-level cryptographic library">
<meta name="keywords" content="Nettle: a low-level cryptographic library">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="#Top" rel="start" title="Top">
<link href="#Index" rel="index" title="Index">
<link href="#SEC_Contents" rel="contents" title="Table of Contents">
<link href="dir.html#Top" rel="up" title="(dir)">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<h1 class="settitle" align="center">Nettle: a low-level cryptographic library</h1>
<a name="SEC_Contents"></a>
<h2 class="contents-heading">Table of Contents</h2>
<div class="contents">
<ul class="no-bullet">
<li><a name="toc-Introduction-1" href="#Introduction">1 Introduction</a></li>
<li><a name="toc-Copyright-1" href="#Copyright">2 Copyright</a></li>
<li><a name="toc-Conventions-1" href="#Conventions">3 Conventions</a></li>
<li><a name="toc-Example-1" href="#Example">4 Example</a></li>
<li><a name="toc-Linking-1" href="#Linking">5 Linking</a></li>
<li><a name="toc-Reference-1" href="#Reference">6 Reference</a>
<ul class="no-bullet">
<li><a name="toc-Hash-functions-1" href="#Hash-functions">6.1 Hash functions</a>
<ul class="no-bullet">
<li><a name="toc-Recommended-hash-functions-1" href="#Recommended-hash-functions">6.1.1 Recommended hash functions</a>
<ul class="no-bullet">
<li><a name="toc-SHA256" href="#SHA256">6.1.1.1 <acronym>SHA256</acronym></a></li>
<li><a name="toc-SHA224" href="#SHA224">6.1.1.2 <acronym>SHA224</acronym></a></li>
<li><a name="toc-SHA512" href="#SHA512">6.1.1.3 <acronym>SHA512</acronym></a></li>
<li><a name="toc-SHA384-and-other-variants-of-SHA512" href="#SHA384-and-other-variants-of-SHA512">6.1.1.4 <acronym>SHA384 and other variants of SHA512</acronym></a></li>
<li><a name="toc-SHA3_002d224" href="#SHA3_002d224">6.1.1.5 <acronym>SHA3-224</acronym></a></li>
<li><a name="toc-SHA3_002d256" href="#SHA3_002d256">6.1.1.6 <acronym>SHA3-256</acronym></a></li>
<li><a name="toc-SHA3_002d384" href="#SHA3_002d384">6.1.1.7 <acronym>SHA3-384</acronym></a></li>
<li><a name="toc-SHA3_002d512" href="#SHA3_002d512">6.1.1.8 <acronym>SHA3-512</acronym></a></li>
</ul></li>
<li><a name="toc-Legacy-hash-functions-1" href="#Legacy-hash-functions">6.1.2 Legacy hash functions</a>
<ul class="no-bullet">
<li><a name="toc-MD5" href="#MD5">6.1.2.1 <acronym>MD5</acronym></a></li>
<li><a name="toc-MD2" href="#MD2">6.1.2.2 <acronym>MD2</acronym></a></li>
<li><a name="toc-MD4" href="#MD4">6.1.2.3 <acronym>MD4</acronym></a></li>
<li><a name="toc-RIPEMD160" href="#RIPEMD160">6.1.2.4 <acronym>RIPEMD160</acronym></a></li>
<li><a name="toc-SHA1" href="#SHA1">6.1.2.5 <acronym>SHA1</acronym></a></li>
<li><a name="toc-GOSTHASH94" href="#GOSTHASH94">6.1.2.6 <acronym>GOSTHASH94</acronym></a></li>
</ul></li>
<li><a name="toc-The-struct-nettle_005fhash-abstraction" href="#nettle_005fhash-abstraction">6.1.3 The <code>struct nettle_hash</code> abstraction</a></li>
</ul></li>
<li><a name="toc-Cipher-functions-1" href="#Cipher-functions">6.2 Cipher functions</a>
<ul class="no-bullet">
<li><a name="toc-AES" href="#AES">6.2.1 AES</a></li>
<li><a name="toc-ARCFOUR" href="#ARCFOUR">6.2.2 ARCFOUR</a></li>
<li><a name="toc-ARCTWO" href="#ARCTWO">6.2.3 ARCTWO</a></li>
<li><a name="toc-BLOWFISH" href="#BLOWFISH">6.2.4 BLOWFISH</a></li>
<li><a name="toc-Camellia" href="#Camellia">6.2.5 Camellia</a></li>
<li><a name="toc-CAST128" href="#CAST128">6.2.6 CAST128</a></li>
<li><a name="toc-ChaCha" href="#ChaCha">6.2.7 ChaCha</a></li>
<li><a name="toc-DES" href="#DES">6.2.8 DES</a></li>
<li><a name="toc-DES3" href="#DES3">6.2.9 DES3</a></li>
<li><a name="toc-Salsa20" href="#Salsa20">6.2.10 Salsa20</a></li>
<li><a name="toc-SERPENT" href="#SERPENT">6.2.11 SERPENT</a></li>
<li><a name="toc-TWOFISH" href="#TWOFISH">6.2.12 TWOFISH</a></li>
<li><a name="toc-The-struct-nettle_005fcipher-abstraction" href="#The-struct-nettle_005fcipher-abstraction">6.2.13 The <code>struct nettle_cipher</code> abstraction</a></li>
</ul></li>
<li><a name="toc-Cipher-modes-1" href="#Cipher-modes">6.3 Cipher modes</a>
<ul class="no-bullet">
<li><a name="toc-Cipher-Block-Chaining" href="#CBC">6.3.1 Cipher Block Chaining</a></li>
<li><a name="toc-Counter-mode" href="#CTR">6.3.2 Counter mode</a></li>
</ul></li>
<li><a name="toc-Authenticated-encryption-with-associated-data" href="#Authenticated-encryption">6.4 Authenticated encryption with associated data</a>
<ul class="no-bullet">
<li><a name="toc-EAX-1" href="#EAX">6.4.1 EAX</a>
<ul class="no-bullet">
<li><a name="toc-General-EAX-interface" href="#General-EAX-interface">6.4.1.1 General <acronym>EAX</acronym> interface</a></li>
<li><a name="toc-EAX-helper-macros" href="#EAX-helper-macros">6.4.1.2 <acronym>EAX</acronym> helper macros</a></li>
<li><a name="toc-EAX_002dAES128-interface" href="#EAX_002dAES128-interface">6.4.1.3 <acronym>EAX</acronym>-<acronym>AES</acronym>128 interface</a></li>
</ul></li>
<li><a name="toc-Galois-counter-mode" href="#GCM">6.4.2 Galois counter mode</a>
<ul class="no-bullet">
<li><a name="toc-General-GCM-interface" href="#General-GCM-interface">6.4.2.1 General <acronym>GCM</acronym> interface</a></li>
<li><a name="toc-GCM-helper-macros" href="#GCM-helper-macros">6.4.2.2 <acronym>GCM</acronym> helper macros</a></li>
<li><a name="toc-GCM_002dAES-interface" href="#GCM_002dAES-interface">6.4.2.3 <acronym>GCM</acronym>-<acronym>AES</acronym> interface</a></li>
<li><a name="toc-GCM_002dCamellia-interface" href="#GCM_002dCamellia-interface">6.4.2.4 <acronym>GCM</acronym>-Camellia interface</a></li>
</ul></li>
<li><a name="toc-Counter-with-CBC_002dMAC-mode" href="#CCM">6.4.3 Counter with CBC-MAC mode</a>
<ul class="no-bullet">
<li><a name="toc-General-CCM-interface" href="#General-CCM-interface">6.4.3.1 General <acronym>CCM</acronym> interface</a></li>
<li><a name="toc-CCM-message-interface" href="#CCM-message-interface">6.4.3.2 <acronym>CCM</acronym> message interface</a></li>
<li><a name="toc-CCM_002dAES-interface" href="#CCM_002dAES-interface">6.4.3.3 <acronym>CCM</acronym>-<acronym>AES</acronym> interface</a></li>
</ul></li>
<li><a name="toc-ChaCha_002dPoly1305-1" href="#ChaCha_002dPoly1305">6.4.4 ChaCha-Poly1305</a></li>
<li><a name="toc-The-struct-nettle_005faead-abstraction" href="#nettle_005faead-abstraction">6.4.5 The <code>struct nettle_aead</code> abstraction</a></li>
</ul></li>
<li><a name="toc-Keyed-Hash-Functions" href="#Keyed-hash-functions">6.5 Keyed Hash Functions</a>
<ul class="no-bullet">
<li><a name="toc-HMAC-1" href="#HMAC">6.5.1 <acronym>HMAC</acronym></a></li>
<li><a name="toc-Concrete-HMAC-functions" href="#Concrete-HMAC-functions">6.5.2 Concrete <acronym>HMAC</acronym> functions</a>
<ul class="no-bullet">
<li><a name="toc-HMAC_002dMD5" href="#HMAC_002dMD5">6.5.2.1 <acronym>HMAC-MD5</acronym></a></li>
<li><a name="toc-HMAC_002dRIPEMD160" href="#HMAC_002dRIPEMD160">6.5.2.2 <acronym>HMAC-RIPEMD160</acronym></a></li>
<li><a name="toc-HMAC_002dSHA1" href="#HMAC_002dSHA1">6.5.2.3 <acronym>HMAC-SHA1</acronym></a></li>
<li><a name="toc-HMAC_002dSHA256" href="#HMAC_002dSHA256">6.5.2.4 <acronym>HMAC-SHA256</acronym></a></li>
<li><a name="toc-HMAC_002dSHA512" href="#HMAC_002dSHA512">6.5.2.5 <acronym>HMAC-SHA512</acronym></a></li>
</ul></li>
<li><a name="toc-UMAC-1" href="#UMAC">6.5.3 <acronym>UMAC</acronym></a></li>
<li><a name="toc-Poly1305-1" href="#Poly1305">6.5.4 Poly1305</a></li>
</ul></li>
<li><a name="toc-Key-derivation-Functions" href="#Key-derivation-functions">6.6 Key derivation Functions</a>
<ul class="no-bullet">
<li><a name="toc-PBKDF2" href="#PBKDF2">6.6.1 <acronym>PBKDF2</acronym></a></li>
<li><a name="toc-Concrete-PBKDF2-functions" href="#Concrete-PBKDF2-functions">6.6.2 Concrete <acronym>PBKDF2</acronym> functions</a>
<ul class="no-bullet">
<li><a name="toc-PBKDF2_002dHMAC_002dSHA1" href="#PBKDF2_002dHMAC_002dSHA1">6.6.2.1 <acronym>PBKDF2-HMAC-SHA1</acronym></a></li>
<li><a name="toc-PBKDF2_002dHMAC_002dSHA256" href="#PBKDF2_002dHMAC_002dSHA256">6.6.2.2 <acronym>PBKDF2-HMAC-SHA256</acronym></a></li>
</ul></li>
</ul></li>
<li><a name="toc-Public_002dkey-algorithms-1" href="#Public_002dkey-algorithms">6.7 Public-key algorithms</a>
<ul class="no-bullet">
<li><a name="toc-RSA-1" href="#RSA">6.7.1 <acronym>RSA</acronym></a>
<ul class="no-bullet">
<li><a name="toc-Nettle_0027s-RSA-support" href="#Nettle_0027s-RSA-support">6.7.1.1 Nettle’s <acronym>RSA</acronym> support</a></li>
</ul></li>
<li><a name="toc-DSA-1" href="#DSA">6.7.2 <acronym>DSA</acronym></a>
<ul class="no-bullet">
<li><a name="toc-Nettle_0027s-DSA-support" href="#Nettle_0027s-DSA-support">6.7.2.1 Nettle’s <acronym>DSA</acronym> support</a></li>
<li><a name="toc-Old_002c-deprecated_002c-DSA-interface" href="#Old_002c-deprecated_002c-DSA-interface">6.7.2.2 Old, deprecated, <acronym>DSA</acronym> interface</a></li>
</ul></li>
<li><a name="toc-Elliptic-curves-1" href="#Elliptic-curves">6.7.3 <acronym>Elliptic curves</acronym></a>
<ul class="no-bullet">
<li><a name="toc-Side_002dchannel-silence-1" href="#Side_002dchannel-silence">6.7.3.1 Side-channel silence</a></li>
<li><a name="toc-ECDSA-1" href="#ECDSA">6.7.3.2 ECDSA</a></li>
<li><a name="toc-Curve25519" href="#Curve-25519">6.7.3.3 Curve25519</a></li>
<li><a name="toc-EdDSA" href="#EdDSA">6.7.3.4 EdDSA</a></li>
</ul></li>
</ul></li>
<li><a name="toc-Randomness-1" href="#Randomness">6.8 Randomness</a>
<ul class="no-bullet">
<li><a name="toc-Yarrow" href="#Yarrow">6.8.1 Yarrow</a></li>
</ul></li>
<li><a name="toc-ASCII-encoding-1" href="#ASCII-encoding">6.9 ASCII encoding</a></li>
<li><a name="toc-Miscellaneous-functions-1" href="#Miscellaneous-functions">6.10 Miscellaneous functions</a></li>
<li><a name="toc-Compatibility-functions-1" href="#Compatibility-functions">6.11 Compatibility functions</a></li>
</ul></li>
<li><a name="toc-Traditional-Nettle-Soup" href="#Nettle-soup">7 Traditional Nettle Soup</a></li>
<li><a name="toc-Installation-1" href="#Installation">8 Installation</a></li>
<li><a name="toc-Function-and-Concept-Index" href="#Index">Function and Concept Index</a></li>
</ul>
</div>
<a name="Top"></a>
<div class="header">
<p>
Next: <a href="#Introduction" accesskey="n" rel="next">Introduction</a>, Previous: <a href="dir.html#Top" accesskey="p" rel="prev">(dir)</a>, Up: <a href="dir.html#Top" accesskey="u" rel="up">(dir)</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Nettle"></a>
<h1 class="top">Nettle</h1>
<p>This document describes the Nettle low-level cryptographic library. You
can use the library directly from your C programs, or write or use an
object-oriented wrapper for your favorite language or application.
</p>
<p>This manual is for the Nettle library (version 3.2), a
low-level cryptographic library.
</p>
<p>Originally written 2001 by Niels Möller, updated 2015.
</p>
<blockquote>
<p>This manual is placed in the public domain. You may freely copy it, in
whole or in part, with or without modification. Attribution is
appreciated, but not required.
</p></blockquote>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Introduction" accesskey="1">Introduction</a>:</td><td> </td><td align="left" valign="top">What is Nettle?
</td></tr>
<tr><td align="left" valign="top">• <a href="#Copyright" accesskey="2">Copyright</a>:</td><td> </td><td align="left" valign="top">Your rights.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Conventions" accesskey="3">Conventions</a>:</td><td> </td><td align="left" valign="top">General interface conventions.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Example" accesskey="4">Example</a>:</td><td> </td><td align="left" valign="top">An example program.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Linking" accesskey="5">Linking</a>:</td><td> </td><td align="left" valign="top">Linking with libnettle and libhogweed.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Reference" accesskey="6">Reference</a>:</td><td> </td><td align="left" valign="top">All Nettle functions and features.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Nettle-soup" accesskey="7">Nettle soup</a>:</td><td> </td><td align="left" valign="top">For the serious nettle hacker.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Installation" accesskey="8">Installation</a>:</td><td> </td><td align="left" valign="top">How to install Nettle.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Index" accesskey="9">Index</a>:</td><td> </td><td align="left" valign="top">Function and concept index.
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
</pre></th></tr><tr><th colspan="3" align="left" valign="top"><pre class="menu-comment"> — The Detailed Node Listing —
Reference
</pre></th></tr><tr><td align="left" valign="top">• <a href="#Hash-functions">Hash functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Cipher-functions">Cipher functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Cipher-modes">Cipher modes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Keyed-hash-functions">Keyed hash functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Key-derivation-functions">Key derivation functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Public_002dkey-algorithms">Public-key algorithms</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Randomness">Randomness</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ASCII-encoding">ASCII encoding</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Miscellaneous-functions">Miscellaneous functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Compatibility-functions">Compatibility functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Hash functions
</pre></th></tr><tr><td align="left" valign="top">• <a href="#Recommended-hash-functions">Recommended hash functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Legacy-hash-functions">Legacy hash functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#nettle_005fhash-abstraction">nettle_hash abstraction</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Cipher modes
</pre></th></tr><tr><td align="left" valign="top">• <a href="#CBC">CBC</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#CTR">CTR</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#GCM">GCM</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#CCM">CCM</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Keyed Hash Functions
</pre></th></tr><tr><td align="left" valign="top">• <a href="#HMAC">HMAC</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#UMAC">UMAC</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Public-key algorithms
</pre></th></tr><tr><td align="left" valign="top">• <a href="#RSA">RSA</a>:</td><td> </td><td align="left" valign="top">The RSA public key algorithm.
</td></tr>
<tr><td align="left" valign="top">• <a href="#DSA">DSA</a>:</td><td> </td><td align="left" valign="top">The DSA digital signature algorithm.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Elliptic-curves">Elliptic curves</a>:</td><td> </td><td align="left" valign="top">Elliptic curves and ECDSA
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
<acronym>Elliptic curves</acronym>
</pre></th></tr><tr><td align="left" valign="top">• <a href="#Side_002dchannel-silence">Side-channel silence</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ECDSA">ECDSA</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Curve-25519">Curve 25519</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
</pre></th></tr></table>
<hr>
<a name="Introduction"></a>
<div class="header">
<p>
Next: <a href="#Copyright" accesskey="n" rel="next">Copyright</a>, Previous: <a href="#Top" accesskey="p" rel="prev">Top</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Introduction-1"></a>
<h2 class="chapter">1 Introduction</h2>
<p>Nettle is a cryptographic library that is designed to fit easily in more
or less any context: In crypto toolkits for object-oriented languages
(C++, Python, Pike, ...), in applications like LSH or GNUPG, or even in
kernel space. In most contexts, you need more than the basic
cryptographic algorithms, you also need some way to keep track of available
algorithms, their properties and variants. You often have some algorithm
selection process, often dictated by a protocol you want to implement.
</p>
<p>And as the requirements of applications differ in subtle and not so
subtle ways, an API that fits one application well can be a pain to use
in a different context. And that is why there are so many different
cryptographic libraries around.
</p>
<p>Nettle tries to avoid this problem by doing one thing, the low-level
crypto stuff, and providing a <em>simple</em> but general interface to it.
In particular, Nettle doesn’t do algorithm selection. It doesn’t do
memory allocation. It doesn’t do any I/O.
</p>
<p>The idea is that one can build several application and context specific
interfaces on top of Nettle, and share the code, test cases, benchmarks,
documentation, etc. Examples are the Nettle module for the Pike
language, and LSH, which both use an object-oriented abstraction on top
of the library.
</p>
<p>This manual explains how to use the Nettle library. It also tries to
provide some background on the cryptography, and advice on how to best
put it to use.
</p>
<hr>
<a name="Copyright"></a>
<div class="header">
<p>
Next: <a href="#Conventions" accesskey="n" rel="next">Conventions</a>, Previous: <a href="#Introduction" accesskey="p" rel="prev">Introduction</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Copyright-1"></a>
<h2 class="chapter">2 Copyright</h2>
<p>Nettle is dual licenced under the GNU General Public License version 2
or later, and the GNU Lesser General Public License version 3 or later.
When using Nettle, you must comply fully with all conditions of at least
one of these licenses. A few of the individual files are licensed under
more permissive terms, or in the public domain. To find the current
status of particular files, you have to read the copyright notices at
the top of the files.
</p>
<p>This manual is in the public domain. You may freely copy it in whole or
in part, e.g., into documentation of programs that build on Nettle.
Attribution, as well as contribution of improvements to the text, is of
course appreciated, but it is not required.
</p>
<p>A list of the supported algorithms, their origins, and exceptions to the
above licensing:
</p>
<dl compact="compact">
<dt><em>AES</em></dt>
<dd><p>The implementation of the AES cipher (also known as rijndael) is written
by Rafael Sevilla. Assembler for x86 by Rafael Sevilla and
Niels Möller, Sparc assembler by Niels Möller.
</p>
</dd>
<dt><em>ARCFOUR</em></dt>
<dd><p>The implementation of the ARCFOUR (also known as RC4) cipher is written
by Niels Möller.
</p>
</dd>
<dt><em>ARCTWO</em></dt>
<dd><p>The implementation of the ARCTWO (also known as RC2) cipher is written
by Nikos Mavroyanopoulos and modified by Werner Koch and Simon
Josefsson.
</p>
</dd>
<dt><em>BLOWFISH</em></dt>
<dd><p>The implementation of the BLOWFISH cipher is written by Werner Koch,
copyright owned by the Free Software Foundation. Also hacked by Simon
Josefsson and Niels Möller.
</p>
</dd>
<dt><em>CAMELLIA</em></dt>
<dd><p>The C implementation is by Nippon Telegraph and Telephone Corporation
(NTT), heavily modified by Niels Möller. Assembler for x86 and x86_64
by Niels Möller.
</p>
</dd>
<dt><em>CAST128</em></dt>
<dd><p>The implementation of the CAST128 cipher is written by Steve Reid.
Released into the public domain.
</p>
</dd>
<dt><em>CHACHA</em></dt>
<dd><p>Implemented by Joachim Strömbergson, based on the implementation of
SALSA20 (see below). Assembly for x86_64 by Niels Möller.
</p>
</dd>
<dt><em>DES</em></dt>
<dd><p>The implementation of the DES cipher is written by Dana L. How, and
released under the LGPL, version 2 or later.
</p>
</dd>
<dt><em>GOSTHASH94</em></dt>
<dd><p>The C implementation of the GOST94 message digest is written by
Aleksey Kravchenko and was ported from the rhash library by Nikos
Mavrogiannopoulos. It is released under the MIT license.
</p>
</dd>
<dt><em>MD2</em></dt>
<dd><p>The implementation of MD2 is written by Andrew Kuchling, and hacked
some by Andreas Sigfridsson and Niels Möller. Python Cryptography
Toolkit license (essentially public domain).
</p>
</dd>
<dt><em>MD4</em></dt>
<dd><p>This is almost the same code as for MD5 below, with modifications by
Marcus Comstedt. Released into the public domain.
</p>
</dd>
<dt><em>MD5</em></dt>
<dd><p>The implementation of the MD5 message digest is written by Colin Plumb.
It has been hacked some more by Andrew Kuchling and Niels Möller.
Released into the public domain.
</p>
</dd>
<dt><em>PBKDF2</em></dt>
<dd><p>The C implementation of PBKDF2 is based on earlier work for Shishi and
GnuTLS by Simon Josefsson.
</p>
</dd>
<dt><em>RIPEMD160</em></dt>
<dd><p>The implementation of RIPEMD160 message digest is based on the code in
libgcrypt, copyright owned by the Free Software Foundation. Ported to
Nettle by Andres Mejia.
</p>
</dd>
<dt><em>SALSA20</em></dt>
<dd><p>The C implementation of SALSA20 is based on D. J. Bernstein’s reference
implementation (in the public domain), adapted to Nettle by Simon
Josefsson, and heavily modified by Niels Möller. Assembly for x86_64 and
ARM by Niels Möller.
</p>
</dd>
<dt><em>SERPENT</em></dt>
<dd><p>The implementation of the SERPENT cipher is based on the code in libgcrypt,
copyright owned by the Free Software Foundation. Adapted to Nettle by
Simon Josefsson and heavily modified by Niels Möller. Assembly for
x86_64 by Niels Möller.
</p>
</dd>
<dt><em>POLY1305</em></dt>
<dd><p>Based on the implementation by Andrew M. (floodyberry), modified by
Nikos Mavrogiannopoulos and Niels Möller. Assembly for x86_64 by Niels
Möller.
</p>
</dd>
<dt><em>SHA1</em></dt>
<dd><p>The C implementation of the SHA1 message digest is written by Peter
Gutmann, and hacked some more by Andrew Kuchling and Niels Möller.
Released into the public domain. Assembler for x86, x86_64 and ARM by
Niels Möller, released under the LGPL.
</p>
</dd>
<dt><em>SHA2</em></dt>
<dd><p>Written by Niels Möller, using Peter Gutmann’s SHA1 code as a model.
</p>
</dd>
<dt><em>SHA3</em></dt>
<dd><p>Written by Niels Möller.
</p>
</dd>
<dt><em>TWOFISH</em></dt>
<dd><p>The implementation of the TWOFISH cipher is written by Ruud de Rooij.
</p>
</dd>
<dt><em>UMAC</em></dt>
<dd><p>Written by Niels Möller.
</p>
</dd>
<dt><em>RSA</em></dt>
<dd><p>Written by Niels Möller. Uses the GMP library for bignum operations.
</p>
</dd>
<dt><em>DSA</em></dt>
<dd><p>Written by Niels Möller. Uses the GMP library for bignum operations.
</p>
</dd>
<dt><em>ECDSA</em></dt>
<dd><p>Written by Niels Möller. Uses the GMP library for bignum operations.
Development of Nettle’s ECC support was funded by the .SE Internet Fund.
</p></dd>
</dl>
<hr>
<a name="Conventions"></a>
<div class="header">
<p>
Next: <a href="#Example" accesskey="n" rel="next">Example</a>, Previous: <a href="#Copyright" accesskey="p" rel="prev">Copyright</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Conventions-1"></a>
<h2 class="chapter">3 Conventions</h2>
<p>For each supported algorithm, there is an include file that defines a
<em>context struct</em>, a few constants, and declares functions for
operating on the context. The context struct encapsulates all information
needed by the algorithm, and it can be copied or moved in memory with no
unexpected effects.
</p>
<p>For consistency, functions for different algorithms are very similar,
but there are some differences, for instance reflecting if the key setup
or encryption function differ for encryption and decryption, and whether
or not key setup can fail. There are also differences between algorithms
that don’t show in function prototypes, but which the application must
nevertheless be aware of. There is no big difference between the
functions for stream ciphers and for block ciphers, although they should
be used quite differently by the application.
</p>
<p>If your application uses more than one algorithm of the same type, you
should probably create an interface that is tailor-made for your needs,
and then write a few lines of glue code on top of Nettle.
</p>
<p>By convention, for an algorithm named <code>foo</code>, the struct tag for the
context struct is <code>foo_ctx</code>, constants and functions uses prefixes
like <code>FOO_BLOCK_SIZE</code> (a constant) and <code>foo_set_key</code> (a
function).
</p>
<p>In all functions, strings are represented with an explicit length, of
type <code>size_t</code>, and a pointer of type <code>uint8_t *</code> or
<code>const uint8_t *</code>. For functions that transform one string to
another, the argument order is length, destination pointer and source
pointer. Source and destination areas are usually of the same length.
When they differ, e.g., for <code>ccm_encrypt_message</code>, the length
argument specifies the size of the destination area. Source and
destination pointers may be equal, so that you can process strings in
place, but source and destination areas <em>must not</em> overlap in any
other way.
</p>
<p>Many of the functions lack return value and can never fail. Those
functions which can fail, return one on success and zero on failure.
</p>
<hr>
<a name="Example"></a>
<div class="header">
<p>
Next: <a href="#Linking" accesskey="n" rel="next">Linking</a>, Previous: <a href="#Conventions" accesskey="p" rel="prev">Conventions</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Example-1"></a>
<h2 class="chapter">4 Example</h2>
<p>A simple example program that reads a file from standard input and
writes its SHA1 check-sum on standard output should give the flavor of
Nettle.
</p>
<div class="example">
<pre class="verbatim">#include <stdio.h>
#include <stdlib.h>
#include <nettle/sha1.h>
#define BUF_SIZE 1000
static void
display_hex(unsigned length, uint8_t *data)
{
unsigned i;
for (i = 0; i<length; i++)
printf("%02x ", data[i]);
printf("\n");
}
int
main(int argc, char **argv)
{
struct sha1_ctx ctx;
uint8_t buffer[BUF_SIZE];
uint8_t digest[SHA1_DIGEST_SIZE];
sha1_init(&ctx);
for (;;)
{
int done = fread(buffer, 1, sizeof(buffer), stdin);
sha1_update(&ctx, done, buffer);
if (done < sizeof(buffer))
break;
}
if (ferror(stdin))
return EXIT_FAILURE;
sha1_digest(&ctx, SHA1_DIGEST_SIZE, digest);
display_hex(SHA1_DIGEST_SIZE, digest);
return EXIT_SUCCESS;
}
</pre></div>
<p>On a typical Unix system, this program can be compiled and linked with
the command line
</p><div class="example">
<pre class="example">gcc sha-example.c -o sha-example -lnettle
</pre></div>
<hr>
<a name="Linking"></a>
<div class="header">
<p>
Next: <a href="#Reference" accesskey="n" rel="next">Reference</a>, Previous: <a href="#Example" accesskey="p" rel="prev">Example</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Linking-1"></a>
<h2 class="chapter">5 Linking</h2>
<p>Nettle actually consists of two libraries, <samp>libnettle</samp> and
<samp>libhogweed</samp>. The <samp>libhogweed</samp> library contains those
functions of Nettle that uses bignum operations, and depends on the GMP
library. With this division, linking works the same for both static and
dynamic libraries.
</p>
<p>If an application uses only the symmetric crypto algorithms of Nettle
(i.e., block ciphers, hash functions, and the like), it’s sufficient to
link with <code>-lnettle</code>. If an application also uses public-key
algorithms, the recommended linker flags are <code>-lhogweed -lnettle
-lgmp</code>. If the involved libraries are installed as dynamic libraries, it
may be sufficient to link with just <code>-lhogweed</code>, and the loader
will resolve the dependencies automatically.
</p>
<hr>
<a name="Reference"></a>
<div class="header">
<p>
Next: <a href="#Nettle-soup" accesskey="n" rel="next">Nettle soup</a>, Previous: <a href="#Linking" accesskey="p" rel="prev">Linking</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Reference-1"></a>
<h2 class="chapter">6 Reference</h2>
<p>This chapter describes all the Nettle functions, grouped by family.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Hash-functions" accesskey="1">Hash functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Cipher-functions" accesskey="2">Cipher functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Cipher-modes" accesskey="3">Cipher modes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Authenticated-encryption" accesskey="4">Authenticated encryption</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Keyed-hash-functions" accesskey="5">Keyed hash functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Key-derivation-functions" accesskey="6">Key derivation functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Public_002dkey-algorithms" accesskey="7">Public-key algorithms</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Randomness" accesskey="8">Randomness</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ASCII-encoding" accesskey="9">ASCII encoding</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Miscellaneous-functions">Miscellaneous functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Compatibility-functions">Compatibility functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Hash-functions"></a>
<div class="header">
<p>
Next: <a href="#Cipher-functions" accesskey="n" rel="next">Cipher functions</a>, Previous: <a href="#Reference" accesskey="p" rel="prev">Reference</a>, Up: <a href="#Reference" accesskey="u" rel="up">Reference</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Hash-functions-1"></a>
<h3 class="section">6.1 Hash functions</h3>
<a name="index-Hash-function"></a>
<p>A cryptographic <em>hash function</em> is a function that takes variable
size strings, and maps them to strings of fixed, short, length. There
are naturally lots of collisions, as there are more possible 1MB files
than 20 byte strings. But the function is constructed such that is hard
to find the collisions. More precisely, a cryptographic hash function
<code>H</code> should have the following properties:
</p>
<dl compact="compact">
<dt><em>One-way</em></dt>
<dd><a name="index-One_002dway"></a>
<p>Given a hash value <code>H(x)</code> it is hard to find a string <code>x</code>
that hashes to that value.
</p>
</dd>
<dt><em>Collision-resistant</em></dt>
<dd><a name="index-Collision_002dresistant"></a>
<p>It is hard to find two different strings, <code>x</code> and <code>y</code>, such
that <code>H(x)</code> = <code>H(y)</code>.
</p>
</dd>
</dl>
<p>Hash functions are useful as building blocks for digital signatures,
message authentication codes, pseudo random generators, association of
unique ids to documents, and many other things.
</p>
<p>The most commonly used hash functions are MD5 and SHA1. Unfortunately,
both these fail the collision-resistance requirement; cryptologists have
found ways to construct colliding inputs. The recommended hash functions
for new applications are SHA2 (with main variants SHA256 and SHA512). At
the time of this writing (Autumn 2015), SHA3 has recently been
standardized, and the new SHA3 and other top SHA3 candidates may also be
reasonable alternatives.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Recommended-hash-functions" accesskey="1">Recommended hash functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Legacy-hash-functions" accesskey="2">Legacy hash functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#nettle_005fhash-abstraction" accesskey="3">nettle_hash abstraction</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Recommended-hash-functions"></a>
<div class="header">
<p>
Next: <a href="#Legacy-hash-functions" accesskey="n" rel="next">Legacy hash functions</a>, Up: <a href="#Hash-functions" accesskey="u" rel="up">Hash functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Recommended-hash-functions-1"></a>
<h4 class="subsection">6.1.1 Recommended hash functions</h4>
<p>The following hash functions have no known weaknesses, and are suitable
for new applications. The SHA2 family of hash functions were specified
by <em>NIST</em>, intended as a replacement for <acronym>SHA1</acronym>.
</p>
<a name="SHA256"></a>
<h4 class="subsubsection">6.1.1.1 <acronym>SHA256</acronym></h4>
<p>SHA256 is a member of the SHA2 family. It outputs hash values of 256
bits, or 32 octets. Nettle defines SHA256 in <samp><nettle/sha2.h></samp>.
</p>
<dl>
<dt><a name="index-struct-sha256_005fctx"></a>Context struct: <strong>struct sha256_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-SHA256_005fDIGEST_005fSIZE"></a>Constant: <strong>SHA256_DIGEST_SIZE</strong></dt>
<dd><p>The size of a SHA256 digest, i.e. 32.
</p></dd></dl>
<dl>
<dt><a name="index-SHA256_005fBLOCK_005fSIZE"></a>Constant: <strong>SHA256_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size of SHA256. Useful for some special constructions,
in particular HMAC-SHA256.
</p></dd></dl>
<dl>
<dt><a name="index-sha256_005finit"></a>Function: <em>void</em> <strong>sha256_init</strong> <em>(struct sha256_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initialize the SHA256 state.
</p></dd></dl>
<dl>
<dt><a name="index-sha256_005fupdate"></a>Function: <em>void</em> <strong>sha256_update</strong> <em>(struct sha256_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Hash some more data.
</p></dd></dl>
<dl>
<dt><a name="index-sha256_005fdigest"></a>Function: <em>void</em> <strong>sha256_digest</strong> <em>(struct sha256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Performs final processing and extracts the message digest, writing it
to <var>digest</var>. <var>length</var> may be smaller than
<code>SHA256_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the digest are written.
</p>
<p>This function also resets the context in the same way as
<code>sha256_init</code>.
</p></dd></dl>
<p>Earlier versions of nettle defined SHA256 in the header file
<samp><nettle/sha.h></samp>, which is now deprecated, but kept for
compatibility.
</p>
<a name="SHA224"></a>
<h4 class="subsubsection">6.1.1.2 <acronym>SHA224</acronym></h4>
<p>SHA224 is a variant of SHA256, with a different initial state, and with
the output truncated to 224 bits, or 28 octets. Nettle defines SHA224 in
<samp><nettle/sha2.h></samp> (and in <samp><nettle/sha.h></samp>, for backwards
compatibility).
</p>
<dl>
<dt><a name="index-struct-sha224_005fctx"></a>Context struct: <strong>struct sha224_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-SHA224_005fDIGEST_005fSIZE"></a>Constant: <strong>SHA224_DIGEST_SIZE</strong></dt>
<dd><p>The size of a SHA224 digest, i.e. 28.
</p></dd></dl>
<dl>
<dt><a name="index-SHA224_005fBLOCK_005fSIZE"></a>Constant: <strong>SHA224_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size of SHA224. Useful for some special constructions,
in particular HMAC-SHA224.
</p></dd></dl>
<dl>
<dt><a name="index-sha224_005finit"></a>Function: <em>void</em> <strong>sha224_init</strong> <em>(struct sha224_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initialize the SHA224 state.
</p></dd></dl>
<dl>
<dt><a name="index-sha224_005fupdate"></a>Function: <em>void</em> <strong>sha224_update</strong> <em>(struct sha224_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Hash some more data.
</p></dd></dl>
<dl>
<dt><a name="index-sha224_005fdigest"></a>Function: <em>void</em> <strong>sha224_digest</strong> <em>(struct sha224_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Performs final processing and extracts the message digest, writing it
to <var>digest</var>. <var>length</var> may be smaller than
<code>SHA224_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the digest are written.
</p>
<p>This function also resets the context in the same way as
<code>sha224_init</code>.
</p></dd></dl>
<a name="SHA512"></a>
<h4 class="subsubsection">6.1.1.3 <acronym>SHA512</acronym></h4>
<p>SHA512 is a larger sibling to SHA256, with a very similar structure but
with both the output and the internal variables of twice the size. The
internal variables are 64 bits rather than 32, making it significantly
slower on 32-bit computers. It outputs hash values of 512 bits, or 64
octets. Nettle defines SHA512 in <samp><nettle/sha2.h></samp> (and in
<samp><nettle/sha.h></samp>, for backwards compatibility).
</p>
<dl>
<dt><a name="index-struct-sha512_005fctx"></a>Context struct: <strong>struct sha512_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-SHA512_005fDIGEST_005fSIZE"></a>Constant: <strong>SHA512_DIGEST_SIZE</strong></dt>
<dd><p>The size of a SHA512 digest, i.e. 64.
</p></dd></dl>
<dl>
<dt><a name="index-SHA512_005fBLOCK_005fSIZE"></a>Constant: <strong>SHA512_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size of SHA512, 128. Useful for some special
constructions, in particular HMAC-SHA512.
</p></dd></dl>
<dl>
<dt><a name="index-sha512_005finit"></a>Function: <em>void</em> <strong>sha512_init</strong> <em>(struct sha512_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initialize the SHA512 state.
</p></dd></dl>
<dl>
<dt><a name="index-sha512_005fupdate"></a>Function: <em>void</em> <strong>sha512_update</strong> <em>(struct sha512_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Hash some more data.
</p></dd></dl>
<dl>
<dt><a name="index-sha512_005fdigest"></a>Function: <em>void</em> <strong>sha512_digest</strong> <em>(struct sha512_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Performs final processing and extracts the message digest, writing it
to <var>digest</var>. <var>length</var> may be smaller than
<code>SHA512_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the digest are written.
</p>
<p>This function also resets the context in the same way as
<code>sha512_init</code>.
</p></dd></dl>
<a name="SHA384-and-other-variants-of-SHA512"></a>
<h4 class="subsubsection">6.1.1.4 <acronym>SHA384 and other variants of SHA512</acronym></h4>
<p>Several variants of SHA512 have been defined, with a different initial
state, and with the output truncated to shorter length than 512 bits.
Naming is a bit confused, these algorithms are called SHA512-224,
SHA512-256 and SHA384, for output sizes of 224, 256 and 384 bits,
respectively. Nettle defines these in <samp><nettle/sha2.h></samp> (and in
<samp><nettle/sha.h></samp>, for backwards compatibility).
</p>
<dl>
<dt><a name="index-struct-sha512_005f224_005fctx"></a>Context struct: <strong>struct sha512_224_ctx</strong></dt>
<dt><a name="index-struct-sha512_005f256_005fctx"></a>Context struct: <strong>struct sha512_256_ctx</strong></dt>
<dt><a name="index-struct-sha384_005fctx"></a>Context struct: <strong>struct sha384_ctx</strong></dt>
<dd><p>These context structs are all the same as sha512_ctx. They are defined as
simple preprocessor aliases, which may cause some problems if used as
identifiers for other purposes. So avoid doing that.
</p></dd></dl>
<dl>
<dt><a name="index-SHA512_005f224_005fDIGEST_005fSIZE"></a>Constant: <strong>SHA512_224_DIGEST_SIZE</strong></dt>
<dt><a name="index-SHA512_005f256_005fDIGEST_005fSIZE"></a>Constant: <strong>SHA512_256_DIGEST_SIZE</strong></dt>
<dt><a name="index-SHA384_005fDIGEST_005fSIZE"></a>Constant: <strong>SHA384_DIGEST_SIZE</strong></dt>
<dd><p>The digest size for each variant, i.e., 28, 32, and 48, respectively.
</p></dd></dl>
<dl>
<dt><a name="index-SHA512_005f224_005fBLOCK_005fSIZE"></a>Constant: <strong>SHA512_224_BLOCK_SIZE</strong></dt>
<dt><a name="index-SHA512_005f256_005fBLOCK_005fSIZE"></a>Constant: <strong>SHA512_256_BLOCK_SIZE</strong></dt>
<dt><a name="index-SHA384_005fBLOCK_005fSIZE"></a>Constant: <strong>SHA384_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size, same as SHA512_BLOCK_SIZE, i.e., 128. Useful for
some special constructions, in particular HMAC-SHA384.
</p></dd></dl>
<dl>
<dt><a name="index-sha512_005f224_005finit"></a>Function: <em>void</em> <strong>sha512_224_init</strong> <em>(struct sha512_224_ctx *<var>ctx</var>)</em></dt>
<dt><a name="index-sha512_005f256_005finit"></a>Function: <em>void</em> <strong>sha512_256_init</strong> <em>(struct sha512_256_ctx *<var>ctx</var>)</em></dt>
<dt><a name="index-sha384_005finit"></a>Function: <em>void</em> <strong>sha384_init</strong> <em>(struct sha384_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initialize the context struct.
</p></dd></dl>
<dl>
<dt><a name="index-sha512_005f224_005fupdate"></a>Function: <em>void</em> <strong>sha512_224_update</strong> <em>(struct sha512_224_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dt><a name="index-sha512_005f256_005fupdate"></a>Function: <em>void</em> <strong>sha512_256_update</strong> <em>(struct sha512_256_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dt><a name="index-sha384_005fupdate"></a>Function: <em>void</em> <strong>sha384_update</strong> <em>(struct sha384_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Hash some more data. These are all aliases for sha512_update, which does
the same thing.
</p></dd></dl>
<dl>
<dt><a name="index-sha512_005f224_005fdigest"></a>Function: <em>void</em> <strong>sha512_224_digest</strong> <em>(struct sha512_224_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dt><a name="index-sha512_005f256_005fdigest"></a>Function: <em>void</em> <strong>sha512_256_digest</strong> <em>(struct sha512_256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dt><a name="index-sha384_005fdigest"></a>Function: <em>void</em> <strong>sha384_digest</strong> <em>(struct sha384_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Performs final processing and extracts the message digest, writing it to
<var>digest</var>. <var>length</var> may be smaller than the specified digest
size, in which case only the first <var>length</var> octets of the digest are
written.
</p>
<p>These function also reset the context in the same way as the
corresponding init function.
</p></dd></dl>
<a name="SHA3_002d224"></a>
<h4 class="subsubsection">6.1.1.5 <acronym>SHA3-224</acronym></h4>
<a name="index-SHA3"></a>
<p>The SHA3 hash functions were specified by NIST in response to weaknesses
in SHA1, and doubts about SHA2 hash functions which structurally are
very similar to SHA1. SHA3 is a result of a competition, where the
winner, also known as Keccak, was designed by Guido Bertoni, Joan
Daemen, Michaël Peeters and Gilles Van Assche. It is structurally very
different from all widely used earlier hash functions. Like SHA2, there
are several variants, with output sizes of 224, 256, 384 and 512 bits
(28, 32, 48 and 64 octets, respectively). In August 2015, it was
formally standardized by NIST, as FIPS 202,
<a href="http://dx.doi.org/10.6028/NIST.FIPS.202">http://dx.doi.org/10.6028/NIST.FIPS.202</a>.
</p>
<p>Note that the SHA3 implementation in earlier versions of Nettle was
based on the specification at the time Keccak was announced as the
winner of the competition, which is incompatible with the final standard
and hence with current versions of Nettle. The <samp>nette/sha3.h</samp>
defines a preprocessor symbol <code>NETTLE_SHA3_FIPS202</code> to indicate
conformance with the standard.
</p>
<dl>
<dt><a name="index-NETTLE_005fSHA3_005fFIPS202"></a>Constant: <strong>NETTLE_SHA3_FIPS202</strong></dt>
<dd><p>Defined to 1 in Nettle versions supporting FIPS 202. Undefined in
earlier versions.
</p></dd></dl>
<p>Nettle defines SHA3-224 in <samp><nettle/sha3.h></samp>.
</p>
<dl>
<dt><a name="index-struct-sha3_005f224_005fctx"></a>Context struct: <strong>struct sha3_224_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-SHA3_005f224_005fDIGEST_005fSIZE"></a>Constant: <strong>SHA3_224_DIGEST_SIZE</strong></dt>
<dd><p>The size of a SHA3_224 digest, i.e., 28.
</p></dd></dl>
<dl>
<dt><a name="index-SHA3_005f224_005fBLOCK_005fSIZE"></a>Constant: <strong>SHA3_224_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size of SHA3_224.
</p></dd></dl>
<dl>
<dt><a name="index-sha3_005f224_005finit"></a>Function: <em>void</em> <strong>sha3_224_init</strong> <em>(struct sha3_224_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initialize the SHA3-224 state.
</p></dd></dl>
<dl>
<dt><a name="index-sha3_005f224_005fupdate"></a>Function: <em>void</em> <strong>sha3_224_update</strong> <em>(struct sha3_224_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Hash some more data.
</p></dd></dl>
<dl>
<dt><a name="index-sha3_005f224_005fdigest"></a>Function: <em>void</em> <strong>sha3_224_digest</strong> <em>(struct sha3_224_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Performs final processing and extracts the message digest, writing it
to <var>digest</var>. <var>length</var> may be smaller than
<code>SHA3_224_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the digest are written.
</p>
<p>This function also resets the context.
</p></dd></dl>
<a name="SHA3_002d256"></a>
<h4 class="subsubsection">6.1.1.6 <acronym>SHA3-256</acronym></h4>
<p>This is SHA3 with 256-bit output size, and possibly the most useful
of the SHA3 hash functions.
</p>
<p>Nettle defines SHA3-256 in <samp><nettle/sha3.h></samp>.
</p>
<dl>
<dt><a name="index-struct-sha3_005f256_005fctx"></a>Context struct: <strong>struct sha3_256_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-SHA3_005f256_005fDIGEST_005fSIZE"></a>Constant: <strong>SHA3_256_DIGEST_SIZE</strong></dt>
<dd><p>The size of a SHA3_256 digest, i.e., 32.
</p></dd></dl>
<dl>
<dt><a name="index-SHA3_005f256_005fBLOCK_005fSIZE"></a>Constant: <strong>SHA3_256_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size of SHA3_256.
</p></dd></dl>
<dl>
<dt><a name="index-sha3_005f256_005finit"></a>Function: <em>void</em> <strong>sha3_256_init</strong> <em>(struct sha3_256_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initialize the SHA3-256 state.
</p></dd></dl>
<dl>
<dt><a name="index-sha3_005f256_005fupdate"></a>Function: <em>void</em> <strong>sha3_256_update</strong> <em>(struct sha3_256_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Hash some more data.
</p></dd></dl>
<dl>
<dt><a name="index-sha3_005f256_005fdigest"></a>Function: <em>void</em> <strong>sha3_256_digest</strong> <em>(struct sha3_256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Performs final processing and extracts the message digest, writing it
to <var>digest</var>. <var>length</var> may be smaller than
<code>SHA3_256_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the digest are written.
</p>
<p>This function also resets the context.
</p></dd></dl>
<a name="SHA3_002d384"></a>
<h4 class="subsubsection">6.1.1.7 <acronym>SHA3-384</acronym></h4>
<p>This is SHA3 with 384-bit output size.
</p>
<p>Nettle defines SHA3-384 in <samp><nettle/sha3.h></samp>.
</p>
<dl>
<dt><a name="index-struct-sha3_005f384_005fctx"></a>Context struct: <strong>struct sha3_384_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-SHA3_005f384_005fDIGEST_005fSIZE"></a>Constant: <strong>SHA3_384_DIGEST_SIZE</strong></dt>
<dd><p>The size of a SHA3_384 digest, i.e., 48.
</p></dd></dl>
<dl>
<dt><a name="index-SHA3_005f384_005fBLOCK_005fSIZE"></a>Constant: <strong>SHA3_384_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size of SHA3_384.
</p></dd></dl>
<dl>
<dt><a name="index-sha3_005f384_005finit"></a>Function: <em>void</em> <strong>sha3_384_init</strong> <em>(struct sha3_384_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initialize the SHA3-384 state.
</p></dd></dl>
<dl>
<dt><a name="index-sha3_005f384_005fupdate"></a>Function: <em>void</em> <strong>sha3_384_update</strong> <em>(struct sha3_384_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Hash some more data.
</p></dd></dl>
<dl>
<dt><a name="index-sha3_005f384_005fdigest"></a>Function: <em>void</em> <strong>sha3_384_digest</strong> <em>(struct sha3_384_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Performs final processing and extracts the message digest, writing it
to <var>digest</var>. <var>length</var> may be smaller than
<code>SHA3_384_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the digest are written.
</p>
<p>This function also resets the context.
</p></dd></dl>
<a name="SHA3_002d512"></a>
<h4 class="subsubsection">6.1.1.8 <acronym>SHA3-512</acronym></h4>
<p>This is SHA3 with 512-bit output size.
</p>
<p>Nettle defines SHA3-512 in <samp><nettle/sha3.h></samp>.
</p>
<dl>
<dt><a name="index-struct-sha3_005f512_005fctx"></a>Context struct: <strong>struct sha3_512_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-SHA3_005f512_005fDIGEST_005fSIZE"></a>Constant: <strong>SHA3_512_DIGEST_SIZE</strong></dt>
<dd><p>The size of a SHA3_512 digest, i.e. 64.
</p></dd></dl>
<dl>
<dt><a name="index-SHA3_005f512_005fBLOCK_005fSIZE"></a>Constant: <strong>SHA3_512_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size of SHA3_512.
</p></dd></dl>
<dl>
<dt><a name="index-sha3_005f512_005finit"></a>Function: <em>void</em> <strong>sha3_512_init</strong> <em>(struct sha3_512_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initialize the SHA3-512 state.
</p></dd></dl>
<dl>
<dt><a name="index-sha3_005f512_005fupdate"></a>Function: <em>void</em> <strong>sha3_512_update</strong> <em>(struct sha3_512_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Hash some more data.
</p></dd></dl>
<dl>
<dt><a name="index-sha3_005f512_005fdigest"></a>Function: <em>void</em> <strong>sha3_512_digest</strong> <em>(struct sha3_512_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Performs final processing and extracts the message digest, writing it
to <var>digest</var>. <var>length</var> may be smaller than
<code>SHA3_512_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the digest are written.
</p>
<p>This function also resets the context.
</p></dd></dl>
<hr>
<a name="Legacy-hash-functions"></a>
<div class="header">
<p>
Next: <a href="#nettle_005fhash-abstraction" accesskey="n" rel="next">nettle_hash abstraction</a>, Previous: <a href="#Recommended-hash-functions" accesskey="p" rel="prev">Recommended hash functions</a>, Up: <a href="#Hash-functions" accesskey="u" rel="up">Hash functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Legacy-hash-functions-1"></a>
<h4 class="subsection">6.1.2 Legacy hash functions</h4>
<p>The hash functions in this section all have some known weaknesses, and
should be avoided for new applications. These hash functions are mainly
useful for compatibility with old applications and protocols. Some are
still considered safe as building blocks for particular constructions,
e.g., there seems to be no known attacks against HMAC-SHA1 or even
HMAC-MD5. In some important cases, use of a “legacy” hash function
does not in itself make the application insecure; if a known weakness is
relevant depends on how the hash function is used, and on the threat
model.
</p>
<a name="MD5"></a>
<h4 class="subsubsection">6.1.2.1 <acronym>MD5</acronym></h4>
<p>MD5 is a message digest function constructed by Ronald Rivest, and
described in <cite>RFC 1321</cite>. It outputs message digests of 128 bits, or
16 octets. Nettle defines MD5 in <samp><nettle/md5.h></samp>.
</p>
<dl>
<dt><a name="index-struct-md5_005fctx"></a>Context struct: <strong>struct md5_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-MD5_005fDIGEST_005fSIZE"></a>Constant: <strong>MD5_DIGEST_SIZE</strong></dt>
<dd><p>The size of an MD5 digest, i.e. 16.
</p></dd></dl>
<dl>
<dt><a name="index-MD5_005fBLOCK_005fSIZE"></a>Constant: <strong>MD5_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size of MD5. Useful for some special constructions,
in particular HMAC-MD5.
</p></dd></dl>
<dl>
<dt><a name="index-md5_005finit"></a>Function: <em>void</em> <strong>md5_init</strong> <em>(struct md5_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initialize the MD5 state.
</p></dd></dl>
<dl>
<dt><a name="index-md5_005fupdate"></a>Function: <em>void</em> <strong>md5_update</strong> <em>(struct md5_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Hash some more data.
</p></dd></dl>
<dl>
<dt><a name="index-md5_005fdigest"></a>Function: <em>void</em> <strong>md5_digest</strong> <em>(struct md5_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Performs final processing and extracts the message digest, writing it
to <var>digest</var>. <var>length</var> may be smaller than
<code>MD5_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the digest are written.
</p>
<p>This function also resets the context in the same way as
<code>md5_init</code>.
</p></dd></dl>
<p>The normal way to use MD5 is to call the functions in order: First
<code>md5_init</code>, then <code>md5_update</code> zero or more times, and finally
<code>md5_digest</code>. After <code>md5_digest</code>, the context is reset to
its initial state, so you can start over calling <code>md5_update</code> to
hash new data.
</p>
<p>To start over, you can call <code>md5_init</code> at any time.
</p>
<a name="MD2"></a>
<h4 class="subsubsection">6.1.2.2 <acronym>MD2</acronym></h4>
<p>MD2 is another hash function of Ronald Rivest’s, described in
<cite>RFC 1319</cite>. It outputs message digests of 128 bits, or 16 octets.
Nettle defines MD2 in <samp><nettle/md2.h></samp>.
</p>
<dl>
<dt><a name="index-struct-md2_005fctx"></a>Context struct: <strong>struct md2_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-MD2_005fDIGEST_005fSIZE"></a>Constant: <strong>MD2_DIGEST_SIZE</strong></dt>
<dd><p>The size of an MD2 digest, i.e. 16.
</p></dd></dl>
<dl>
<dt><a name="index-MD2_005fBLOCK_005fSIZE"></a>Constant: <strong>MD2_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size of MD2.
</p></dd></dl>
<dl>
<dt><a name="index-md2_005finit"></a>Function: <em>void</em> <strong>md2_init</strong> <em>(struct md2_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initialize the MD2 state.
</p></dd></dl>
<dl>
<dt><a name="index-md2_005fupdate"></a>Function: <em>void</em> <strong>md2_update</strong> <em>(struct md2_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Hash some more data.
</p></dd></dl>
<dl>
<dt><a name="index-md2_005fdigest"></a>Function: <em>void</em> <strong>md2_digest</strong> <em>(struct md2_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Performs final processing and extracts the message digest, writing it
to <var>digest</var>. <var>length</var> may be smaller than
<code>MD2_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the digest are written.
</p>
<p>This function also resets the context in the same way as
<code>md2_init</code>.
</p></dd></dl>
<a name="MD4"></a>
<h4 class="subsubsection">6.1.2.3 <acronym>MD4</acronym></h4>
<p>MD4 is a predecessor of MD5, described in <cite>RFC 1320</cite>. Like MD5, it
is constructed by Ronald Rivest. It outputs message digests of 128 bits,
or 16 octets. Nettle defines MD4 in <samp><nettle/md4.h></samp>. Use of MD4 is
not recommended, but it is sometimes needed for compatibility with
existing applications and protocols.
</p>
<dl>
<dt><a name="index-struct-md4_005fctx"></a>Context struct: <strong>struct md4_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-MD4_005fDIGEST_005fSIZE"></a>Constant: <strong>MD4_DIGEST_SIZE</strong></dt>
<dd><p>The size of an MD4 digest, i.e. 16.
</p></dd></dl>
<dl>
<dt><a name="index-MD4_005fBLOCK_005fSIZE"></a>Constant: <strong>MD4_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size of MD4.
</p></dd></dl>
<dl>
<dt><a name="index-md4_005finit"></a>Function: <em>void</em> <strong>md4_init</strong> <em>(struct md4_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initialize the MD4 state.
</p></dd></dl>
<dl>
<dt><a name="index-md4_005fupdate"></a>Function: <em>void</em> <strong>md4_update</strong> <em>(struct md4_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Hash some more data.
</p></dd></dl>
<dl>
<dt><a name="index-md4_005fdigest"></a>Function: <em>void</em> <strong>md4_digest</strong> <em>(struct md4_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Performs final processing and extracts the message digest, writing it
to <var>digest</var>. <var>length</var> may be smaller than
<code>MD4_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the digest are written.
</p>
<p>This function also resets the context in the same way as
<code>md4_init</code>.
</p></dd></dl>
<a name="RIPEMD160"></a>
<h4 class="subsubsection">6.1.2.4 <acronym>RIPEMD160</acronym></h4>
<p>RIPEMD160 is a hash function designed by Hans Dobbertin, Antoon
Bosselaers, and Bart Preneel, as a strengthened version of RIPEMD
(which, like MD4 and MD5, fails the collision-resistance requirement).
It produces message digests of 160 bits, or 20 octets. Nettle defined
RIPEMD160 in <samp>nettle/ripemd160.h</samp>.
</p>
<dl>
<dt><a name="index-struct-ripemd160_005fctx"></a>Context struct: <strong>struct ripemd160_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-RIPEMD160_005fDIGEST_005fSIZE"></a>Constant: <strong>RIPEMD160_DIGEST_SIZE</strong></dt>
<dd><p>The size of a RIPEMD160 digest, i.e. 20.
</p></dd></dl>
<dl>
<dt><a name="index-RIPEMD160_005fBLOCK_005fSIZE"></a>Constant: <strong>RIPEMD160_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size of RIPEMD160.
</p></dd></dl>
<dl>
<dt><a name="index-ripemd160_005finit"></a>Function: <em>void</em> <strong>ripemd160_init</strong> <em>(struct ripemd160_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initialize the RIPEMD160 state.
</p></dd></dl>
<dl>
<dt><a name="index-ripemd160_005fupdate"></a>Function: <em>void</em> <strong>ripemd160_update</strong> <em>(struct ripemd160_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Hash some more data.
</p></dd></dl>
<dl>
<dt><a name="index-ripemd160_005fdigest"></a>Function: <em>void</em> <strong>ripemd160_digest</strong> <em>(struct ripemd160_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Performs final processing and extracts the message digest, writing it
to <var>digest</var>. <var>length</var> may be smaller than
<code>RIPEMD160_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the digest are written.
</p>
<p>This function also resets the context in the same way as
<code>ripemd160_init</code>.
</p></dd></dl>
<a name="SHA1"></a>
<h4 class="subsubsection">6.1.2.5 <acronym>SHA1</acronym></h4>
<p>SHA1 is a hash function specified by <em>NIST</em> (The U.S. National
Institute for Standards and Technology). It outputs hash values of 160
bits, or 20 octets. Nettle defines SHA1 in <samp><nettle/sha1.h></samp> (and
in <samp><nettle/sha.h></samp>, for backwards compatibility).
</p>
<dl>
<dt><a name="index-struct-sha1_005fctx"></a>Context struct: <strong>struct sha1_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-SHA1_005fDIGEST_005fSIZE"></a>Constant: <strong>SHA1_DIGEST_SIZE</strong></dt>
<dd><p>The size of a SHA1 digest, i.e. 20.
</p></dd></dl>
<dl>
<dt><a name="index-SHA1_005fBLOCK_005fSIZE"></a>Constant: <strong>SHA1_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size of SHA1. Useful for some special constructions,
in particular HMAC-SHA1.
</p></dd></dl>
<dl>
<dt><a name="index-sha1_005finit"></a>Function: <em>void</em> <strong>sha1_init</strong> <em>(struct sha1_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initialize the SHA1 state.
</p></dd></dl>
<dl>
<dt><a name="index-sha1_005fupdate"></a>Function: <em>void</em> <strong>sha1_update</strong> <em>(struct sha1_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Hash some more data.
</p></dd></dl>
<dl>
<dt><a name="index-sha1_005fdigest"></a>Function: <em>void</em> <strong>sha1_digest</strong> <em>(struct sha1_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Performs final processing and extracts the message digest, writing it
to <var>digest</var>. <var>length</var> may be smaller than
<code>SHA1_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the digest are written.
</p>
<p>This function also resets the context in the same way as
<code>sha1_init</code>.
</p></dd></dl>
<a name="GOSTHASH94"></a>
<h4 class="subsubsection">6.1.2.6 <acronym>GOSTHASH94</acronym></h4>
<p>The GOST94 or GOST R 34.11-94 hash algorithm is a Soviet-era algorithm
used in Russian government standards (see <cite>RFC 4357</cite>).
It outputs message digests of 256 bits, or 32 octets.
Nettle defines GOSTHASH94 in <samp><nettle/gosthash94.h></samp>.
</p>
<dl>
<dt><a name="index-struct-gosthash94_005fctx"></a>Context struct: <strong>struct gosthash94_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-GOSTHASH94_005fDIGEST_005fSIZE"></a>Constant: <strong>GOSTHASH94_DIGEST_SIZE</strong></dt>
<dd><p>The size of a GOSTHASH94 digest, i.e. 32.
</p></dd></dl>
<dl>
<dt><a name="index-GOSTHASH94_005fBLOCK_005fSIZE"></a>Constant: <strong>GOSTHASH94_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size of GOSTHASH94, i.e., 32.
</p></dd></dl>
<dl>
<dt><a name="index-gosthash94_005finit"></a>Function: <em>void</em> <strong>gosthash94_init</strong> <em>(struct gosthash94_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initialize the GOSTHASH94 state.
</p></dd></dl>
<dl>
<dt><a name="index-gosthash94_005fupdate"></a>Function: <em>void</em> <strong>gosthash94_update</strong> <em>(struct gosthash94_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Hash some more data.
</p></dd></dl>
<dl>
<dt><a name="index-gosthash94_005fdigest"></a>Function: <em>void</em> <strong>gosthash94_digest</strong> <em>(struct gosthash94_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Performs final processing and extracts the message digest, writing it
to <var>digest</var>. <var>length</var> may be smaller than
<code>GOSTHASH94_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the digest are written.
</p>
<p>This function also resets the context in the same way as
<code>gosthash94_init</code>.
</p></dd></dl>
<hr>
<a name="nettle_005fhash-abstraction"></a>
<div class="header">
<p>
Previous: <a href="#Legacy-hash-functions" accesskey="p" rel="prev">Legacy hash functions</a>, Up: <a href="#Hash-functions" accesskey="u" rel="up">Hash functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-struct-nettle_005fhash-abstraction"></a>
<h4 class="subsection">6.1.3 The <code>struct nettle_hash</code> abstraction</h4>
<a name="index-nettle_005fhash"></a>
<a name="index-nettle_005fhashes"></a>
<p>Nettle includes a struct including information about the supported hash
functions. It is defined in <samp><nettle/nettle-meta.h></samp>, and is used
by Nettle’s implementation of <acronym>HMAC</acronym> (see <a href="#Keyed-hash-functions">Keyed hash functions</a>).
</p>
<dl>
<dt><a name="index-struct-nettle_005fhash"></a>Meta struct: <strong><code>struct nettle_hash</code></strong> <em>name context_size digest_size block_size init update digest</em></dt>
<dd><p>The last three attributes are function pointers, of types
<code>nettle_hash_init_func *</code>, <code>nettle_hash_update_func *</code>, and
<code>nettle_hash_digest_func *</code>. The first argument to these functions is
<code>void *</code> pointer to a context struct, which is of size
<code>context_size</code>.
</p></dd></dl>
<dl>
<dt><a name="index-nettle_005fmd2"></a>Constant Struct: <em>struct nettle_hash</em> <strong>nettle_md2</strong></dt>
<dt><a name="index-nettle_005fmd4"></a>Constant Struct: <em>struct nettle_hash</em> <strong>nettle_md4</strong></dt>
<dt><a name="index-nettle_005fmd5"></a>Constant Struct: <em>struct nettle_hash</em> <strong>nettle_md5</strong></dt>
<dt><a name="index-nettle_005fripemd160"></a>Constant Struct: <em>struct nettle_hash</em> <strong>nettle_ripemd160</strong></dt>
<dt><a name="index-nettle_005fsha1"></a>Constant Struct: <em>struct nettle_hash</em> <strong>nettle_sha1</strong></dt>
<dt><a name="index-nettle_005fsha224"></a>Constant Struct: <em>struct nettle_hash</em> <strong>nettle_sha224</strong></dt>
<dt><a name="index-nettle_005fsha256"></a>Constant Struct: <em>struct nettle_hash</em> <strong>nettle_sha256</strong></dt>
<dt><a name="index-nettle_005fsha384"></a>Constant Struct: <em>struct nettle_hash</em> <strong>nettle_sha384</strong></dt>
<dt><a name="index-nettle_005fsha512"></a>Constant Struct: <em>struct nettle_hash</em> <strong>nettle_sha512</strong></dt>
<dt><a name="index-nettle_005fsha3_005f256"></a>Constant Struct: <em>struct nettle_hash</em> <strong>nettle_sha3_256</strong></dt>
<dt><a name="index-nettle_005fgosthash94"></a>Constant Struct: <em>struct nettle_hash</em> <strong>nettle_gosthash94</strong></dt>
<dd><p>These are all the hash functions that Nettle implements.
</p></dd></dl>
<p>Nettle also exports a list of all these hashes.
</p>
<dl>
<dt><a name="index-nettle_005fhashes-1"></a>Constant Array: <em>struct nettle_hash **</em> <strong>nettle_hashes</strong></dt>
<dd><p>This list can be used to dynamically enumerate or search the supported
algorithms. NULL-terminated.
</p></dd></dl>
<hr>
<a name="Cipher-functions"></a>
<div class="header">
<p>
Next: <a href="#Cipher-modes" accesskey="n" rel="next">Cipher modes</a>, Previous: <a href="#Hash-functions" accesskey="p" rel="prev">Hash functions</a>, Up: <a href="#Reference" accesskey="u" rel="up">Reference</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Cipher-functions-1"></a>
<h3 class="section">6.2 Cipher functions</h3>
<a name="index-Cipher"></a>
<p>A <em>cipher</em> is a function that takes a message or <em>plaintext</em>
and a secret <em>key</em> and transforms it to a <em>ciphertext</em>. Given
only the ciphertext, but not the key, it should be hard to find the
plaintext. Given matching pairs of plaintext and ciphertext, it should
be hard to find the key.
</p>
<a name="index-Block-Cipher"></a>
<a name="index-Stream-Cipher"></a>
<p>There are two main classes of ciphers: Block ciphers and stream ciphers.
</p>
<p>A block cipher can process data only in fixed size chunks, called
<em>blocks</em>. Typical block sizes are 8 or 16 octets. To encrypt
arbitrary messages, you usually have to pad it to an integral number of
blocks, split it into blocks, and then process each block. The simplest
way is to process one block at a time, independent of each other. That
mode of operation is called <em>ECB</em>, Electronic Code Book mode.
However, using <acronym>ECB</acronym> is usually a bad idea. For a start, plaintext blocks
that are equal are transformed to ciphertext blocks that are equal; that
leaks information about the plaintext. Usually you should apply the
cipher is some “feedback mode”, <em>CBC</em> (Cipher Block Chaining) and
<em>CTR</em> (Counter mode) being two of
of the most popular. See See <a href="#Cipher-modes">Cipher modes</a>, for information on
how to apply <acronym>CBC</acronym> and <acronym>CTR</acronym> with Nettle.
</p>
<p>A stream cipher can be used for messages of arbitrary length. A typical
stream cipher is a keyed pseudo-random generator. To encrypt a plaintext
message of <var>n</var> octets, you key the generator, generate <var>n</var>
octets of pseudo-random data, and XOR it with the plaintext. To decrypt,
regenerate the same stream using the key, XOR it to the ciphertext, and
the plaintext is recovered.
</p>
<p><strong>Caution:</strong> The first rule for this kind of cipher is the
same as for a One Time Pad: <em>never</em> ever use the same key twice.
</p>
<p>A common misconception is that encryption, by itself, implies
authentication. Say that you and a friend share a secret key, and you
receive an encrypted message. You apply the key, and get a plaintext
message that makes sense to you. Can you then be sure that it really was
your friend that wrote the message you’re reading? The answer is no. For
example, if you were using a block cipher in ECB mode, an attacker may
pick up the message on its way, and reorder, delete or repeat some of
the blocks. Even if the attacker can’t decrypt the message, he can
change it so that you are not reading the same message as your friend
wrote. If you are using a block cipher in <acronym>CBC</acronym> mode rather than
ECB, or are using a stream cipher, the possibilities for this sort of
attack are different, but the attacker can still make predictable
changes to the message.
</p>
<p>It is recommended to <em>always</em> use an authentication mechanism in
addition to encrypting the messages. Popular choices are Message
Authentication Codes like <acronym>HMAC-SHA1</acronym> (see <a href="#Keyed-hash-functions">Keyed hash functions</a>), or digital signatures like <acronym>RSA</acronym>.
</p>
<p>Some ciphers have so called “weak keys”, keys that results in
undesirable structure after the key setup processing, and should be
avoided. In Nettle, most key setup functions have no return value, but
for ciphers with weak keys, the return value indicates whether or not
the given key is weak. For good keys, key setup returns 1, and for weak
keys, it returns 0. When possible, avoid algorithms that
have weak keys. There are several good ciphers that don’t have any weak
keys.
</p>
<p>To encrypt a message, you first initialize a cipher context for
encryption or decryption with a particular key. You then use the context
to process plaintext or ciphertext messages. The initialization is known
as <em>key setup</em>. With Nettle, it is recommended to use each
context struct for only one direction, even if some of the ciphers use a
single key setup function that can be used for both encryption and
decryption.
</p>
<a name="AES"></a>
<h4 class="subsection">6.2.1 AES</h4>
<p>AES is a block cipher, specified by NIST as a replacement for
the older DES standard. The standard is the result of a competition
between cipher designers. The winning design, also known as RIJNDAEL,
was constructed by Joan Daemen and Vincent Rijnmen.
</p>
<p>Like all the AES candidates, the winning design uses a block size of 128
bits, or 16 octets, and three possible key-size, 128, 192 and 256 bits
(16, 24 and 32 octets) being the allowed key sizes. It does not have any
weak keys. Nettle defines AES in <samp><nettle/aes.h></samp>, and there is one
context struct for each key size. (Earlier versions of Nettle used a
single context struct, <code>struct aes_ctx</code>, for all key sizes. This
interface kept for backwards compatibility).
</p>
<dl>
<dt><a name="index-struct-aes128_005fctx"></a>Context struct: <strong>struct aes128_ctx</strong></dt>
<dt><a name="index-struct-aes192_005fctx"></a>Context struct: <strong>struct aes192_ctx</strong></dt>
<dt><a name="index-struct-aes256_005fctx"></a>Context struct: <strong>struct aes256_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-struct-aes_005fctx"></a>Context struct: <strong>struct aes_ctx</strong></dt>
<dd><p>Alternative struct, for the old AES interface.
</p></dd></dl>
<dl>
<dt><a name="index-AES_005fBLOCK_005fSIZE"></a>Constant: <strong>AES_BLOCK_SIZE</strong></dt>
<dd><p>The AES block-size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-AES128_005fKEY_005fSIZE"></a>Constant: <strong>AES128_KEY_SIZE</strong></dt>
<dt><a name="index-AES192_005fKEY_005fSIZE"></a>Constant: <strong>AES192_KEY_SIZE</strong></dt>
<dt><a name="index-AES256_005fKEY_005fSIZE"></a>Constant: <strong>AES256_KEY_SIZE</strong></dt>
<dt><a name="index-AES_005fMIN_005fKEY_005fSIZE"></a>Constant: <strong>AES_MIN_KEY_SIZE</strong></dt>
<dt><a name="index-AES_005fMAX_005fKEY_005fSIZE"></a>Constant: <strong>AES_MAX_KEY_SIZE</strong></dt>
</dl>
<dl>
<dt><a name="index-AES_005fKEY_005fSIZE"></a>Constant: <strong>AES_KEY_SIZE</strong></dt>
<dd><p>Default AES key size, 32.
</p></dd></dl>
<dl>
<dt><a name="index-aes128_005fset_005fencrypt_005fkey"></a>Function: <em>void</em> <strong>aes128_set_encrypt_key</strong> <em>(struct aes128_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-aes128_005fset_005fdecrypt_005fkey"></a>Function: <em>void</em> <strong>aes128_set_decrypt_key</strong> <em>(struct aes128_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-aes192_005fset_005fencrypt_005fkey"></a>Function: <em>void</em> <strong>aes192_set_encrypt_key</strong> <em>(struct aes192_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-aes192_005fset_005fdecrypt_005fkey"></a>Function: <em>void</em> <strong>aes192_set_decrypt_key</strong> <em>(struct aes192_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-aes256_005fset_005fencrypt_005fkey"></a>Function: <em>void</em> <strong>aes256_set_encrypt_key</strong> <em>(struct aes256_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-aes256_005fset_005fdecrypt_005fkey"></a>Function: <em>void</em> <strong>aes256_set_decrypt_key</strong> <em>(struct aes256_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-aes_005fset_005fencrypt_005fkey"></a>Function: <em>void</em> <strong>aes_set_encrypt_key</strong> <em>(struct aes_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-aes_005fset_005fdecrypt_005fkey"></a>Function: <em>void</em> <strong>aes_set_decrypt_key</strong> <em>(struct aes_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initialize the cipher, for encryption or decryption, respectively.
</p></dd></dl>
<dl>
<dt><a name="index-aes128_005finvert_005fkey"></a>Function: <em>void</em> <strong>aes128_invert_key</strong> <em>(struct aes128_ctx *<var>dst</var>, const struct aes128_ctx *<var>src</var>)</em></dt>
<dt><a name="index-aes192_005finvert_005fkey"></a>Function: <em>void</em> <strong>aes192_invert_key</strong> <em>(struct aes192_ctx *<var>dst</var>, const struct aes192_ctx *<var>src</var>)</em></dt>
<dt><a name="index-aes256_005finvert_005fkey"></a>Function: <em>void</em> <strong>aes256_invert_key</strong> <em>(struct aes256_ctx *<var>dst</var>, const struct aes256_ctx *<var>src</var>)</em></dt>
<dt><a name="index-aes_005finvert_005fkey"></a>Function: <em>void</em> <strong>aes_invert_key</strong> <em>(struct aes_ctx *<var>dst</var>, const struct aes_ctx *<var>src</var>)</em></dt>
<dd><p>Given a context <var>src</var> initialized for encryption, initializes the
context struct <var>dst</var> for decryption, using the same key. If the same
context struct is passed for both <code>src</code> and <code>dst</code>, it is
converted in place. These functions are mainly useful for applications
which needs to both encrypt and decrypt using the <em>same</em> key,
because calling, e.g., <code>aes128_set_encrypt_key</code> and
<code>aes128_invert_key</code>, is more efficient than calling
<code>aes128_set_encrypt_key</code> and <code>aes128_set_decrypt_key</code>.
</p></dd></dl>
<dl>
<dt><a name="index-aes128_005fencrypt"></a>Function: <em>void</em> <strong>aes128_encrypt</strong> <em>(struct aes128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-aes192_005fencrypt"></a>Function: <em>void</em> <strong>aes192_encrypt</strong> <em>(struct aes192_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-aes256_005fencrypt"></a>Function: <em>void</em> <strong>aes256_encrypt</strong> <em>(struct aes256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-aes_005fencrypt"></a>Function: <em>void</em> <strong>aes_encrypt</strong> <em>(struct aes_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encryption function. <var>length</var> must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. <code>src</code> and <code>dst</code> may be equal, but they must not overlap
in any other way.
</p></dd></dl>
<dl>
<dt><a name="index-aes128_005fdecrypt"></a>Function: <em>void</em> <strong>aes128_decrypt</strong> <em>(struct aes128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-aes192_005fdecrypt"></a>Function: <em>void</em> <strong>aes192_decrypt</strong> <em>(struct aes192_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-aes256_005fdecrypt"></a>Function: <em>void</em> <strong>aes256_decrypt</strong> <em>(struct aes256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-aes_005fdecrypt"></a>Function: <em>void</em> <strong>aes_decrypt</strong> <em>(struct aes_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Analogous to the encryption functions above.
</p></dd></dl>
<a name="ARCFOUR"></a>
<h4 class="subsection">6.2.2 ARCFOUR</h4>
<p>ARCFOUR is a stream cipher, also known under the trade marked name RC4,
and it is one of the fastest ciphers around. A problem is that the key
setup of ARCFOUR is quite weak, you should never use keys with
structure, keys that are ordinary passwords, or sequences of keys like
“secret:1”, “secret:2”, <small class="enddots">...</small>. If you have keys that don’t look
like random bit strings, and you want to use ARCFOUR, always hash the
key before feeding it to ARCFOUR. Furthermore, the initial bytes of the
generated key stream leak information about the key; for this reason, it
is recommended to discard the first 512 bytes of the key stream.
</p>
<div class="example">
<pre class="example">/* A more robust key setup function for ARCFOUR */
void
arcfour_set_key_hashed(struct arcfour_ctx *ctx,
size_t length, const uint8_t *key)
{
struct sha256_ctx hash;
uint8_t digest[SHA256_DIGEST_SIZE];
uint8_t buffer[0x200];
sha256_init(&hash);
sha256_update(&hash, length, key);
sha256_digest(&hash, SHA256_DIGEST_SIZE, digest);
arcfour_set_key(ctx, SHA256_DIGEST_SIZE, digest);
arcfour_crypt(ctx, sizeof(buffer), buffer, buffer);
}
</pre></div>
<p>Nettle defines ARCFOUR in <samp><nettle/arcfour.h></samp>.
</p>
<dl>
<dt><a name="index-struct-arcfour_005fctx"></a>Context struct: <strong>struct arcfour_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-ARCFOUR_005fMIN_005fKEY_005fSIZE"></a>Constant: <strong>ARCFOUR_MIN_KEY_SIZE</strong></dt>
<dd><p>Minimum key size, 1.
</p></dd></dl>
<dl>
<dt><a name="index-ARCFOUR_005fMAX_005fKEY_005fSIZE"></a>Constant: <strong>ARCFOUR_MAX_KEY_SIZE</strong></dt>
<dd><p>Maximum key size, 256.
</p></dd></dl>
<dl>
<dt><a name="index-ARCFOUR_005fKEY_005fSIZE"></a>Constant: <strong>ARCFOUR_KEY_SIZE</strong></dt>
<dd><p>Default ARCFOUR key size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-arcfour_005fset_005fkey"></a>Function: <em>void</em> <strong>arcfour_set_key</strong> <em>(struct arcfour_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initialize the cipher. The same function is used for both encryption and
decryption.
</p></dd></dl>
<dl>
<dt><a name="index-arcfour_005fcrypt"></a>Function: <em>void</em> <strong>arcfour_crypt</strong> <em>(struct arcfour_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encrypt some data. The same function is used for both encryption and
decryption. Unlike the block ciphers, this function modifies the
context, so you can split the data into arbitrary chunks and encrypt
them one after another. The result is the same as if you had called
<code>arcfour_crypt</code> only once with all the data.
</p></dd></dl>
<a name="ARCTWO"></a>
<h4 class="subsection">6.2.3 ARCTWO</h4>
<p>ARCTWO (also known as the trade marked name RC2) is a block cipher
specified in RFC 2268. Nettle also include a variation of the ARCTWO
set key operation that lack one step, to be compatible with the
reverse engineered RC2 cipher description, as described in a Usenet
post to <code>sci.crypt</code> by Peter Gutmann.
</p>
<p>ARCTWO uses a block size of 64 bits, and variable key-size ranging
from 1 to 128 octets. Besides the key, ARCTWO also has a second
parameter to key setup, the number of effective key bits, <code>ekb</code>.
This parameter can be used to artificially reduce the key size. In
practice, <code>ekb</code> is usually set equal to the input key size.
Nettle defines ARCTWO in <samp><nettle/arctwo.h></samp>.
</p>
<p>We do not recommend the use of ARCTWO; the Nettle implementation is
provided primarily for interoperability with existing applications and
standards.
</p>
<dl>
<dt><a name="index-struct-arctwo_005fctx"></a>Context struct: <strong>struct arctwo_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-ARCTWO_005fBLOCK_005fSIZE"></a>Constant: <strong>ARCTWO_BLOCK_SIZE</strong></dt>
<dd><p>The ARCTWO block-size, 8.
</p></dd></dl>
<dl>
<dt><a name="index-ARCTWO_005fMIN_005fKEY_005fSIZE"></a>Constant: <strong>ARCTWO_MIN_KEY_SIZE</strong></dt>
</dl>
<dl>
<dt><a name="index-ARCTWO_005fMAX_005fKEY_005fSIZE"></a>Constant: <strong>ARCTWO_MAX_KEY_SIZE</strong></dt>
</dl>
<dl>
<dt><a name="index-ARCTWO_005fKEY_005fSIZE"></a>Constant: <strong>ARCTWO_KEY_SIZE</strong></dt>
<dd><p>Default ARCTWO key size, 8.
</p></dd></dl>
<dl>
<dt><a name="index-arctwo_005fset_005fkey_005fekb"></a>Function: <em>void</em> <strong>arctwo_set_key_ekb</strong> <em>(struct arctwo_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>key</var>, unsigned <var>ekb</var>)</em></dt>
<dt><a name="index-arctwo_005fset_005fkey"></a>Function: <em>void</em> <strong>arctwo_set_key</strong> <em>(struct arctwo_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-arctwo_005fset_005fkey_005fgutmann"></a>Function: <em>void</em> <strong>arctwo_set_key_gutmann</strong> <em>(struct arctwo_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initialize the cipher. The same function is used for both encryption
and decryption. The first function is the most general one, which lets
you provide both the variable size key, and the desired effective key
size (in bits). The maximum value for <var>ekb</var> is 1024, and for
convenience, <code>ekb = 0</code> has the same effect as <code>ekb = 1024</code>.
</p>
<p><code>arctwo_set_key(ctx, length, key)</code> is equivalent to
<code>arctwo_set_key_ekb(ctx, length, key, 8*length)</code>, and
<code>arctwo_set_key_gutmann(ctx, length, key)</code> is equivalent to
<code>arctwo_set_key_ekb(ctx, length, key, 1024)</code>
</p></dd></dl>
<dl>
<dt><a name="index-arctwo_005fencrypt"></a>Function: <em>void</em> <strong>arctwo_encrypt</strong> <em>(struct arctwo_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encryption function. <var>length</var> must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. <code>src</code> and <code>dst</code> may be equal, but they must not
overlap in any other way.
</p></dd></dl>
<dl>
<dt><a name="index-arctwo_005fdecrypt"></a>Function: <em>void</em> <strong>arctwo_decrypt</strong> <em>(struct arctwo_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Analogous to <code>arctwo_encrypt</code>
</p></dd></dl>
<a name="BLOWFISH"></a>
<h4 class="subsection">6.2.4 BLOWFISH</h4>
<p>BLOWFISH is a block cipher designed by Bruce Schneier. It uses a block
size of 64 bits (8 octets), and a variable key size, up to 448 bits. It
has some weak keys. Nettle defines BLOWFISH in <samp><nettle/blowfish.h></samp>.
</p>
<dl>
<dt><a name="index-struct-blowfish_005fctx"></a>Context struct: <strong>struct blowfish_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-BLOWFISH_005fBLOCK_005fSIZE"></a>Constant: <strong>BLOWFISH_BLOCK_SIZE</strong></dt>
<dd><p>The BLOWFISH block-size, 8.
</p></dd></dl>
<dl>
<dt><a name="index-BLOWFISH_005fMIN_005fKEY_005fSIZE"></a>Constant: <strong>BLOWFISH_MIN_KEY_SIZE</strong></dt>
<dd><p>Minimum BLOWFISH key size, 8.
</p></dd></dl>
<dl>
<dt><a name="index-BLOWFISH_005fMAX_005fKEY_005fSIZE"></a>Constant: <strong>BLOWFISH_MAX_KEY_SIZE</strong></dt>
<dd><p>Maximum BLOWFISH key size, 56.
</p></dd></dl>
<dl>
<dt><a name="index-BLOWFISH_005fKEY_005fSIZE"></a>Constant: <strong>BLOWFISH_KEY_SIZE</strong></dt>
<dd><p>Default BLOWFISH key size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-blowfish_005fset_005fkey"></a>Function: <em>int</em> <strong>blowfish_set_key</strong> <em>(struct blowfish_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initialize the cipher. The same function is used for both encryption and
decryption. Checks for weak keys, returning 1
for good keys and 0 for weak keys. Applications that don’t care about
weak keys can ignore the return value.
</p>
<p><code>blowfish_encrypt</code> or <code>blowfish_decrypt</code> with a weak key will
crash with an assert violation.
</p></dd></dl>
<dl>
<dt><a name="index-blowfish_005fencrypt"></a>Function: <em>void</em> <strong>blowfish_encrypt</strong> <em>(struct blowfish_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encryption function. <var>length</var> must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. <code>src</code> and <code>dst</code> may be equal, but they must not overlap
in any other way.
</p></dd></dl>
<dl>
<dt><a name="index-blowfish_005fdecrypt"></a>Function: <em>void</em> <strong>blowfish_decrypt</strong> <em>(struct blowfish_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Analogous to <code>blowfish_encrypt</code>
</p></dd></dl>
<a name="Camellia"></a>
<h4 class="subsection">6.2.5 Camellia</h4>
<p>Camellia is a block cipher developed by Mitsubishi and Nippon Telegraph
and Telephone Corporation, described in <cite>RFC3713</cite>. It is
recommended by some Japanese and European authorities as an alternative
to AES, and it is one of the selected algorithms in the New European
Schemes for Signatures, Integrity and Encryption (NESSIE) project. The
algorithm is patented. The implementation in Nettle is derived from the
implementation released by NTT under the GNU LGPL (v2.1 or later), and
relies on the implicit patent license of the LGPL. There is also a
statement of royalty-free licensing for Camellia at
<a href="http://www.ntt.co.jp/news/news01e/0104/010417.html">http://www.ntt.co.jp/news/news01e/0104/010417.html</a>, but this
statement has some limitations which seem problematic for free software.
</p>
<p>Camellia uses a the same block size and key sizes as AES: The block size
is 128 bits (16 octets), and the supported key sizes are 128, 192, and
256 bits. The variants with 192 and 256 bit keys are identical, except
for the key setup. Nettle defines Camellia in
<samp><nettle/camellia.h></samp>, and there is one context struct for each key
size. (Earlier versions of Nettle used a single context struct,
<code>struct camellia_ctx</code>, for all key sizes. This interface kept for
backwards compatibility).
</p>
<dl>
<dt><a name="index-struct-camellia128_005fctx"></a>Context struct: <strong>struct camellia128_ctx</strong></dt>
<dt><a name="index-struct-camellia192_005fctx"></a>Context struct: <strong>struct camellia192_ctx</strong></dt>
<dt><a name="index-struct-camellia256_005fctx"></a>Context struct: <strong>struct camellia256_ctx</strong></dt>
<dd><p>Contexts structs. Actually, <code>camellia192_ctx</code> is an alias for
<code>camellia256_ctx</code>.
</p></dd></dl>
<dl>
<dt><a name="index-struct-camellia_005fctx"></a>Context struct: <strong>struct camellia_ctx</strong></dt>
<dd><p>Alternative struct, for the old Camellia interface.
</p></dd></dl>
<dl>
<dt><a name="index-CAMELLIA_005fBLOCK_005fSIZE"></a>Constant: <strong>CAMELLIA_BLOCK_SIZE</strong></dt>
<dd><p>The CAMELLIA block-size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-CAMELLIA128_005fKEY_005fSIZE"></a>Constant: <strong>CAMELLIA128_KEY_SIZE</strong></dt>
<dt><a name="index-CAMELLIA192_005fKEY_005fSIZE"></a>Constant: <strong>CAMELLIA192_KEY_SIZE</strong></dt>
<dt><a name="index-CAMELLIA256_005fKEY_005fSIZE"></a>Constant: <strong>CAMELLIA256_KEY_SIZE</strong></dt>
<dt><a name="index-CAMELLIA_005fMIN_005fKEY_005fSIZE"></a>Constant: <strong>CAMELLIA_MIN_KEY_SIZE</strong></dt>
<dt><a name="index-CAMELLIA_005fMAX_005fKEY_005fSIZE"></a>Constant: <strong>CAMELLIA_MAX_KEY_SIZE</strong></dt>
</dl>
<dl>
<dt><a name="index-CAMELLIA_005fKEY_005fSIZE"></a>Constant: <strong>CAMELLIA_KEY_SIZE</strong></dt>
<dd><p>Default CAMELLIA key size, 32.
</p></dd></dl>
<dl>
<dt><a name="index-camellia128_005fset_005fencrypt_005fkey"></a>Function: <em>void</em> <strong>camellia128_set_encrypt_key</strong> <em>(struct camellia128_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-camellia128_005fset_005fdecrypt_005fkey"></a>Function: <em>void</em> <strong>camellia128_set_decrypt_key</strong> <em>(struct camellia128_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-camellia192_005fset_005fencrypt_005fkey"></a>Function: <em>void</em> <strong>camellia192_set_encrypt_key</strong> <em>(struct camellia192_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-camellia192_005fset_005fdecrypt_005fkey"></a>Function: <em>void</em> <strong>camellia192_set_decrypt_key</strong> <em>(struct camellia192_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-camellia256_005fset_005fencrypt_005fkey"></a>Function: <em>void</em> <strong>camellia256_set_encrypt_key</strong> <em>(struct camellia256_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-camellia256_005fset_005fdecrypt_005fkey"></a>Function: <em>void</em> <strong>camellia256_set_decrypt_key</strong> <em>(struct camellia256_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-camellia_005fset_005fencrypt_005fkey"></a>Function: <em>void</em> <strong>camellia_set_encrypt_key</strong> <em>(struct camellia_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-camellia_005fset_005fdecrypt_005fkey"></a>Function: <em>void</em> <strong>camellia_set_decrypt_key</strong> <em>(struct camellia_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initialize the cipher, for encryption or decryption, respectively.
</p></dd></dl>
<dl>
<dt><a name="index-camellia128_005finvert_005fkey"></a>Function: <em>void</em> <strong>camellia128_invert_key</strong> <em>(struct camellia128_ctx *<var>dst</var>, const struct camellia128_ctx *<var>src</var>)</em></dt>
<dt><a name="index-camellia192_005finvert_005fkey"></a>Function: <em>void</em> <strong>camellia192_invert_key</strong> <em>(struct camellia192_ctx *<var>dst</var>, const struct camellia192_ctx *<var>src</var>)</em></dt>
<dt><a name="index-camellia256_005finvert_005fkey"></a>Function: <em>void</em> <strong>camellia256_invert_key</strong> <em>(struct camellia256_ctx *<var>dst</var>, const struct camellia256_ctx *<var>src</var>)</em></dt>
<dt><a name="index-camellia_005finvert_005fkey"></a>Function: <em>void</em> <strong>camellia_invert_key</strong> <em>(struct camellia_ctx *<var>dst</var>, const struct camellia_ctx *<var>src</var>)</em></dt>
<dd><p>Given a context <var>src</var> initialized for encryption, initializes the
context struct <var>dst</var> for decryption, using the same key. If the same
context struct is passed for both <code>src</code> and <code>dst</code>, it is
converted in place. These functions are mainly useful for applications
which needs to both encrypt and decrypt using the <em>same</em> key.
</p></dd></dl>
<dl>
<dt><a name="index-camellia128_005fcrypt"></a>Function: <em>void</em> <strong>camellia128_crypt</strong> <em>(struct camellia128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-camellia192_005fcrypt"></a>Function: <em>void</em> <strong>camellia192_crypt</strong> <em>(struct camellia192_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-camellia256_005fcrypt"></a>Function: <em>void</em> <strong>camellia256_crypt</strong> <em>(struct camellia256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-camellia_005fcrypt"></a>Function: <em>void</em> <strong>camellia_crypt</strong> <em>(struct camellia_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>The same function is used for both encryption and decryption.
<var>length</var> must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. <code>src</code> and
<code>dst</code> may be equal, but they must not overlap in any other way.
</p></dd></dl>
<a name="CAST128"></a>
<h4 class="subsection">6.2.6 CAST128</h4>
<p>CAST-128 is a block cipher, specified in <cite>RFC 2144</cite>. It uses a 64
bit (8 octets) block size, and a variable key size of up to 128 bits.
Nettle defines cast128 in <samp><nettle/cast128.h></samp>.
</p>
<dl>
<dt><a name="index-struct-cast128_005fctx"></a>Context struct: <strong>struct cast128_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-CAST128_005fBLOCK_005fSIZE"></a>Constant: <strong>CAST128_BLOCK_SIZE</strong></dt>
<dd><p>The CAST128 block-size, 8.
</p></dd></dl>
<dl>
<dt><a name="index-CAST128_005fMIN_005fKEY_005fSIZE"></a>Constant: <strong>CAST128_MIN_KEY_SIZE</strong></dt>
<dd><p>Minimum CAST128 key size, 5.
</p></dd></dl>
<dl>
<dt><a name="index-CAST128_005fMAX_005fKEY_005fSIZE"></a>Constant: <strong>CAST128_MAX_KEY_SIZE</strong></dt>
<dd><p>Maximum CAST128 key size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-CAST128_005fKEY_005fSIZE"></a>Constant: <strong>CAST128_KEY_SIZE</strong></dt>
<dd><p>Default CAST128 key size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-cast128_005fset_005fkey"></a>Function: <em>void</em> <strong>cast128_set_key</strong> <em>(struct cast128_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initialize the cipher. The same function is used for both encryption and
decryption.
</p></dd></dl>
<dl>
<dt><a name="index-cast128_005fencrypt"></a>Function: <em>void</em> <strong>cast128_encrypt</strong> <em>(struct cast128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encryption function. <var>length</var> must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. <code>src</code> and <code>dst</code> may be equal, but they must not overlap
in any other way.
</p></dd></dl>
<dl>
<dt><a name="index-cast128_005fdecrypt"></a>Function: <em>void</em> <strong>cast128_decrypt</strong> <em>(struct cast128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Analogous to <code>cast128_encrypt</code>
</p></dd></dl>
<a name="ChaCha"></a>
<h4 class="subsection">6.2.7 ChaCha</h4>
<p>ChaCha is a variant of the stream cipher Salsa20, also designed by D. J.
Bernstein. For more information on Salsa20, see below. Nettle defines
ChaCha in <samp><nettle/chacha.h></samp>.
</p>
<dl>
<dt><a name="index-struct-chacha_005fctx"></a>Context struct: <strong>struct chacha_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-CHACHA_005fKEY_005fSIZE"></a>Constant: <strong>CHACHA_KEY_SIZE</strong></dt>
<dd><p>ChaCha key size, 32.
</p></dd></dl>
<dl>
<dt><a name="index-CHACHA_005fBLOCK_005fSIZE"></a>Constant: <strong>CHACHA_BLOCK_SIZE</strong></dt>
<dd><p>ChaCha block size, 64.
</p></dd></dl>
<dl>
<dt><a name="index-CHACHA_005fNONCE_005fSIZE"></a>Constant: <strong>CHACHA_NONCE_SIZE</strong></dt>
<dd><p>Size of the nonce, 8.
</p></dd></dl>
<dl>
<dt><a name="index-chacha_005fset_005fkey"></a>Function: <em>void</em> <strong>chacha_set_key</strong> <em>(struct chacha_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initialize the cipher. The same function is used for both encryption and
decryption. Before using the cipher,
you <em>must</em> also call <code>chacha_set_nonce</code>, see below.
</p></dd></dl>
<dl>
<dt><a name="index-chacha_005fset_005fnonce"></a>Function: <em>void</em> <strong>chacha_set_nonce</strong> <em>(struct chacha_ctx *<var>ctx</var>, const uint8_t *<var>nonce</var>)</em></dt>
<dd><p>Sets the nonce. It is always of size <code>CHACHA_NONCE_SIZE</code>, 8
octets. This function also initializes the block counter, setting it to
zero.
</p></dd></dl>
<dl>
<dt><a name="index-chacha_005fcrypt"></a>Function: <em>void</em> <strong>chacha_crypt</strong> <em>(struct chacha_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encrypts or decrypts the data of a message, using ChaCha. When a
message is encrypted using a sequence of calls to <code>chacha_crypt</code>,
all but the last call <em>must</em> use a length that is a multiple of
<code>CHACHA_BLOCK_SIZE</code>.
</p></dd></dl>
<a name="DES"></a>
<h4 class="subsection">6.2.8 DES</h4>
<p>DES is the old Data Encryption Standard, specified by NIST. It uses a
block size of 64 bits (8 octets), and a key size of 56 bits. However,
the key bits are distributed over 8 octets, where the least significant
bit of each octet may be used for parity. A common way to use DES is to
generate 8 random octets in some way, then set the least significant bit
of each octet to get odd parity, and initialize DES with the resulting
key.
</p>
<p>The key size of DES is so small that keys can be found by brute force,
using specialized hardware or lots of ordinary work stations in
parallel. One shouldn’t be using plain DES at all today, if one uses
DES at all one should be using “triple DES”, see DES3 below.
</p>
<p>DES also has some weak keys. Nettle defines DES in <samp><nettle/des.h></samp>.
</p>
<dl>
<dt><a name="index-struct-des_005fctx"></a>Context struct: <strong>struct des_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-DES_005fBLOCK_005fSIZE"></a>Constant: <strong>DES_BLOCK_SIZE</strong></dt>
<dd><p>The DES block-size, 8.
</p></dd></dl>
<dl>
<dt><a name="index-DES_005fKEY_005fSIZE"></a>Constant: <strong>DES_KEY_SIZE</strong></dt>
<dd><p>DES key size, 8.
</p></dd></dl>
<dl>
<dt><a name="index-des_005fset_005fkey"></a>Function: <em>int</em> <strong>des_set_key</strong> <em>(struct des_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initialize the cipher. The same function is used for both encryption and
decryption. Parity bits are ignored. Checks for weak keys, returning 1
for good keys and 0 for weak keys. Applications that don’t care about
weak keys can ignore the return value.
</p></dd></dl>
<dl>
<dt><a name="index-des_005fencrypt"></a>Function: <em>void</em> <strong>des_encrypt</strong> <em>(struct des_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encryption function. <var>length</var> must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. <code>src</code> and <code>dst</code> may be equal, but they must not overlap
in any other way.
</p></dd></dl>
<dl>
<dt><a name="index-des_005fdecrypt"></a>Function: <em>void</em> <strong>des_decrypt</strong> <em>(struct des_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Analogous to <code>des_encrypt</code>
</p></dd></dl>
<dl>
<dt><a name="index-des_005fcheck_005fparity"></a>Function: <em>int</em> <strong>des_check_parity</strong> <em>(size_t <var>length</var>, const uint8_t *<var>key</var>);</em></dt>
<dd><p>Checks that the given key has correct, odd, parity. Returns 1 for
correct parity, and 0 for bad parity.
</p></dd></dl>
<dl>
<dt><a name="index-des_005ffix_005fparity"></a>Function: <em>void</em> <strong>des_fix_parity</strong> <em>(size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Adjusts the parity bits to match DES’s requirements. You need this
function if you have created a random-looking string by a key agreement
protocol, and want to use it as a DES key. <var>dst</var> and <var>src</var> may
be equal.
</p></dd></dl>
<a name="DES3"></a>
<h4 class="subsection">6.2.9 DES3</h4>
<p>The inadequate key size of DES has already been mentioned. One way to
increase the key size is to pipe together several DES boxes with
independent keys. It turns out that using two DES ciphers is not as
secure as one might think, even if the key size of the combination is a
respectable 112 bits.
</p>
<p>The standard way to increase DES’s key size is to use three DES boxes.
The mode of operation is a little peculiar: the middle DES box is wired
in the reverse direction. To encrypt a block with DES3, you encrypt it
using the first 56 bits of the key, then <em>decrypt</em> it using the
middle 56 bits of the key, and finally encrypt it again using the last
56 bits of the key. This is known as “ede” triple-DES, for
“encrypt-decrypt-encrypt”.
</p>
<p>The “ede” construction provides some backward compatibility, as you get
plain single DES simply by feeding the same key to all three boxes. That
should help keeping down the gate count, and the price, of hardware
circuits implementing both plain DES and DES3.
</p>
<p>DES3 has a key size of 168 bits, but just like plain DES, useless parity
bits are inserted, so that keys are represented as 24 octets (192 bits).
As a 112 bit key is large enough to make brute force attacks
impractical, some applications uses a “two-key” variant of triple-DES.
In this mode, the same key bits are used for the first and the last DES
box in the pipe, while the middle box is keyed independently. The
two-key variant is believed to be secure, i.e. there are no known
attacks significantly better than brute force.
</p>
<p>Naturally, it’s simple to implement triple-DES on top of Nettle’s DES
functions. Nettle includes an implementation of three-key “ede”
triple-DES, it is defined in the same place as plain DES,
<samp><nettle/des.h></samp>.
</p>
<dl>
<dt><a name="index-struct-des3_005fctx"></a>Context struct: <strong>struct des3_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-DES3_005fBLOCK_005fSIZE"></a>Constant: <strong>DES3_BLOCK_SIZE</strong></dt>
<dd><p>The DES3 block-size is the same as DES_BLOCK_SIZE, 8.
</p></dd></dl>
<dl>
<dt><a name="index-DES3_005fKEY_005fSIZE"></a>Constant: <strong>DES3_KEY_SIZE</strong></dt>
<dd><p>DES key size, 24.
</p></dd></dl>
<dl>
<dt><a name="index-des3_005fset_005fkey"></a>Function: <em>int</em> <strong>des3_set_key</strong> <em>(struct des3_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initialize the cipher. The same function is used for both encryption and
decryption. Parity bits are ignored. Checks for weak keys, returning 1
if all three keys are good keys, and 0 if one or more key is weak.
Applications that don’t care about weak keys can ignore the return
value.
</p></dd></dl>
<p>For random-looking strings, you can use <code>des_fix_parity</code> to adjust
the parity bits before calling <code>des3_set_key</code>.
</p>
<dl>
<dt><a name="index-des3_005fencrypt"></a>Function: <em>void</em> <strong>des3_encrypt</strong> <em>(struct des3_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encryption function. <var>length</var> must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. <code>src</code> and <code>dst</code> may be equal, but they must not overlap
in any other way.
</p></dd></dl>
<dl>
<dt><a name="index-des3_005fdecrypt"></a>Function: <em>void</em> <strong>des3_decrypt</strong> <em>(struct des3_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Analogous to <code>des_encrypt</code>
</p></dd></dl>
<a name="Salsa20"></a>
<h4 class="subsection">6.2.10 Salsa20</h4>
<p>Salsa20 is a fairly recent stream cipher designed by D. J. Bernstein. It
is built on the observation that a cryptographic hash function can be
used for encryption: Form the hash input from the secret key and a
counter, xor the hash output and the first block of the plaintext, then
increment the counter to process the next block (similar to CTR mode, see
see <a href="#CTR">CTR</a>). Bernstein defined an encryption algorithm, Snuffle,
in this way to ridicule United States export restrictions which treated hash
functions as nice and harmless, but ciphers as dangerous munitions.
</p>
<p>Salsa20 uses the same idea, but with a new specialized hash function to
mix key, block counter, and a couple of constants. It’s also designed
for speed; on x86_64, it is currently the fastest cipher offered by
nettle. It uses a block size of 512 bits (64 octets) and there are two
specified key sizes, 128 and 256 bits (16 and 32 octets).
</p>
<p><strong>Caution:</strong> The hash function used in Salsa20 is <em>not</em>
directly applicable for use as a general hash function. It’s <em>not</em>
collision resistant if arbitrary inputs are allowed, and furthermore,
the input and output is of fixed size.
</p>
<p>When using Salsa20 to process a message, one specifies both a key and a
<em>nonce</em>, the latter playing a similar rôle to the initialization
vector (<acronym>IV</acronym>) used with <acronym>CBC</acronym> or <acronym>CTR</acronym> mode. One
can use the same key for several messages, provided one uses a unique
random <acronym>iv</acronym> for each message. The <acronym>iv</acronym> is 64 bits (8
octets). The block counter is initialized to zero for each message, and
is also 64 bits (8 octets). Nettle defines Salsa20 in
<samp><nettle/salsa20.h></samp>.
</p>
<dl>
<dt><a name="index-struct-salsa20_005fctx"></a>Context struct: <strong>struct salsa20_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-SALSA20_005f128_005fKEY_005fSIZE"></a>Constant: <strong>SALSA20_128_KEY_SIZE</strong></dt>
<dt><a name="index-SALSA20_005f256_005fKEY_005fSIZE"></a>Constant: <strong>SALSA20_256_KEY_SIZE</strong></dt>
<dd><p>The two supported key sizes, 16 and 32 octets.
</p></dd></dl>
<dl>
<dt><a name="index-SALSA20_005fKEY_005fSIZE"></a>Constant: <strong>SALSA20_KEY_SIZE</strong></dt>
<dd><p>Recommended key size, 32.
</p></dd></dl>
<dl>
<dt><a name="index-SALSA20_005fBLOCK_005fSIZE"></a>Constant: <strong>SALSA20_BLOCK_SIZE</strong></dt>
<dd><p>Salsa20 block size, 64.
</p></dd></dl>
<dl>
<dt><a name="index-SALSA20_005fNONCE_005fSIZE"></a>Constant: <strong>SALSA20_NONCE_SIZE</strong></dt>
<dd><p>Size of the nonce, 8.
</p></dd></dl>
<dl>
<dt><a name="index-salsa20_005f128_005fset_005fkey"></a>Function: <em>void</em> <strong>salsa20_128_set_key</strong> <em>(struct salsa20_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-salsa20_005f256_005fset_005fkey"></a>Function: <em>void</em> <strong>salsa20_256_set_key</strong> <em>(struct salsa20_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-salsa20_005fset_005fkey"></a>Function: <em>void</em> <strong>salsa20_set_key</strong> <em>(struct salsa20_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initialize the cipher. The same function is used for both encryption and
decryption. <code>salsa20_128_set_key</code> and <code>salsa20_128_set_key</code>
use a fix key size each, 16 and 32 octets, respectively. The function
<code>salsa20_set_key</code> is provided for backwards compatibility, and the
<var>length</var> argument must be either 16 or 32. Before using the cipher,
you <em>must</em> also call <code>salsa20_set_nonce</code>, see below.
</p></dd></dl>
<dl>
<dt><a name="index-salsa20_005fset_005fnonce"></a>Function: <em>void</em> <strong>salsa20_set_nonce</strong> <em>(struct salsa20_ctx *<var>ctx</var>, const uint8_t *<var>nonce</var>)</em></dt>
<dd><p>Sets the nonce. It is always of size <code>SALSA20_NONCE_SIZE</code>, 8
octets. This function also initializes the block counter, setting it to
zero.
</p></dd></dl>
<dl>
<dt><a name="index-salsa20_005fcrypt"></a>Function: <em>void</em> <strong>salsa20_crypt</strong> <em>(struct salsa20_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encrypts or decrypts the data of a message, using salsa20. When a
message is encrypted using a sequence of calls to <code>salsa20_crypt</code>,
all but the last call <em>must</em> use a length that is a multiple of
<code>SALSA20_BLOCK_SIZE</code>.
</p></dd></dl>
<p>The full salsa20 cipher uses 20 rounds of mixing. Variants of Salsa20
with fewer rounds are possible, and the 12-round variant is specified by
eSTREAM, see <a href="http://www.ecrypt.eu.org/stream/finallist.html">http://www.ecrypt.eu.org/stream/finallist.html</a>.
Nettle calls this variant <code>salsa20r12</code>. It uses the same context
struct and key setup as the full salsa20 cipher, but a separate function
for encryption and decryption.
</p>
<dl>
<dt><a name="index-salsa20r12_005fcrypt"></a>Function: <em>void</em> <strong>salsa20r12_crypt</strong> <em>(struct salsa20_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encrypts or decrypts the data of a message, using salsa20 reduced to 12
rounds.
</p></dd></dl>
<a name="SERPENT"></a>
<h4 class="subsection">6.2.11 SERPENT</h4>
<p>SERPENT is one of the AES finalists, designed by Ross Anderson, Eli
Biham and Lars Knudsen. Thus, the interface and properties are similar
to AES’. One peculiarity is that it is quite pointless to use it with
anything but the maximum key size, smaller keys are just padded to
larger ones. Nettle defines SERPENT in <samp><nettle/serpent.h></samp>.
</p>
<dl>
<dt><a name="index-struct-serpent_005fctx"></a>Context struct: <strong>struct serpent_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-SERPENT_005fBLOCK_005fSIZE"></a>Constant: <strong>SERPENT_BLOCK_SIZE</strong></dt>
<dd><p>The SERPENT block-size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-SERPENT_005fMIN_005fKEY_005fSIZE"></a>Constant: <strong>SERPENT_MIN_KEY_SIZE</strong></dt>
<dd><p>Minimum SERPENT key size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-SERPENT_005fMAX_005fKEY_005fSIZE"></a>Constant: <strong>SERPENT_MAX_KEY_SIZE</strong></dt>
<dd><p>Maximum SERPENT key size, 32.
</p></dd></dl>
<dl>
<dt><a name="index-SERPENT_005fKEY_005fSIZE"></a>Constant: <strong>SERPENT_KEY_SIZE</strong></dt>
<dd><p>Default SERPENT key size, 32.
</p></dd></dl>
<dl>
<dt><a name="index-serpent_005fset_005fkey"></a>Function: <em>void</em> <strong>serpent_set_key</strong> <em>(struct serpent_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initialize the cipher. The same function is used for both encryption and
decryption.
</p></dd></dl>
<dl>
<dt><a name="index-serpent_005fencrypt"></a>Function: <em>void</em> <strong>serpent_encrypt</strong> <em>(struct serpent_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encryption function. <var>length</var> must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. <code>src</code> and <code>dst</code> may be equal, but they must not overlap
in any other way.
</p></dd></dl>
<dl>
<dt><a name="index-serpent_005fdecrypt"></a>Function: <em>void</em> <strong>serpent_decrypt</strong> <em>(struct serpent_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Analogous to <code>serpent_encrypt</code>
</p></dd></dl>
<a name="TWOFISH"></a>
<h4 class="subsection">6.2.12 TWOFISH</h4>
<p>Another AES finalist, this one designed by Bruce Schneier and others.
Nettle defines it in <samp><nettle/twofish.h></samp>.
</p>
<dl>
<dt><a name="index-struct-twofish_005fctx"></a>Context struct: <strong>struct twofish_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-TWOFISH_005fBLOCK_005fSIZE"></a>Constant: <strong>TWOFISH_BLOCK_SIZE</strong></dt>
<dd><p>The TWOFISH block-size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-TWOFISH_005fMIN_005fKEY_005fSIZE"></a>Constant: <strong>TWOFISH_MIN_KEY_SIZE</strong></dt>
<dd><p>Minimum TWOFISH key size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-TWOFISH_005fMAX_005fKEY_005fSIZE"></a>Constant: <strong>TWOFISH_MAX_KEY_SIZE</strong></dt>
<dd><p>Maximum TWOFISH key size, 32.
</p></dd></dl>
<dl>
<dt><a name="index-TWOFISH_005fKEY_005fSIZE"></a>Constant: <strong>TWOFISH_KEY_SIZE</strong></dt>
<dd><p>Default TWOFISH key size, 32.
</p></dd></dl>
<dl>
<dt><a name="index-twofish_005fset_005fkey"></a>Function: <em>void</em> <strong>twofish_set_key</strong> <em>(struct twofish_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initialize the cipher. The same function is used for both encryption and
decryption.
</p></dd></dl>
<dl>
<dt><a name="index-twofish_005fencrypt"></a>Function: <em>void</em> <strong>twofish_encrypt</strong> <em>(struct twofish_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encryption function. <var>length</var> must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. <code>src</code> and <code>dst</code> may be equal, but they must not overlap
in any other way.
</p></dd></dl>
<dl>
<dt><a name="index-twofish_005fdecrypt"></a>Function: <em>void</em> <strong>twofish_decrypt</strong> <em>(struct twofish_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Analogous to <code>twofish_encrypt</code>
</p></dd></dl>
<a name="The-struct-nettle_005fcipher-abstraction"></a>
<h4 class="subsection">6.2.13 The <code>struct nettle_cipher</code> abstraction</h4>
<a name="index-nettle_005fcipher"></a>
<a name="index-nettle_005fciphers"></a>
<p>Nettle includes a struct including information about some of the more
regular cipher functions. It can be useful for applications that need a
simple way to handle various algorithms. Nettle defines these structs in
<samp><nettle/nettle-meta.h></samp>.
</p>
<dl>
<dt><a name="index-struct-nettle_005fcipher"></a>Meta struct: <strong><code>struct nettle_cipher</code></strong> <em>name context_size block_size key_size set_encrypt_key set_decrypt_key encrypt decrypt</em></dt>
<dd><p>The last four attributes are function pointers, of types
<code>nettle_set_key_func *</code> and <code>nettle_cipher_func *</code>. The first
argument to these functions is a <code>const void *</code> pointer to a context
struct, which is of size <code>context_size</code>.
</p></dd></dl>
<dl>
<dt><a name="index-nettle_005faes128"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_aes128</strong></dt>
<dt><a name="index-nettle_005faes192"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_aes192</strong></dt>
<dt><a name="index-nettle_005faes256"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_aes256</strong></dt>
<dt><a name="index-nettle_005farctwo40"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_arctwo40</strong></dt>
<dt><a name="index-nettle_005farctwo64"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_arctwo64</strong></dt>
<dt><a name="index-nettle_005farctwo128"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_arctwo128</strong></dt>
<dt><a name="index-nettle_005farctwo_005fgutmann128"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_arctwo_gutmann128</strong></dt>
<dt><a name="index-nettle_005farcfour128"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_arcfour128</strong></dt>
<dt><a name="index-nettle_005fcamellia128"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_camellia128</strong></dt>
<dt><a name="index-nettle_005fcamellia192"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_camellia192</strong></dt>
<dt><a name="index-nettle_005fcamellia256"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_camellia256</strong></dt>
<dt><a name="index-nettle_005fcast128"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_cast128</strong></dt>
<dt><a name="index-nettle_005fserpent128"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_serpent128</strong></dt>
<dt><a name="index-nettle_005fserpent192"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_serpent192</strong></dt>
<dt><a name="index-nettle_005fserpent256"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_serpent256</strong></dt>
<dt><a name="index-nettle_005ftwofish128"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_twofish128</strong></dt>
<dt><a name="index-nettle_005ftwofish192"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_twofish192</strong></dt>
<dt><a name="index-nettle_005ftwofish256"></a>Constant Struct: <em>struct nettle_cipher</em> <strong>nettle_twofish256</strong></dt>
<dd><p>Nettle includes such structs for all the <em>regular</em> ciphers, i.e.
ones without weak keys or other oddities.
</p></dd></dl>
<p>Nettle also exports a list of all these ciphers without weak keys or
other oddities.
</p>
<dl>
<dt><a name="index-nettle_005fciphers-1"></a>Constant Array: <em>struct nettle_cipher **</em> <strong>nettle_ciphers</strong></dt>
<dd><p>This list can be used to dynamically enumerate or search the supported
algorithms. NULL-terminated.
</p></dd></dl>
<hr>
<a name="Cipher-modes"></a>
<div class="header">
<p>
Next: <a href="#Authenticated-encryption" accesskey="n" rel="next">Authenticated encryption</a>, Previous: <a href="#Cipher-functions" accesskey="p" rel="prev">Cipher functions</a>, Up: <a href="#Reference" accesskey="u" rel="up">Reference</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Cipher-modes-1"></a>
<h3 class="section">6.3 Cipher modes</h3>
<p>Cipher modes of operation specifies the procedure to use when encrypting
a message that is larger than the cipher’s block size. As explained in
See <a href="#Cipher-functions">Cipher functions</a>, splitting the message into blocks and
processing them independently with the block cipher (Electronic Code
Book mode, <acronym>ECB</acronym>), leaks information.
</p>
<p>Besides <acronym>ECB</acronym>, Nettle provides a two other modes of operation:
Cipher Block Chaining (<acronym>CBC</acronym>), Counter mode (<acronym>CTR</acronym>), and
a couple of <acronym>AEAD</acronym> modes (see <a href="#Authenticated-encryption">Authenticated encryption</a>).
<acronym>CBC</acronym> is widely used, but there are a few subtle issues of
information leakage, see, e.g.,
<a href="http://www.kb.cert.org/vuls/id/958563"><acronym>SSH</acronym> <acronym>CBC</acronym>
vulnerability</a>. Today, <acronym>CTR</acronym> is usually preferred over <acronym>CBC</acronym>.
</p>
<p>Modes like <acronym>CBC</acronym> and <acronym>CTR</acronym> provide <em>no</em> message
authentication, and should always be used together with a <acronym>MAC</acronym>
(see <a href="#Keyed-hash-functions">Keyed hash functions</a>) or signature to authenticate the message.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#CBC" accesskey="1">CBC</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#CTR" accesskey="2">CTR</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="CBC"></a>
<div class="header">
<p>
Next: <a href="#CTR" accesskey="n" rel="next">CTR</a>, Previous: <a href="#Cipher-modes" accesskey="p" rel="prev">Cipher modes</a>, Up: <a href="#Cipher-modes" accesskey="u" rel="up">Cipher modes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Cipher-Block-Chaining"></a>
<h4 class="subsection">6.3.1 Cipher Block Chaining</h4>
<a name="index-Cipher-Block-Chaining"></a>
<a name="index-CBC-Mode"></a>
<p>When using <acronym>CBC</acronym> mode, plaintext blocks are not encrypted
independently of each other, like in Electronic Cook Book mode. Instead,
when encrypting a block in <acronym>CBC</acronym> mode, the previous ciphertext
block is XORed with the plaintext before it is fed to the block cipher.
When encrypting the first block, a random block called an <em>IV</em>, or
Initialization Vector, is used as the “previous ciphertext block”. The
IV should be chosen randomly, but it need not be kept secret, and can
even be transmitted in the clear together with the encrypted data.
</p>
<p>In symbols, if <code>E_k</code> is the encryption function of a block cipher,
and <code>IV</code> is the initialization vector, then <code>n</code> plaintext blocks
<code>M_1</code>,… <code>M_n</code> are transformed into <code>n</code> ciphertext blocks
<code>C_1</code>,… <code>C_n</code> as follows:
</p>
<div class="example">
<pre class="example">C_1 = E_k(IV XOR M_1)
C_2 = E_k(C_1 XOR M_2)
…
C_n = E_k(C_(n-1) XOR M_n)
</pre></div>
<p>Nettle’s includes two functions for applying a block cipher in Cipher
Block Chaining (<acronym>CBC</acronym>) mode, one for encryption and one for
decryption. These functions uses <code>void *</code> to pass cipher contexts
around.
</p>
<dl>
<dt><a name="index-cbc_005fencrypt"></a>Function: <em>void</em> <strong>cbc_encrypt</strong> <em>(const void *<var>ctx</var>, nettle_cipher_func *<var>f</var>, size_t <var>block_size</var>, uint8_t *<var>iv</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-cbc_005fdecrypt"></a>Function: <em>void</em> <strong>cbc_decrypt</strong> <em>(const void *<var>ctx</var>, nettle_cipher_func *<var>f</var>, size_t <var>block_size</var>, uint8_t *<var>iv</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd>
<p>Applies the encryption or decryption function <var>f</var> in <acronym>CBC</acronym>
mode. The final ciphertext block processed is copied into <var>iv</var>
before returning, so that a large message can be processed by a sequence of
calls to <code>cbc_encrypt</code>. The function <var>f</var> is of type
</p>
<p><code>void f (void *<var>ctx</var>, size_t <var>length</var>, uint8_t <var>dst</var>,
const uint8_t *<var>src</var>)</code>,
</p>
<p>and the <code>cbc_encrypt</code> and <code>cbc_decrypt</code> functions pass their
argument <var>ctx</var> on to <var>f</var>.
</p></dd></dl>
<p>There are also some macros to help use these functions correctly.
</p>
<dl>
<dt><a name="index-CBC_005fCTX"></a>Macro: <strong>CBC_CTX</strong> <em>(<var>context_type</var>, <var>block_size</var>)</em></dt>
<dd><p>Expands to
</p><div class="example">
<pre class="example">{
context_type ctx;
uint8_t iv[block_size];
}
</pre></div>
</dd></dl>
<p>It can be used to define a <acronym>CBC</acronym> context struct, either directly,
</p>
<div class="example">
<pre class="example">struct CBC_CTX(struct aes_ctx, AES_BLOCK_SIZE) ctx;
</pre></div>
<p>or to give it a struct tag,
</p>
<div class="example">
<pre class="example">struct aes_cbc_ctx CBC_CTX (struct aes_ctx, AES_BLOCK_SIZE);
</pre></div>
<dl>
<dt><a name="index-CBC_005fSET_005fIV"></a>Macro: <strong>CBC_SET_IV</strong> <em>(<var>ctx</var>, <var>iv</var>)</em></dt>
<dd><p>First argument is a pointer to a context struct as defined by <code>CBC_CTX</code>,
and the second is a pointer to an Initialization Vector (IV) that is
copied into that context.
</p></dd></dl>
<dl>
<dt><a name="index-CBC_005fENCRYPT"></a>Macro: <strong>CBC_ENCRYPT</strong> <em>(<var>ctx</var>, <var>f</var>, <var>length</var>, <var>dst</var>, <var>src</var>)</em></dt>
<dt><a name="index-CBC_005fDECRYPT"></a>Macro: <strong>CBC_DECRYPT</strong> <em>(<var>ctx</var>, <var>f</var>, <var>length</var>, <var>dst</var>, <var>src</var>)</em></dt>
<dd><p>A simpler way to invoke <code>cbc_encrypt</code> and <code>cbc_decrypt</code>. The
first argument is a pointer to a context struct as defined by
<code>CBC_CTX</code>, and the second argument is an encryption or decryption
function following Nettle’s conventions. The last three arguments define
the source and destination area for the operation.
</p></dd></dl>
<p>These macros use some tricks to make the compiler display a warning if
the types of <var>f</var> and <var>ctx</var> don’t match, e.g. if you try to use
an <code>struct aes_ctx</code> context with the <code>des_encrypt</code> function.
</p>
<hr>
<a name="CTR"></a>
<div class="header">
<p>
Previous: <a href="#CBC" accesskey="p" rel="prev">CBC</a>, Up: <a href="#Cipher-modes" accesskey="u" rel="up">Cipher modes</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Counter-mode"></a>
<h4 class="subsection">6.3.2 Counter mode</h4>
<a name="index-Counter-Mode"></a>
<a name="index-CTR-Mode"></a>
<p>Counter mode (<acronym>CTR</acronym>) uses the block cipher as a keyed
pseudo-random generator. The output of the generator is XORed with the
data to be encrypted. It can be understood as a way to transform a block
cipher to a stream cipher.
</p>
<p>The message is divided into <code>n</code> blocks <code>M_1</code>,…
<code>M_n</code>, where <code>M_n</code> is of size <code>m</code> which may be smaller
than the block size. Except for the last block, all the message blocks
must be of size equal to the cipher’s block size.
</p>
<p>If <code>E_k</code> is the encryption function of a block cipher, <code>IC</code> is
the initial counter, then the <code>n</code> plaintext blocks are
transformed into <code>n</code> ciphertext blocks <code>C_1</code>,…
<code>C_n</code> as follows:
</p>
<div class="example">
<pre class="example">C_1 = E_k(IC) XOR M_1
C_2 = E_k(IC + 1) XOR M_2
…
C_(n-1) = E_k(IC + n - 2) XOR M_(n-1)
C_n = E_k(IC + n - 1) [1..m] XOR M_n
</pre></div>
<p>The <acronym>IC</acronym> is the initial value for the counter, it plays a
similar rôle as the <acronym>IV</acronym> for <acronym>CBC</acronym>. When adding,
<code>IC + x</code>, <acronym>IC</acronym> is interpreted as an integer, in network
byte order. For the last block, <code>E_k(IC + n - 1) [1..m]</code> means that
the cipher output is truncated to <code>m</code> bytes.
</p>
<dl>
<dt><a name="index-ctr_005fcrypt"></a>Function: <em>void</em> <strong>ctr_crypt</strong> <em>(const void *<var>ctx</var>, nettle_cipher_func *<var>f</var>, size_t <var>block_size</var>, uint8_t *<var>ctr</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd>
<p>Applies the encryption function <var>f</var> in <acronym>CTR</acronym> mode. Note that
for <acronym>CTR</acronym> mode, encryption and decryption is the same operation,
and hence <var>f</var> should always be the encryption function for the
underlying block cipher.
</p>
<p>When a message is encrypted using a sequence of calls to
<code>ctr_crypt</code>, all but the last call <em>must</em> use a length that is
a multiple of the block size.
</p></dd></dl>
<p>Like for <acronym>CBC</acronym>, there are also a couple of helper macros.
</p>
<dl>
<dt><a name="index-CTR_005fCTX"></a>Macro: <strong>CTR_CTX</strong> <em>(<var>context_type</var>, <var>block_size</var>)</em></dt>
<dd><p>Expands to
</p><div class="example">
<pre class="example">{
context_type ctx;
uint8_t ctr[block_size];
}
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-CTR_005fSET_005fCOUNTER"></a>Macro: <strong>CTR_SET_COUNTER</strong> <em>(<var>ctx</var>, <var>iv</var>)</em></dt>
<dd><p>First argument is a pointer to a context struct as defined by
<code>CTR_CTX</code>, and the second is a pointer to an initial counter that
is copied into that context.
</p></dd></dl>
<dl>
<dt><a name="index-CTR_005fCRYPT"></a>Macro: <strong>CTR_CRYPT</strong> <em>(<var>ctx</var>, <var>f</var>, <var>length</var>, <var>dst</var>, <var>src</var>)</em></dt>
<dd><p>A simpler way to invoke <code>ctr_crypt</code>. The first argument is a
pointer to a context struct as defined by <code>CTR_CTX</code>, and the second
argument is an encryption function following Nettle’s conventions. The
last three arguments define the source and destination area for the
operation.
</p></dd></dl>
<hr>
<a name="Authenticated-encryption"></a>
<div class="header">
<p>
Next: <a href="#Keyed-hash-functions" accesskey="n" rel="next">Keyed hash functions</a>, Previous: <a href="#Cipher-modes" accesskey="p" rel="prev">Cipher modes</a>, Up: <a href="#Reference" accesskey="u" rel="up">Reference</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Authenticated-encryption-with-associated-data"></a>
<h3 class="section">6.4 Authenticated encryption with associated data</h3>
<a name="index-AEAD"></a>
<a name="index-Authenticated-encryption"></a>
<p>Since there are some subtle design choices to be made when combining a
block cipher mode with out authentication with a <acronym>MAC</acronym>. In
recent years, several constructions that combine encryption and
authentication have been defined. These constructions typically also
have an additional input, the “associated data”, which is
authenticated but not included with the message. A simple example is an
implicit message number which is available at both sender and receiver,
and which needs authentication in order to detect deletions or replay of
messages. This family of building blocks are therefore called
<acronym>AEAD</acronym>, Authenticated encryption with associated data.
</p>
<p>The aim is to provide building blocks that it is easier for designers of
protocols and applications to use correctly. There is also some
potential for improved performance, if encryption and authentication can
be done in a single step, although that potential is not realized for
the constructions currently supported by Nettle.
</p>
<p>For encryption, the inputs are:
</p>
<ul>
<li> The key, which can be used for many messages.
</li><li> A nonce, which must be unique for each message using the same key.
</li><li> Additional associated data to be authenticated, but not included in the
message.
</li><li> The cleartext message to be encrypted.
</li></ul>
<p>The outputs are:
</p>
<ul>
<li> The ciphertext, of the same size as the cleartext.
</li><li> A digest or “authentication tag”.
</li></ul>
<p>Decryption works the same, but with cleartext and ciphertext
interchanged. All currently supported <acronym>AEAD</acronym> algorithms always
use the encryption function of the underlying block cipher, for both
encryption and decryption.
</p>
<p>Usually, the authentication tag should be appended at the end of the
ciphertext, producing an encrypted message which is slightly longer than
the cleartext. However, Nettle’s low level <acronym>AEAD</acronym> functions
produce the authentication tag as a separate output for both encryption
and decryption.
</p>
<p>Both associated data and the message data (cleartext or ciphertext) can
be processed incrementally. In general, all associated data must be
processed before the message data, and all calls but the last one must
use a length that is a multiple of the block size, although some
<acronym>AEAD</acronym> may implement more liberal conventions. The <acronym>CCM</acronym>
mode is a bit special in that it requires the message lengths up front,
other <acronym>AEAD</acronym> constructions don’t have this restriction.
</p>
<p>The supported <acronym>AEAD</acronym> constructions are Galois/Counter mode
(<acronym>GCM</acronym>), <acronym>EAX</acronym>, ChaCha-Poly1305, and Counter with
<acronym>CBC</acronym>-<acronym>MAC</acronym> (<acronym>CCM</acronym>). There are some weaknesses
in <acronym>GCM</acronym> authentication, see
<a href="http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf">http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf</a>.
<acronym>CCM</acronym> and <acronym>EAX</acronym> use the same building blocks, but the
<acronym>EAX</acronym> design is cleaner and avoids a couple of inconveniences of
<acronym>CCM</acronym>. Therefore, <acronym>EAX</acronym> seems like a good conservative
choice. The more recent ChaCha-Poly1305 may also be an attractive but
more adventurous alternative, in particular if performance is important.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#EAX" accesskey="1">EAX</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#GCM" accesskey="2">GCM</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#CCM" accesskey="3">CCM</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ChaCha_002dPoly1305" accesskey="4">ChaCha-Poly1305</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#nettle_005faead-abstraction" accesskey="5">nettle_aead abstraction</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="EAX"></a>
<div class="header">
<p>
Next: <a href="#GCM" accesskey="n" rel="next">GCM</a>, Previous: <a href="#Authenticated-encryption" accesskey="p" rel="prev">Authenticated encryption</a>, Up: <a href="#Authenticated-encryption" accesskey="u" rel="up">Authenticated encryption</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="EAX-1"></a>
<h4 class="subsection">6.4.1 EAX</h4>
<p>The <acronym>EAX</acronym> mode is an <acronym>AEAD</acronym> mode whichcombines
<acronym>CTR</acronym> mode encryption, See <a href="#CTR">CTR</a>, with a message authentication
based on <acronym>CBC</acronym>, See <a href="#CBC">CBC</a>. The implementation in Nettle is
restricted to ciphers with a block size of 128 bits (16 octets).
<acronym>EAX</acronym> was defined as a reaction to the <acronym>CCM</acronym> mode,
See <a href="#CCM">CCM</a>, which uses the same primitives but has some undesirable and
inelegant properties.
</p>
<p><acronym>EAX</acronym> supports arbitrary nonce size; it’s even possible to use
an empty nonce in case only a single message is encrypted for each key.
</p>
<p>Nettle’s support for <acronym>EAX</acronym> consists of a low-level general
interface, some convenience macros, and specific functions for
<acronym>EAX</acronym> using <acronym>AES</acronym>-128 as the underlying cipher. These
interfaces are defined in <samp><nettle/eax.h></samp>
</p>
<a name="General-EAX-interface"></a>
<h4 class="subsubsection">6.4.1.1 General <acronym>EAX</acronym> interface</h4>
<dl>
<dt><a name="index-struct-eax_005fkey"></a>Context struct: <strong>struct eax_key</strong></dt>
<dd><p><acronym>EAX</acronym> state which depends only on the key, but not on the nonce
or the message.
</p></dd></dl>
<dl>
<dt><a name="index-struct-eax_005fctx"></a>Context struct: <strong>struct eax_ctx</strong></dt>
<dd><p>Holds state corresponding to a particular message.
</p></dd></dl>
<dl>
<dt><a name="index-EAX_005fBLOCK_005fSIZE"></a>Constant: <strong>EAX_BLOCK_SIZE</strong></dt>
<dd><p><acronym>EAX</acronym>’s block size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-EAX_005fDIGEST_005fSIZE"></a>Constant: <strong>EAX_DIGEST_SIZE</strong></dt>
<dd><p>Size of the <acronym>EAX</acronym> digest, also 16.
</p></dd></dl>
<dl>
<dt><a name="index-eax_005fset_005fkey"></a>Function: <em>void</em> <strong>eax_set_key</strong> <em>(struct eax_key *<var>key</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>)</em></dt>
<dd><p>Initializes <var>key</var>. <var>cipher</var> gives a context struct for the
underlying cipher, which must have been previously initialized for
encryption, and <var>f</var> is the encryption function.
</p></dd></dl>
<dl>
<dt><a name="index-eax_005fset_005fnonce"></a>Function: <em>void</em> <strong>eax_set_nonce</strong> <em>(struct eax_ctx *<var>eax</var>, const struct eax_key *<var>key</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>nonce_length</var>, const uint8_t *<var>nonce</var>)</em></dt>
<dd><p>Initializes <var>ctx</var> for processing a new message, using the given
nonce.
</p></dd></dl>
<dl>
<dt><a name="index-eax_005fupdate"></a>Function: <em>void</em> <strong>eax_update</strong> <em>(struct eax_ctx *<var>eax</var>, const struct eax_key *<var>key</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>data_length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Process associated data for authentication. All but the last call for
each message <em>must</em> use a length that is a multiple of the block
size. Unlike many other <acronym>AEAD</acronym> constructions, for <acronym>EAX</acronym>
it’s not necessary to complete the processing of all associated data
before encrypting or decrypting the message data.
</p></dd></dl>
<dl>
<dt><a name="index-eax_005fencrypt"></a>Function: <em>void</em> <strong>eax_encrypt</strong> <em>(struct eax_ctx *<var>eax</var>, const struct eax_key *<var>key</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-eax_005fdecrypt"></a>Function: <em>void</em> <strong>eax_decrypt</strong> <em>(struct eax_ctx *<var>eax</var>, const struct eax_key *<var>key</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encrypts or decrypts the data of a message. <var>cipher</var> is the context
struct for the underlying cipher and <var>f</var> is the encryption function.
All but the last call for each message <em>must</em> use a length that is
a multiple of the block size.
</p></dd></dl>
<dl>
<dt><a name="index-eax_005fdigest"></a>Function: <em>void</em> <strong>eax_digest</strong> <em>(struct eax_ctx *<var>eax</var>, const struct eax_key *<var>key</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>length</var>, uint8_t *<var>digest</var>);</em></dt>
<dd><p>Extracts the message digest (also known “authentication tag”). This is
the final operation when processing a message. If <var>length</var> is
smaller than <code>EAX_DIGEST_SIZE</code>, only the first <var>length</var> octets
of the digest are written.
</p></dd></dl>
<a name="EAX-helper-macros"></a>
<h4 class="subsubsection">6.4.1.2 <acronym>EAX</acronym> helper macros</h4>
<p>The following macros are defined.
</p>
<dl>
<dt><a name="index-EAX_005fCTX"></a>Macro: <strong>EAX_CTX</strong> <em>(<var>context_type</var>)</em></dt>
<dd><p>This defines an all-in-one context struct, including the context of the
underlying cipher and all <acronym>EAX</acronym> state. It expands
to
</p><div class="example">
<pre class="example">{
struct eax_key key;
struct eax_ctx eax;
context_type cipher;
}
</pre></div>
</dd></dl>
<p>For all these macros, <var>ctx</var>, is a context struct as defined by
<code>EAX_CTX</code>, and <var>encrypt</var> is the encryption function of the
underlying cipher.
</p>
<dl>
<dt><a name="index-EAX_005fSET_005fKEY"></a>Macro: <strong>EAX_SET_KEY</strong> <em>(<var>ctx</var>, <var>set_key</var>, <var>encrypt</var>, <var>key</var>)</em></dt>
<dd><p><var>set_key</var> is the function for setting the encryption key for the
underlying cipher, and <var>key</var> is the key.
</p></dd></dl>
<dl>
<dt><a name="index-EAX_005fSET_005fNONCE"></a>Macro: <strong>EAX_SET_NONCE</strong> <em>(<var>ctx</var>, <var>encrypt</var>, <var>length</var>, <var>nonce</var>)</em></dt>
<dd><p>Sets the nonce to be used for the message.
</p></dd></dl>
<dl>
<dt><a name="index-EAX_005fUPDATE"></a>Macro: <strong>EAX_UPDATE</strong> <em>(<var>ctx</var>, <var>encrypt</var>, <var>length</var>, <var>data</var>)</em></dt>
<dd><p>Process associated data for authentication.
</p></dd></dl>
<dl>
<dt><a name="index-EAX_005fENCRYPT"></a>Macro: <strong>EAX_ENCRYPT</strong> <em>(<var>ctx</var>, <var>encrypt</var>, <var>length</var>, <var>dst</var>, <var>src</var>)</em></dt>
<dt><a name="index-EAX_005fDECRYPT"></a>Macro: <strong>EAX_DECRYPT</strong> <em>(<var>ctx</var>, <var>encrypt</var>, <var>length</var>, <var>dst</var>, <var>src</var>)</em></dt>
<dd><p>Process message data for encryption or decryption.
</p></dd></dl>
<dl>
<dt><a name="index-EAX_005fDIGEST"></a>Macro: <strong>EAX_DIGEST</strong> <em>(<var>ctx</var>, <var>encrypt</var>, <var>length</var>, <var>digest</var>)</em></dt>
<dd><p>Extract te authentication tag for the message.
</p></dd></dl>
<a name="EAX_002dAES128-interface"></a>
<h4 class="subsubsection">6.4.1.3 <acronym>EAX</acronym>-<acronym>AES</acronym>128 interface</h4>
<p>The following functions implement <acronym>EAX</acronym> using <acronym>AES</acronym>-128
as the underlying cipher.
</p>
<dl>
<dt><a name="index-struct-eax_005faes128_005fctx"></a>Context struct: <strong>struct eax_aes128_ctx</strong></dt>
<dd><p>The context struct, defined using <code>EAX_CTX</code>.
</p></dd></dl>
<dl>
<dt><a name="index-eax_005faes128_005fset_005fkey"></a>Function: <em>void</em> <strong>eax_aes128_set_key</strong> <em>(struct eax_aes128_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initializes <var>ctx</var> using the given key.
</p></dd></dl>
<dl>
<dt><a name="index-eax_005faes128_005fset_005fnonce"></a>Function: <em>void</em> <strong>eax_aes128_set_nonce</strong> <em>(struct eax_aes128_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>iv</var>)</em></dt>
<dd><p>Initializes the per-message state, using the given nonce.
</p></dd></dl>
<dl>
<dt><a name="index-eax_005faes128_005fupdate"></a>Function: <em>void</em> <strong>eax_aes128_update</strong> <em>(struct eax_aes128_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Process associated data for authentication. All but the last call for
each message <em>must</em> use a length that is a multiple of the block
size.
</p></dd></dl>
<dl>
<dt><a name="index-eax_005faes128_005fencrypt"></a>Function: <em>void</em> <strong>eax_aes128_encrypt</strong> <em>(struct eax_aes128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-eax_005faes128_005fdecrypt"></a>Function: <em>void</em> <strong>eax_aes128_decrypt</strong> <em>(struct eax_aes128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encrypts or decrypts the data of a message. All but the last call for
each message <em>must</em> use a length that is a multiple of the block
size.
</p></dd></dl>
<dl>
<dt><a name="index-eax_005faes128_005fdigest"></a>Function: <em>void</em> <strong>eax_aes128_digest</strong> <em>(struct eax_aes128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>);</em></dt>
<dd><p>Extracts the message digest (also known “authentication tag”). This is
the final operation when processing a message. If <var>length</var> is
smaller than <code>EAX_DIGEST_SIZE</code>, only the first <var>length</var> octets
of the digest are written.
</p></dd></dl>
<hr>
<a name="GCM"></a>
<div class="header">
<p>
Next: <a href="#CCM" accesskey="n" rel="next">CCM</a>, Previous: <a href="#EAX" accesskey="p" rel="prev">EAX</a>, Up: <a href="#Authenticated-encryption" accesskey="u" rel="up">Authenticated encryption</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Galois-counter-mode"></a>
<h4 class="subsection">6.4.2 Galois counter mode</h4>
<a name="index-Galois-Counter-Mode"></a>
<a name="index-GCM"></a>
<p>Galois counter mode is an <acronym>AEAD</acronym> constructions combining counter
mode with message authentication based on universal hashing. The main
objective of the design is to provide high performance for hardware
implementations, where other popular <acronym>MAC</acronym> algorithms
(see <a href="#Keyed-hash-functions">Keyed hash functions</a>) become a bottleneck for high-speed
hardware implementations. It was proposed by David A. McGrew and John
Viega in 2005, and recommended by NIST in 2007,
<a href="http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf">NIST Special Publication 800-38D</a>. It is constructed on top of a block
cipher which must have a block size of 128 bits.
</p>
<p>The authentication in <acronym>GCM</acronym> has some known weaknesses, see
<a href="http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf">http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf</a>.
In particular, don’t use <acronym>GCM</acronym> with short authentication tags.
</p>
<p>Nettle’s support for <acronym>GCM</acronym> consists of a low-level general
interface, some convenience macros, and specific functions for
<acronym>GCM</acronym> using <acronym>AES</acronym> or Camellia as the underlying cipher.
These interfaces are defined in <samp><nettle/gcm.h></samp>
</p>
<a name="General-GCM-interface"></a>
<h4 class="subsubsection">6.4.2.1 General <acronym>GCM</acronym> interface</h4>
<dl>
<dt><a name="index-struct-gcm_005fkey"></a>Context struct: <strong>struct gcm_key</strong></dt>
<dd><p>Message independent hash sub-key, and related tables.
</p></dd></dl>
<dl>
<dt><a name="index-struct-gcm_005fctx"></a>Context struct: <strong>struct gcm_ctx</strong></dt>
<dd><p>Holds state corresponding to a particular message.
</p></dd></dl>
<dl>
<dt><a name="index-GCM_005fBLOCK_005fSIZE"></a>Constant: <strong>GCM_BLOCK_SIZE</strong></dt>
<dd><p><acronym>GCM</acronym>’s block size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-GCM_005fDIGEST_005fSIZE"></a>Constant: <strong>GCM_DIGEST_SIZE</strong></dt>
<dd><p>Size of the <acronym>GCM</acronym> digest, also 16.
</p></dd></dl>
<dl>
<dt><a name="index-GCM_005fIV_005fSIZE"></a>Constant: <strong>GCM_IV_SIZE</strong></dt>
<dd><p>Recommended size of the <acronym>IV</acronym>, 12. Arbitrary sizes are allowed.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005fset_005fkey"></a>Function: <em>void</em> <strong>gcm_set_key</strong> <em>(struct gcm_key *<var>key</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>)</em></dt>
<dd><p>Initializes <var>key</var>. <var>cipher</var> gives a context struct for the
underlying cipher, which must have been previously initialized for
encryption, and <var>f</var> is the encryption function.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005fset_005fiv"></a>Function: <em>void</em> <strong>gcm_set_iv</strong> <em>(struct gcm_ctx *<var>ctx</var>, const struct gcm_key *<var>key</var>, size_t <var>length</var>, const uint8_t *<var>iv</var>)</em></dt>
<dd><p>Initializes <var>ctx</var> using the given <acronym>IV</acronym>. The <var>key</var>
argument is actually needed only if <var>length</var> differs from
<code>GCM_IV_SIZE</code>.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005fupdate"></a>Function: <em>void</em> <strong>gcm_update</strong> <em>(struct gcm_ctx *<var>ctx</var>, const struct gcm_key *<var>key</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Provides associated data to be authenticated. If used, must be called
before <code>gcm_encrypt</code> or <code>gcm_decrypt</code>. All but the last call
for each message <em>must</em> use a length that is a multiple of the
block size.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005fencrypt"></a>Function: <em>void</em> <strong>gcm_encrypt</strong> <em>(struct gcm_ctx *<var>ctx</var>, const struct gcm_key *<var>key</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-gcm_005fdecrypt"></a>Function: <em>void</em> <strong>gcm_decrypt</strong> <em>(struct gcm_ctx *<var>ctx</var>, const struct gcm_key *<var>key</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encrypts or decrypts the data of a message. <var>cipher</var> is the context
struct for the underlying cipher and <var>f</var> is the encryption function.
All but the last call for each message <em>must</em> use a length that is
a multiple of the block size.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005fdigest"></a>Function: <em>void</em> <strong>gcm_digest</strong> <em>(struct gcm_ctx *<var>ctx</var>, const struct gcm_key *<var>key</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Extracts the message digest (also known “authentication tag”). This is
the final operation when processing a message. It’s strongly recommended
that <var>length</var> is <code>GCM_DIGEST_SIZE</code>, but if you provide a smaller
value, only the first <var>length</var> octets of the digest are written.
</p></dd></dl>
<p>To encrypt a message using <acronym>GCM</acronym>, first initialize a context for
the underlying block cipher with a key to use for encryption. Then call
the above functions in the following order: <code>gcm_set_key</code>,
<code>gcm_set_iv</code>, <code>gcm_update</code>, <code>gcm_encrypt</code>,
<code>gcm_digest</code>. The decryption procedure is analogous, just calling
<code>gcm_decrypt</code> instead of <code>gcm_encrypt</code> (note that
<acronym>GCM</acronym> decryption still uses the encryption function of the
underlying block cipher). To process a new message, using the same key,
call <code>gcm_set_iv</code> with a new <acronym>iv</acronym>.
</p>
<a name="GCM-helper-macros"></a>
<h4 class="subsubsection">6.4.2.2 <acronym>GCM</acronym> helper macros</h4>
<p>The following macros are defined.
</p>
<dl>
<dt><a name="index-GCM_005fCTX"></a>Macro: <strong>GCM_CTX</strong> <em>(<var>context_type</var>)</em></dt>
<dd><p>This defines an all-in-one context struct, including the context of the
underlying cipher, the hash sub-key, and the per-message state. It expands
to
</p><div class="example">
<pre class="example">{
struct gcm_key key;
struct gcm_ctx gcm;
context_type cipher;
}
</pre></div>
</dd></dl>
<p>Example use:
</p><div class="example">
<pre class="example">struct gcm_aes128_ctx GCM_CTX(struct aes128_ctx);
</pre></div>
<p>The following macros operate on context structs of this form.
</p>
<dl>
<dt><a name="index-GCM_005fSET_005fKEY"></a>Macro: <strong>GCM_SET_KEY</strong> <em>(<var>ctx</var>, <var>set_key</var>, <var>encrypt</var>, <var>key</var>)</em></dt>
<dd><p>First argument, <var>ctx</var>, is a context struct as defined
by <code>GCM_CTX</code>. <var>set_key</var> and <var>encrypt</var> are functions for
setting the encryption key and for encrypting data using the underlying
cipher.
</p></dd></dl>
<dl>
<dt><a name="index-GCM_005fSET_005fIV"></a>Macro: <strong>GCM_SET_IV</strong> <em>(<var>ctx</var>, <var>length</var>, <var>data</var>)</em></dt>
<dd><p>First argument is a context struct as defined by
<code>GCM_CTX</code>. <var>length</var> and <var>data</var> give the initialization
vector (<acronym>IV</acronym>).
</p></dd></dl>
<dl>
<dt><a name="index-GCM_005fUPDATE"></a>Macro: <strong>GCM_UPDATE</strong> <em>(<var>ctx</var>, <var>length</var>, <var>data</var>)</em></dt>
<dd><p>Simpler way to call <code>gcm_update</code>. First argument is a context
struct as defined by <code>GCM_CTX</code>
</p></dd></dl>
<dl>
<dt><a name="index-GCM_005fENCRYPT"></a>Macro: <strong>GCM_ENCRYPT</strong> <em>(<var>ctx</var>, <var>encrypt</var>, <var>length</var>, <var>dst</var>, <var>src</var>)</em></dt>
<dt><a name="index-GCM_005fDECRYPT"></a>Macro: <strong>GCM_DECRYPT</strong> <em>(<var>ctx</var>, <var>encrypt</var>, <var>length</var>, <var>dst</var>, <var>src</var>)</em></dt>
<dt><a name="index-GCM_005fDIGEST"></a>Macro: <strong>GCM_DIGEST</strong> <em>(<var>ctx</var>, <var>encrypt</var>, <var>length</var>, <var>digest</var>)</em></dt>
<dd><p>Simpler way to call <code>gcm_encrypt</code>, <code>gcm_decrypt</code> or
<code>gcm_digest</code>. First argument is a context struct as defined by
<code>GCM_CTX</code>. Second argument, <var>encrypt</var>, is the encryption
function of the underlying cipher.
</p></dd></dl>
<a name="GCM_002dAES-interface"></a>
<h4 class="subsubsection">6.4.2.3 <acronym>GCM</acronym>-<acronym>AES</acronym> interface</h4>
<p>The following functions implement the common case of <acronym>GCM</acronym> using
<acronym>AES</acronym> as the underlying cipher. The variants with a specific
<acronym>AES</acronym> flavor are recommended, while the fucntinos using
<code>struct gcm_aes_ctx</code> are kept for compatibility with older versiosn
of Nettle.
</p>
<dl>
<dt><a name="index-struct-gcm_005faes128_005fctx"></a>Context struct: <strong>struct gcm_aes128_ctx</strong></dt>
<dt><a name="index-struct-gcm_005faes192_005fctx"></a>Context struct: <strong>struct gcm_aes192_ctx</strong></dt>
<dt><a name="index-struct-gcm_005faes256_005fctx"></a>Context struct: <strong>struct gcm_aes256_ctx</strong></dt>
<dd><p>Context structs, defined using <code>GCM_CTX</code>.
</p></dd></dl>
<dl>
<dt><a name="index-struct-gcm_005faes_005fctx"></a>Context struct: <strong>struct gcm_aes_ctx</strong></dt>
<dd><p>Alternative context struct, usign the old <acronym>AES</acronym> interface.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005faes128_005fset_005fkey"></a>Function: <em>void</em> <strong>gcm_aes128_set_key</strong> <em>(struct gcm_aes128_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-gcm_005faes192_005fset_005fkey"></a>Function: <em>void</em> <strong>gcm_aes192_set_key</strong> <em>(struct gcm_aes192_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-gcm_005faes256_005fset_005fkey"></a>Function: <em>void</em> <strong>gcm_aes256_set_key</strong> <em>(struct gcm_aes256_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initializes <var>ctx</var> using the given key.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005faes_005fset_005fkey"></a>Function: <em>void</em> <strong>gcm_aes_set_key</strong> <em>(struct gcm_aes_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Corresponding function, using the old <acronym>AES</acronym> interface. All valid
<acronym>AES</acronym> key sizes can be used.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005faes128_005fset_005fiv"></a>Function: <em>void</em> <strong>gcm_aes128_set_iv</strong> <em>(struct gcm_aes128_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>iv</var>)</em></dt>
<dt><a name="index-gcm_005faes192_005fset_005fiv"></a>Function: <em>void</em> <strong>gcm_aes192_set_iv</strong> <em>(struct gcm_aes192_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>iv</var>)</em></dt>
<dt><a name="index-gcm_005faes256_005fset_005fiv"></a>Function: <em>void</em> <strong>gcm_aes256_set_iv</strong> <em>(struct gcm_aes256_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>iv</var>)</em></dt>
<dt><a name="index-gcm_005faes_005fset_005fiv"></a>Function: <em>void</em> <strong>gcm_aes_set_iv</strong> <em>(struct gcm_aes_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>iv</var>)</em></dt>
<dd><p>Initializes the per-message state, using the given <acronym>IV</acronym>.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005faes128_005fupdate"></a>Function: <em>void</em> <strong>gcm_aes128_update</strong> <em>(struct gcm_aes128_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dt><a name="index-gcm_005faes192_005fupdate"></a>Function: <em>void</em> <strong>gcm_aes192_update</strong> <em>(struct gcm_aes192_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dt><a name="index-gcm_005faes256_005fupdate"></a>Function: <em>void</em> <strong>gcm_aes256_update</strong> <em>(struct gcm_aes256_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dt><a name="index-gcm_005faes_005fupdate"></a>Function: <em>void</em> <strong>gcm_aes_update</strong> <em>(struct gcm_aes_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Provides associated data to be authenticated. If used, must be called
before <code>gcm_aes_encrypt</code> or <code>gcm_aes_decrypt</code>. All but the
last call for each message <em>must</em> use a length that is a multiple
of the block size.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005faes128_005fencrypt"></a>Function: <em>void</em> <strong>gcm_aes128_encrypt</strong> <em>(struct gcm_aes128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-gcm_005faes192_005fencrypt"></a>Function: <em>void</em> <strong>gcm_aes192_encrypt</strong> <em>(struct gcm_aes192_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-gcm_005faes256_005fencrypt"></a>Function: <em>void</em> <strong>gcm_aes256_encrypt</strong> <em>(struct gcm_aes256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-gcm_005faes_005fencrypt"></a>Function: <em>void</em> <strong>gcm_aes_encrypt</strong> <em>(struct gcm_aes_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-gcm_005faes128_005fdecrypt"></a>Function: <em>void</em> <strong>gcm_aes128_decrypt</strong> <em>(struct gcm_aes128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-gcm_005faes192_005fdecrypt"></a>Function: <em>void</em> <strong>gcm_aes192_decrypt</strong> <em>(struct gcm_aes192_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-gcm_005faes256_005fdecrypt"></a>Function: <em>void</em> <strong>gcm_aes256_decrypt</strong> <em>(struct gcm_aes256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-gcm_005faes_005fdecrypt"></a>Function: <em>void</em> <strong>gcm_aes_decrypt</strong> <em>(struct gcm_aes_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encrypts or decrypts the data of a message. All but the last call for
each message <em>must</em> use a length that is a multiple of the block
size.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005faes128_005fdigest"></a>Function: <em>void</em> <strong>gcm_aes128_digest</strong> <em>(struct gcm_aes128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dt><a name="index-gcm_005faes192_005fdigest"></a>Function: <em>void</em> <strong>gcm_aes192_digest</strong> <em>(struct gcm_aes192_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dt><a name="index-gcm_005faes256_005fdigest"></a>Function: <em>void</em> <strong>gcm_aes256_digest</strong> <em>(struct gcm_aes256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dt><a name="index-gcm_005faes_005fdigest"></a>Function: <em>void</em> <strong>gcm_aes_digest</strong> <em>(struct gcm_aes_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Extracts the message digest (also known “authentication tag”). This is
the final operation when processing a message. It’s strongly recommended
that <var>length</var> is <code>GCM_DIGEST_SIZE</code>, but if you provide a smaller
value, only the first <var>length</var> octets of the digest are written.
</p></dd></dl>
<a name="GCM_002dCamellia-interface"></a>
<h4 class="subsubsection">6.4.2.4 <acronym>GCM</acronym>-Camellia interface</h4>
<p>The following functions implement the case of <acronym>GCM</acronym> using
Camellia as the underlying cipher.
</p>
<dl>
<dt><a name="index-struct-gcm_005fcamellia128_005fctx"></a>Context struct: <strong>struct gcm_camellia128_ctx</strong></dt>
<dt><a name="index-struct-gcm_005fcamellia256_005fctx"></a>Context struct: <strong>struct gcm_camellia256_ctx</strong></dt>
<dd><p>Context structs, defined using <code>GCM_CTX</code>.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005fcamellia128_005fset_005fkey"></a>Function: <em>void</em> <strong>gcm_camellia128_set_key</strong> <em>(struct gcm_camellia128_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-gcm_005fcamellia256_005fset_005fkey"></a>Function: <em>void</em> <strong>gcm_camellia256_set_key</strong> <em>(struct gcm_camellia256_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initializes <var>ctx</var> using the given key.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005fcamellia128_005fset_005fiv"></a>Function: <em>void</em> <strong>gcm_camellia128_set_iv</strong> <em>(struct gcm_camellia128_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>iv</var>)</em></dt>
<dt><a name="index-gcm_005fcamellia256_005fset_005fiv"></a>Function: <em>void</em> <strong>gcm_camellia256_set_iv</strong> <em>(struct gcm_camellia256_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>iv</var>)</em></dt>
<dd><p>Initializes the per-message state, using the given <acronym>IV</acronym>.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005fcamellia128_005fupdate"></a>Function: <em>void</em> <strong>gcm_camellia128_update</strong> <em>(struct gcm_camellia128_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dt><a name="index-gcm_005fcamellia256_005fupdate"></a>Function: <em>void</em> <strong>gcm_camellia256_update</strong> <em>(struct gcm_camellia256_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Provides associated data to be authenticated. If used, must be called
before <code>gcm_camellia_encrypt</code> or <code>gcm_camellia_decrypt</code>. All but the
last call for each message <em>must</em> use a length that is a multiple
of the block size.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005fcamellia128_005fencrypt"></a>Function: <em>void</em> <strong>gcm_camellia128_encrypt</strong> <em>(struct gcm_camellia128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-gcm_005fcamellia256_005fencrypt"></a>Function: <em>void</em> <strong>gcm_camellia256_encrypt</strong> <em>(struct gcm_camellia256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-gcm_005fcamellia128_005fdecrypt"></a>Function: <em>void</em> <strong>gcm_camellia128_decrypt</strong> <em>(struct gcm_camellia128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-gcm_005fcamellia256_005fdecrypt"></a>Function: <em>void</em> <strong>gcm_camellia256_decrypt</strong> <em>(struct gcm_camellia256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encrypts or decrypts the data of a message. All but the last call for
each message <em>must</em> use a length that is a multiple of the block
size.
</p></dd></dl>
<dl>
<dt><a name="index-gcm_005fcamellia128_005fdigest"></a>Function: <em>void</em> <strong>gcm_camellia128_digest</strong> <em>(struct gcm_camellia128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dt><a name="index-gcm_005fcamellia192_005fdigest"></a>Function: <em>void</em> <strong>gcm_camellia192_digest</strong> <em>(struct gcm_camellia192_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dt><a name="index-gcm_005fcamellia256_005fdigest"></a>Function: <em>void</em> <strong>gcm_camellia256_digest</strong> <em>(struct gcm_camellia256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dt><a name="index-gcm_005fcamellia_005fdigest"></a>Function: <em>void</em> <strong>gcm_camellia_digest</strong> <em>(struct gcm_camellia_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Extracts the message digest (also known “authentication tag”). This is
the final operation when processing a message. It’s strongly recommended
that <var>length</var> is <code>GCM_DIGEST_SIZE</code>, but if you provide a smaller
value, only the first <var>length</var> octets of the digest are written.
</p></dd></dl>
<hr>
<a name="CCM"></a>
<div class="header">
<p>
Next: <a href="#ChaCha_002dPoly1305" accesskey="n" rel="next">ChaCha-Poly1305</a>, Previous: <a href="#GCM" accesskey="p" rel="prev">GCM</a>, Up: <a href="#Authenticated-encryption" accesskey="u" rel="up">Authenticated encryption</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Counter-with-CBC_002dMAC-mode"></a>
<h4 class="subsection">6.4.3 Counter with CBC-MAC mode</h4>
<a name="index-Counter-with-CBC_002dMAC-Mode"></a>
<a name="index-CCM-Mode"></a>
<p><acronym>CCM</acronym> mode is a combination of counter mode with message
authentication based on cipher block chaining, the same building blocks
as <acronym>EAX</acronym>, see <a href="#EAX">EAX</a>. It is constructed on top of a block cipher
which must have a block size of 128 bits. <acronym>CCM</acronym> mode is
recommended by NIST in
<a href="http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf">NIST Special Publication 800-38C</a>. Nettle’s support for CCM consists of
a low-level general interface, a message encryption and authentication
interface, and specific functions for CCM using AES as the underlying
block cipher. These interfaces are defined in <samp><nettle/ccm.h></samp>.
</p>
<p>In <acronym>CCM</acronym>, the length of the message must be known before
processing. The maximum message size depends on the size of the nonce,
since the message size is encoded in a field which must fit in a single
block, together with the nonce and a flag byte. E.g., with a nonce size
of 12 octets, there are three octets left for encoding the message
length, the maximum message length is <em>2^24 - 1</em> octets.
</p>
<p><acronym>CCM</acronym> mode encryption operates as follows:
</p><ul>
<li> The nonce and message length are concatenated to create
<code>B_0 = flags | nonce | mlength</code>
</li><li> The authenticated data and plaintext is formatted into the string
<code>B = L(adata) | adata | padding | plaintext | padding</code> with
<code>padding</code> being the shortest string of zero bytes such that the
length of the string is a multiple of the block size, and
<code>L(adata)</code> is an encoding of the length of <code>adata</code>.
</li><li> The string <code>B</code> is separated into blocks <code>B_1</code> ...
<code>B_n</code>
</li><li> The authentication tag <code>T</code> is calculated as
<code>T=0, for i=0 to n, do T = E_k(B_i XOR T)</code>
</li><li> An initial counter is then initialized from the nonce to create
<code>IC = flags | nonce | padding</code>, where <code>padding</code> is the
shortest string of zero bytes such that <code>IC</code> is exactly one block
in length.
</li><li> The authentication tag is encrypted using using <acronym>CTR</acronym> mode:
<code>MAC = E_k(IC) XOR T</code>
</li><li> The plaintext is then encrypted using <acronym>CTR</acronym> mode with an
initial counter of <code>IC+1</code>.
</li></ul>
<p><acronym>CCM</acronym> mode decryption operates similarly, except that the
ciphertext and <acronym>MAC</acronym> are first decrypted using CTR mode to
retreive the plaintext and authentication tag. The authentication tag
can then be recalucated from the authenticated data and plantext, and
compared to the value in the message to check for authenticity.
</p>
<a name="General-CCM-interface"></a>
<h4 class="subsubsection">6.4.3.1 General <acronym>CCM</acronym> interface</h4>
<p>For all of the functions in the <acronym>CCM</acronym> interface, <var>cipher</var> is
the context struct for the underlying cipher and <var>f</var> is the
encryption function. The cipher’s encryption key must be set before
calling any of the <acronym>CCM</acronym> functions. The cipher’s decryption
function and key are never used.
</p>
<dl>
<dt><a name="index-struct-ccm_005fctx"></a>Context struct: <strong>struct ccm_ctx</strong></dt>
<dd><p>Holds state corresponding to a particular message.
</p></dd></dl>
<dl>
<dt><a name="index-CCM_005fBLOCK_005fSIZE"></a>Constant: <strong>CCM_BLOCK_SIZE</strong></dt>
<dd><p><acronym>CCM</acronym>’s block size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-CCM_005fDIGEST_005fSIZE"></a>Constant: <strong>CCM_DIGEST_SIZE</strong></dt>
<dd><p>Size of the <acronym>CCM</acronym> digest, 16.
</p></dd></dl>
<dl>
<dt><a name="index-CCM_005fMIN_005fNONCE_005fSIZE"></a>Constant: <strong>CCM_MIN_NONCE_SIZE</strong></dt>
<dt><a name="index-CCM_005fMAX_005fNONCE_005fSIZE"></a>Constant: <strong>CCM_MAX_NONCE_SIZE</strong></dt>
<dd><p>The the minimum and maximum sizes for an <acronym>CCM</acronym> nonce, 7 and 14,
respectively.
</p></dd></dl>
<dl>
<dt><a name="index-CCM_005fMAX_005fMSG_005fSIZE"></a>Macro: <strong>CCM_MAX_MSG_SIZE</strong> <em>(<var>nonce_size</var>)</em></dt>
<dd><p>The largest allowed plaintext length, when using <acronym>CCM</acronym> with a
nonce of the given size.
</p></dd></dl>
<dl>
<dt><a name="index-ccm_005fset_005fnonce"></a>Function: <em>void</em> <strong>ccm_set_nonce</strong> <em>(struct ccm_ctx *<var>ctx</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>noncelen</var>, const uint8_t *<var>nonce</var>, size_t <var>authlen</var>, size_t <var>msglen</var>, size_t <var>taglen</var>)</em></dt>
<dd><p>Initializes <var>ctx</var> using the given nonce and the sizes of the
authenticated data, message, and <acronym>MAC</acronym> to be processed.
</p></dd></dl>
<dl>
<dt><a name="index-ccm_005fupdate"></a>Function: <em>void</em> <strong>ccm_update</strong> <em>(struct ccm_ctx *<var>ctx</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Provides associated data to be authenticated. Must be called after
<code>ccm_set_nonce</code>, and before <code>ccm_encrypt</code>, <code>ccm_decrypt</code>, or
<code>ccm_digest</code>.
</p></dd></dl>
<dl>
<dt><a name="index-ccm_005fencrypt"></a>Function: <em>void</em> <strong>ccm_encrypt</strong> <em>(struct ccm_ctx *<var>ctx</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-ccm_005fdecrypt"></a>Function: <em>void</em> <strong>ccm_decrypt</strong> <em>(struct ccm_ctx *<var>ctx</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encrypts or decrypts the message data. Must be called after
<code>ccm_set_nonce</code> and before <code>ccm_digest</code>. All but the last call
for each message <em>must</em> use a length that is a multiple of the
block size.
</p></dd></dl>
<dl>
<dt><a name="index-ccm_005fdigest"></a>Function: <em>void</em> <strong>ccm_digest</strong> <em>(struct ccm_ctx *<var>ctx</var>, const void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Extracts the message digest (also known “authentication tag”). This is
the final operation when processing a message. <var>length</var> is usually
equal to the <var>taglen</var> parameter supplied to <code>ccm_set_nonce</code>,
but if you provide a smaller value, only the first <var>length</var> octets
of the digest are written.
</p></dd></dl>
<p>To encrypt a message using the general <acronym>CCM</acronym> interface, set the
message nonce and length using <code>ccm_set_nonce</code> and then call
<code>ccm_update</code> to generate the digest of any authenticated data.
After all of the authenticated data has been digested use
<code>ccm_encrypt</code> to encrypt the plaintext. Finally, use
<code>ccm_digest</code> to return the encrypted <acronym>MAC</acronym>.
</p>
<p>To decrypt a message, use <code>ccm_set_nonce</code> and <code>ccm_update</code> the
same as you would for encryption, and then call <code>ccm_decrypt</code> to
decrypt the ciphertext. After decrypting the ciphertext
<code>ccm_digest</code> will return the encrypted <acronym>MAC</acronym> which should
be identical to the <acronym>MAC</acronym> in the received message.
</p>
<a name="CCM-message-interface"></a>
<h4 class="subsubsection">6.4.3.2 <acronym>CCM</acronym> message interface</h4>
<p>The <acronym>CCM</acronym> message fuctions provides a simple interface that will
perform authentication and message encryption in a single function call.
The length of the cleartext is given by <var>mlength</var> and the length of
the ciphertext is given by <var>clength</var>, always exactly <var>tlength</var>
bytes longer than the corresponding plaintext. The length argument
passed to a function is always the size for the result, <var>clength</var>
for the encryption functions, and <var>mlength</var> for the decryption
functions.
</p>
<dl>
<dt><a name="index-ccm_005fencrypt_005fmessage"></a>Function: <em>void</em> <strong>ccm_encrypt_message</strong> <em>(void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>nlength</var>, const uint8_t *<var>nonce</var>, size_t <var>alength</var>, const uint8_t *<var>adata</var>, size_t <var>tlength</var>, size_t <var>clength</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Computes the message digest from the <var>adata</var> and <var>src</var>
parameters, encrypts the plaintext from <var>src</var>, appends the encrypted
<acronym>MAC</acronym> to ciphertext and outputs it to <var>dst</var>.
</p></dd></dl>
<dl>
<dt><a name="index-ccm_005fdecrypt_005fmessage"></a>Function: <em>int</em> <strong>ccm_decrypt_message</strong> <em>(void *<var>cipher</var>, nettle_cipher_func *<var>f</var>, size_t <var>nlength</var>, const uint8_t *<var>nonce</var>, size_t <var>alength</var>, const uint8_t *<var>adata</var>, size_t <var>tlength</var>, size_t <var>mlength</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Decrypts the ciphertext from <var>src</var>, outputs the plaintext to
<var>dst</var>, recalculates the <acronym>MAC</acronym> from <var>adata</var> and the
plaintext, and compares it to the final <var>tlength</var> bytes of
<var>src</var>. If the values of the received and calculated <acronym>MAC</acronym>s
are equal, this will return 1 indicating a valid and authenticated
message. Otherwise, this function will return zero.
</p></dd></dl>
<a name="CCM_002dAES-interface"></a>
<h4 class="subsubsection">6.4.3.3 <acronym>CCM</acronym>-<acronym>AES</acronym> interface</h4>
<p>The <acronym>AES</acronym> <acronym>CCM</acronym> functions provide an API for using
<acronym>CCM</acronym> mode with the <acronym>AES</acronym> block ciphers. The parameters
all have the same meaning as the general and message interfaces, except
that the <var>cipher</var>, <var>f</var>, and <var>ctx</var> parameters are replaced
with an <acronym>AES</acronym> context structure, and a set-key function must be
called before using any of the other functions in this interface.
</p>
<dl>
<dt><a name="index-struct-ccm_005faes128_005fctx"></a>Context struct: <strong>struct ccm_aes128_ctx</strong></dt>
<dd><p>Holds state corresponding to a particular message encrypted using the
AES-128 block cipher.
</p></dd></dl>
<dl>
<dt><a name="index-struct-ccm_005faes192_005fctx"></a>Context struct: <strong>struct ccm_aes192_ctx</strong></dt>
<dd><p>Holds state corresponding to a particular message encrypted using the
AES-192 block cipher.
</p></dd></dl>
<dl>
<dt><a name="index-struct-ccm_005faes256_005fctx"></a>Context struct: <strong>struct ccm_aes256_ctx</strong></dt>
<dd><p>Holds state corresponding to a particular message encrypted using the
AES-256 block cipher.
</p></dd></dl>
<dl>
<dt><a name="index-ccm_005faes128_005fset_005fkey"></a>Function: <em>void</em> <strong>ccm_aes128_set_key</strong> <em>(struct ccm_aes128_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-ccm_005faes192_005fset_005fkey"></a>Function: <em>void</em> <strong>ccm_aes192_set_key</strong> <em>(struct ccm_aes192_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-ccm_005faes256_005fset_005fkey"></a>Function: <em>void</em> <strong>ccm_aes256_set_key</strong> <em>(struct ccm_aes256_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initializes the encryption key for the AES block cipher. One of these
functions must be called before any of the other functions in the
<acronym>AES</acronym> <acronym>CCM</acronym> interface.
</p></dd></dl>
<dl>
<dt><a name="index-ccm_005faes128_005fset_005fnonce"></a>Function: <em>void</em> <strong>ccm_aes128_set_nonce</strong> <em>(struct ccm_aes128_ctx *<var>ctx</var>, size_t <var>noncelen</var>, const uint8_t *<var>nonce</var>, size_t <var>authlen</var>, size_t <var>msglen</var>, size_t <var>taglen</var>)</em></dt>
<dt><a name="index-ccm_005faes192_005fset_005fnonce"></a>Function: <em>void</em> <strong>ccm_aes192_set_nonce</strong> <em>(struct ccm_aes192_ctx *<var>ctx</var>, size_t <var>noncelen</var>, const uint8_t *<var>nonce</var>, size_t <var>authlen</var>, size_t <var>msglen</var>, size_t <var>taglen</var>)</em></dt>
<dt><a name="index-ccm_005faes256_005fset_005fnonce"></a>Function: <em>void</em> <strong>ccm_aes256_set_nonce</strong> <em>(struct ccm_aes256_ctx *<var>ctx</var>, size_t <var>noncelen</var>, const uint8_t *<var>nonce</var>, size_t <var>authlen</var>, size_t <var>msglen</var>, size_t <var>taglen</var>)</em></dt>
<dd><p>These are identical to <code>ccm_set_nonce</code>, except that <var>cipher</var>,
<var>f</var>, and <var>ctx</var> are replaced with a context structure.
</p></dd></dl>
<dl>
<dt><a name="index-ccm_005faes128_005fupdate"></a>Function: <em>void</em> <strong>ccm_aes128_update</strong> <em>(struct ccm_aes128_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dt><a name="index-ccm_005faes192_005fupdate"></a>Function: <em>void</em> <strong>ccm_aes192_update</strong> <em>(struct ccm_aes192_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dt><a name="index-ccm_005faes256_005fupdate"></a>Function: <em>void</em> <strong>ccm_aes256_update</strong> <em>(struct ccm_aes256_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>These are identical to <code>ccm_set_update</code>, except that <var>cipher</var>,
<var>f</var>, and <var>ctx</var> are replaced with a context structure.
</p></dd></dl>
<dl>
<dt><a name="index-ccm_005faes128_005fencrypt"></a>Function: <em>void</em> <strong>ccm_aes128_encrypt</strong> <em>(struct ccm_aes128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-ccm_005faes192_005fencrypt"></a>Function: <em>void</em> <strong>ccm_aes192_encrypt</strong> <em>(struct ccm_aes192_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-ccm_005faes256_005fencrypt"></a>Function: <em>void</em> <strong>ccm_aes256_encrypt</strong> <em>(struct ccm_aes256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-ccm_005faes128_005fdecrypt"></a>Function: <em>void</em> <strong>ccm_aes128_decrypt</strong> <em>(struct ccm_aes128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-ccm_005faes192_005fdecrypt"></a>Function: <em>void</em> <strong>ccm_aes192_decrypt</strong> <em>(struct ccm_aes192_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-ccm_005faes256_005fdecrypt"></a>Function: <em>void</em> <strong>ccm_aes256_decrypt</strong> <em>(struct ccm_aes256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>These are identical to <code>ccm_set_encrypt</code> and <code>ccm_set_decrypt</code>, except
that <var>cipher</var>, <var>f</var>, and <var>ctx</var> are replaced with a context structure.
</p></dd></dl>
<dl>
<dt><a name="index-ccm_005faes128_005fdigest"></a>Function: <em>void</em> <strong>ccm_aes128_digest</strong> <em>(struct ccm_aes128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dt><a name="index-ccm_005faes192_005fdigest"></a>Function: <em>void</em> <strong>ccm_aes192_digest</strong> <em>(struct ccm_aes192_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dt><a name="index-ccm_005faes256_005fdigest"></a>Function: <em>void</em> <strong>ccm_aes256_digest</strong> <em>(struct ccm_aes256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>These are identical to <code>ccm_set_digest</code>, except that <var>cipher</var>,
<var>f</var>, and <var>ctx</var> are replaced with a context structure.
</p></dd></dl>
<dl>
<dt><a name="index-ccm_005faes128_005fencrypt_005fmessage"></a>Function: <em>void</em> <strong>ccm_aes128_encrypt_message</strong> <em>(struct ccm_aes128_ctx *<var>ctx</var>, size_t <var>nlength</var>, const uint8_t *<var>nonce</var>, size_t <var>alength</var>, const uint8_t *<var>adata</var>, size_t <var>tlength</var>, size_t <var>clength</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-ccm_005faes192_005fencrypt_005fmessage"></a>Function: <em>void</em> <strong>ccm_aes192_encrypt_message</strong> <em>(struct ccm_aes192_ctx *<var>ctx</var>, size_t <var>nlength</var>, const uint8_t *<var>nonce</var>, size_t <var>alength</var>, const uint8_t *<var>adata</var>, size_t <var>tlength</var>, size_t <var>clength</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-ccm_005faes256_005fencrypt_005fmessage"></a>Function: <em>void</em> <strong>ccm_aes256_encrypt_message</strong> <em>(struct ccm_aes256_ctx *<var>ctx</var>, size_t <var>nlength</var>, const uint8_t *<var>nonce</var>, size_t <var>alength</var>, const uint8_t *<var>adata</var>, size_t <var>tlength</var>, size_t <var>clength</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-ccm_005faes128_005fdecrypt_005fmessage"></a>Function: <em>int</em> <strong>ccm_aes128_decrypt_message</strong> <em>(struct ccm_aes128_ctx *<var>ctx</var>, size_t <var>nlength</var>, const uint8_t *<var>nonce</var>, size_t <var>alength</var>, const uint8_t *<var>adata</var>, size_t <var>tlength</var>, size_t <var>mlength</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-ccm_005faes192_005fdecrypt_005fmessage"></a>Function: <em>int</em> <strong>ccm_aes192_decrypt_message</strong> <em>(struct ccm_aes192_ctx *<var>ctx</var>, size_t <var>nlength</var>, const uint8_t *<var>nonce</var>, size_t <var>alength</var>, const uint8_t *<var>adata</var>, size_t <var>tlength</var>, size_t <var>mlength</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-ccm_005faes192_005fdecrypt_005fmessage-1"></a>Function: <em>int</em> <strong>ccm_aes192_decrypt_message</strong> <em>(struct ccm_aes256_ctx *<var>ctx</var>, size_t <var>nlength</var>, const uint8_t *<var>nonce</var>, size_t <var>alength</var>, const uint8_t *<var>adata</var>, size_t <var>tlength</var>, size_t <var>mlength</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>These are identical to <code>ccm_encrypt_message</code> and <code>ccm_decrypt_message</code>
except that <var>cipher</var> and <var>f</var> are replaced with a context structure.
</p></dd></dl>
<hr>
<a name="ChaCha_002dPoly1305"></a>
<div class="header">
<p>
Next: <a href="#nettle_005faead-abstraction" accesskey="n" rel="next">nettle_aead abstraction</a>, Previous: <a href="#CCM" accesskey="p" rel="prev">CCM</a>, Up: <a href="#Authenticated-encryption" accesskey="u" rel="up">Authenticated encryption</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ChaCha_002dPoly1305-1"></a>
<h4 class="subsection">6.4.4 ChaCha-Poly1305</h4>
<p>ChaCha-Poly1305 is a combination of the ChaCha stream cipher and the
poly1305 message authentication code (see <a href="#Poly1305">Poly1305</a>). It originates
from the NaCl cryptographic library by D. J. Bernstein et al, which
defines a similar construction but with Salsa20 instead of ChaCha.
</p>
<p>Nettle’s implementation ChaCha-Poly1305 should be considered
<strong>experimental</strong>. At the time of this writing, there is no
authoritative specification for ChaCha-Poly1305, and a couple of
different incompatible variants. Nettle implements it using the original
definition of ChaCha, with 64 bits (8 octets) each for the nonce and the
block counter. Some protocols prefer to use nonces of 12 bytes, and it’s
a small change to ChaCha to use the upper 32 bits of the block counter
as a nonce, instead limiting message size to <em>2^32</em> blocks or 256
GBytes, but that variant is currently not supported.
</p>
<p>For ChaCha-Poly1305, the ChaCha cipher is initialized with a key, of 256
bits, and a per-message nonce. The first block of the key stream
(counter all zero) is set aside for the authentication subkeys. Of this
64-octet block, the first 16 octets specify the poly1305 evaluation
point, and the next 16 bytes specify the value to add in for the final
digest. The final 32 bytes of this block are unused. Note that unlike
poly1305-aes, the evaluation point depends on the nonce. This is
preferable, because it leaks less information in case the attacker for
some reason is lucky enough to forge a valid authentication tag, and
observe (from the receiver’s behaviour) that the forgery succeeded.
</p>
<p>The ChaCha key stream, starting with counter value 1, is then used to
encrypt the message. For authentication, poly1305 is applied to the
concatenation of the associated data, the cryptotext, and the lengths of
the associated data and the message, each a 64-bit number (eight octets,
little-endian). Nettle defines ChaCha-Poly1305 in
<samp><nettle/chacha-poly1305.h></samp>.
</p>
<dl>
<dt><a name="index-CHACHA_005fPOLY1305_005fBLOCK_005fSIZE"></a>Constant: <strong>CHACHA_POLY1305_BLOCK_SIZE</strong></dt>
<dd><p>Same as the ChaCha block size, 64.
</p></dd></dl>
<dl>
<dt><a name="index-CHACHA_005fPOLY1305_005fKEY_005fSIZE"></a>Constant: <strong>CHACHA_POLY1305_KEY_SIZE</strong></dt>
<dd><p>ChaCha-Poly1305 key size, 32.
</p></dd></dl>
<dl>
<dt><a name="index-CHACHA_005fPOLY1305_005fNONCE_005fSIZE"></a>Constant: <strong>CHACHA_POLY1305_NONCE_SIZE</strong></dt>
<dd><p>Same as the ChaCha nonce size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-CHACHA_005fPOLY1305_005fDIGEST_005fSIZE"></a>Constant: <strong>CHACHA_POLY1305_DIGEST_SIZE</strong></dt>
<dd><p>Digest size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-struct-chacha_005fpoly1305_005fctx"></a>Context struct: <strong>struct chacha_poly1305_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-chacha_005fpoly1305_005fset_005fkey"></a>Function: <em>void</em> <strong>chacha_poly1305_set_key</strong> <em>(struct chacha_poly1305_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initializes <var>ctx</var> using the given key. Before using the context, you
<em>must</em> also call <code>chacha_poly1305_set_nonce</code>, see below.
</p></dd></dl>
<dl>
<dt><a name="index-chacha_005fpoly1305_005fset_005fnonce"></a>Function: <em>void</em> <strong>chacha_poly1305_set_nonce</strong> <em>(struct chacha_poly1305_ctx *<var>ctx</var>, const uint8_t *<var>nonce</var>)</em></dt>
<dd><p>Initializes the per-message state, using the given nonce.
</p></dd></dl>
<dl>
<dt><a name="index-chacha_005fpoly1305_005fupdate"></a>Function: <em>void</em> <strong>chacha_poly1305_update</strong> <em>(struct chacha_poly1305_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Process associated data for authentication.
</p></dd></dl>
<dl>
<dt><a name="index-chacha_005fpoly1305_005fencrypt"></a>Function: <em>void</em> <strong>chacha_poly1305_encrypt</strong> <em>(struct chacha_poly1305_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dt><a name="index-chacha_005fpoly1305_005fdecrypt"></a>Function: <em>void</em> <strong>chacha_poly1305_decrypt</strong> <em>(struct chacha_poly1305_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Encrypts or decrypts the data of a message. All but the last call for
each message <em>must</em> use a length that is a multiple of the block
size.
</p></dd></dl>
<dl>
<dt><a name="index-chacha_005fpoly1305_005fdigest"></a>Function: <em>void</em> <strong>chacha_poly1305_digest</strong> <em>(struct chacha_poly1305_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Extracts the message digest (also known “authentication tag”). This is
the final operation when processing a message. If <var>length</var> is
smaller than <code>CHACHA_POLY1305_DIGEST_SIZE</code>, only the first
<var>length</var> octets of the digest are written.
</p></dd></dl>
<hr>
<a name="nettle_005faead-abstraction"></a>
<div class="header">
<p>
Previous: <a href="#ChaCha_002dPoly1305" accesskey="p" rel="prev">ChaCha-Poly1305</a>, Up: <a href="#Authenticated-encryption" accesskey="u" rel="up">Authenticated encryption</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="The-struct-nettle_005faead-abstraction"></a>
<h4 class="subsection">6.4.5 The <code>struct nettle_aead</code> abstraction</h4>
<a name="index-nettle_005faead"></a>
<a name="index-nettle_005faeads"></a>
<p>Nettle includes a struct including information about the supported hash
functions. It is defined in <samp><nettle/nettle-meta.h></samp>.
</p>
<dl>
<dt><a name="index-struct-nettle_005faead"></a>Meta struct: <strong><code>struct nettle_aead</code></strong> <em>name context_size block_size key_size nonce_size digest_size set_encrypt_key set_decrypt_key set_nonce update encrypt decrypt digest</em></dt>
<dd><p>The last seven attributes are function pointers.
</p></dd></dl>
<dl>
<dt><a name="index-nettle_005fgcm_005faes128"></a>Constant Struct: <em>struct nettle_aead</em> <strong>nettle_gcm_aes128</strong></dt>
<dt><a name="index-nettle_005fgcm_005faes192"></a>Constant Struct: <em>struct nettle_aead</em> <strong>nettle_gcm_aes192</strong></dt>
<dt><a name="index-nettle_005fgcm_005faes256"></a>Constant Struct: <em>struct nettle_aead</em> <strong>nettle_gcm_aes256</strong></dt>
<dt><a name="index-nettle_005fgcm_005fcamellia128"></a>Constant Struct: <em>struct nettle_aead</em> <strong>nettle_gcm_camellia128</strong></dt>
<dt><a name="index-nettle_005fgcm_005fcamellia256"></a>Constant Struct: <em>struct nettle_aead</em> <strong>nettle_gcm_camellia256</strong></dt>
<dt><a name="index-nettle_005feax_005faes128"></a>Constant Struct: <em>struct nettle_aead</em> <strong>nettle_eax_aes128</strong></dt>
<dt><a name="index-nettle_005fchacha_005fpoly1305"></a>Constant Struct: <em>struct nettle_aead</em> <strong>nettle_chacha_poly1305</strong></dt>
<dd><p>These are most of the <acronym>AEAD</acronym> constructions that Nettle
implements. Note that <acronym>CCM</acronym> is missing; it requirement that the
message size is specified in advance makes it incompatible with the
<code>nettle_aead</code> abstraction.
</p></dd></dl>
<p>Nettle also exports a list of all these constructions.
</p>
<dl>
<dt><a name="index-nettle_005faeads-1"></a>Constant Array: <em>struct nettle_aead **</em> <strong>nettle_aeads</strong></dt>
<dd><p>This list can be used to dynamically enumerate or search the supported
algorithms. NULL-terminated.
</p></dd></dl>
<hr>
<a name="Keyed-hash-functions"></a>
<div class="header">
<p>
Next: <a href="#Key-derivation-functions" accesskey="n" rel="next">Key derivation functions</a>, Previous: <a href="#Authenticated-encryption" accesskey="p" rel="prev">Authenticated encryption</a>, Up: <a href="#Reference" accesskey="u" rel="up">Reference</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Keyed-Hash-Functions"></a>
<h3 class="section">6.5 Keyed Hash Functions</h3>
<a name="index-Keyed-Hash-Function"></a>
<a name="index-Message-Authentication-Code"></a>
<a name="index-MAC"></a>
<p>A <em>keyed hash function</em>, or <em>Message Authentication Code</em>
(<acronym>MAC</acronym>) is a function that takes a key and a message, and
produces fixed size <acronym>MAC</acronym>. It should be hard to compute a
message and a matching <acronym>MAC</acronym> without knowledge of the key. It
should also be hard to compute the key given only messages and
corresponding <acronym>MAC</acronym>s.
</p>
<p>Keyed hash functions are useful primarily for message authentication,
when Alice and Bob shares a secret: The sender, Alice, computes the
<acronym>MAC</acronym> and attaches it to the message. The receiver, Bob, also computes
the <acronym>MAC</acronym> of the message, using the same key, and compares that
to Alice’s value. If they match, Bob can be assured that
the message has not been modified on its way from Alice.
</p>
<p>However, unlike digital signatures, this assurance is not transferable.
Bob can’t show the message and the <acronym>MAC</acronym> to a third party and
prove that Alice sent that message. Not even if he gives away the key to
the third party. The reason is that the <em>same</em> key is used on both
sides, and anyone knowing the key can create a correct <acronym>MAC</acronym> for
any message. If Bob believes that only he and Alice knows the key, and
he knows that he didn’t attach a <acronym>MAC</acronym> to a particular message,
he knows it must be Alice who did it. However, the third party can’t
distinguish between a <acronym>MAC</acronym> created by Alice and one created by
Bob.
</p>
<p>Keyed hash functions are typically a lot faster than digital signatures
as well.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#HMAC" accesskey="1">HMAC</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#UMAC" accesskey="2">UMAC</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Poly1305" accesskey="3">Poly1305</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="HMAC"></a>
<div class="header">
<p>
Next: <a href="#UMAC" accesskey="n" rel="next">UMAC</a>, Previous: <a href="#Keyed-hash-functions" accesskey="p" rel="prev">Keyed hash functions</a>, Up: <a href="#Keyed-hash-functions" accesskey="u" rel="up">Keyed hash functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="HMAC-1"></a>
<h4 class="subsection">6.5.1 <acronym>HMAC</acronym></h4>
<a name="index-HMAC"></a>
<p>One can build keyed hash functions from ordinary hash functions. Older
constructions simply concatenate secret key and message and hashes that, but
such constructions have weaknesses. A better construction is
<acronym>HMAC</acronym>, described in <cite>RFC 2104</cite>.
</p>
<p>For an underlying hash function <code>H</code>, with digest size <code>l</code> and
internal block size <code>b</code>, <acronym>HMAC-H</acronym> is constructed as
follows: From a given key <code>k</code>, two distinct subkeys <code>k_i</code> and
<code>k_o</code> are constructed, both of length <code>b</code>. The
<acronym>HMAC-H</acronym> of a message <code>m</code> is then computed as <code>H(k_o |
H(k_i | m))</code>, where <code>|</code> denotes string concatenation.
</p>
<p><acronym>HMAC</acronym> keys can be of any length, but it is recommended to use
keys of length <code>l</code>, the digest size of the underlying hash function
<code>H</code>. Keys that are longer than <code>b</code> are shortened to length
<code>l</code> by hashing with <code>H</code>, so arbitrarily long keys aren’t
very useful.
</p>
<p>Nettle’s <acronym>HMAC</acronym> functions are defined in <samp><nettle/hmac.h></samp>.
There are abstract functions that use a pointer to a <code>struct
nettle_hash</code> to represent the underlying hash function and <code>void *</code>
pointers that point to three different context structs for that hash
function. There are also concrete functions for <acronym>HMAC-MD5</acronym>,
<acronym>HMAC-RIPEMD160</acronym> <acronym>HMAC-SHA1</acronym>, <acronym>HMAC-SHA256</acronym>, and
<acronym>HMAC-SHA512</acronym>. First, the abstract functions:
</p>
<dl>
<dt><a name="index-hmac_005fset_005fkey"></a>Function: <em>void</em> <strong>hmac_set_key</strong> <em>(void *<var>outer</var>, void *<var>inner</var>, void *<var>state</var>, const struct nettle_hash *<var>H</var>, size_t <var>length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initializes the three context structs from the key. The <var>outer</var> and
<var>inner</var> contexts corresponds to the subkeys <code>k_o</code> and
<code>k_i</code>. <var>state</var> is used for hashing the message, and is
initialized as a copy of the <var>inner</var> context.
</p></dd></dl>
<dl>
<dt><a name="index-hmac_005fupdate"></a>Function: <em>void</em> <strong>hmac_update</strong> <em>(void *<var>state</var>, const struct nettle_hash *<var>H</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>This function is called zero or more times to process the message.
Actually, <code>hmac_update(state, H, length, data)</code> is equivalent to
<code>H->update(state, length, data)</code>, so if you wish you can use the
ordinary update function of the underlying hash function instead.
</p></dd></dl>
<dl>
<dt><a name="index-hmac_005fdigest"></a>Function: <em>void</em> <strong>hmac_digest</strong> <em>(const void *<var>outer</var>, const void *<var>inner</var>, void *<var>state</var>, const struct nettle_hash *<var>H</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Extracts the <acronym>MAC</acronym> of the message, writing it to <var>digest</var>.
<var>outer</var> and <var>inner</var> are not modified. <var>length</var> is usually
equal to <code>H->digest_size</code>, but if you provide a smaller value,
only the first <var>length</var> octets of the <acronym>MAC</acronym> are written.
</p>
<p>This function also resets the <var>state</var> context so that you can start
over processing a new message (with the same key).
</p></dd></dl>
<p>Like for <acronym>CBC</acronym>, there are some macros to help use these
functions correctly.
</p>
<dl>
<dt><a name="index-HMAC_005fCTX"></a>Macro: <strong>HMAC_CTX</strong> <em>(<var>type</var>)</em></dt>
<dd><p>Expands to
</p><div class="example">
<pre class="example">{
type outer;
type inner;
type state;
}
</pre></div>
</dd></dl>
<p>It can be used to define a <acronym>HMAC</acronym> context struct, either
directly,
</p>
<div class="example">
<pre class="example">struct HMAC_CTX(struct md5_ctx) ctx;
</pre></div>
<p>or to give it a struct tag,
</p>
<div class="example">
<pre class="example">struct hmac_md5_ctx HMAC_CTX (struct md5_ctx);
</pre></div>
<dl>
<dt><a name="index-HMAC_005fSET_005fKEY"></a>Macro: <strong>HMAC_SET_KEY</strong> <em>(<var>ctx</var>, <var>H</var>, <var>length</var>, <var>key</var>)</em></dt>
<dd><p><var>ctx</var> is a pointer to a context struct as defined by
<code>HMAC_CTX</code>, <var>H</var> is a pointer to a <code>const struct
nettle_hash</code> describing the underlying hash function (so it must match
the type of the components of <var>ctx</var>). The last two arguments specify
the secret key.
</p></dd></dl>
<dl>
<dt><a name="index-HMAC_005fDIGEST"></a>Macro: <strong>HMAC_DIGEST</strong> <em>(<var>ctx</var>, <var>H</var>, <var>length</var>, <var>digest</var>)</em></dt>
<dd><p><var>ctx</var> is a pointer to a context struct as defined by
<code>HMAC_CTX</code>, <var>H</var> is a pointer to a <code>const struct
nettle_hash</code> describing the underlying hash function. The last two
arguments specify where the digest is written.
</p></dd></dl>
<p>Note that there is no <code>HMAC_UPDATE</code> macro; simply call
<code>hmac_update</code> function directly, or the update function of the
underlying hash function.
</p>
<a name="Concrete-HMAC-functions"></a>
<h4 class="subsection">6.5.2 Concrete <acronym>HMAC</acronym> functions</h4>
<p>Now we come to the specialized <acronym>HMAC</acronym> functions, which are
easier to use than the general <acronym>HMAC</acronym> functions.
</p>
<a name="HMAC_002dMD5"></a>
<h4 class="subsubsection">6.5.2.1 <acronym>HMAC-MD5</acronym></h4>
<dl>
<dt><a name="index-struct-hmac_005fmd5_005fctx"></a>Context struct: <strong>struct hmac_md5_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-hmac_005fmd5_005fset_005fkey"></a>Function: <em>void</em> <strong>hmac_md5_set_key</strong> <em>(struct hmac_md5_ctx *<var>ctx</var>, size_t <var>key_length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initializes the context with the key.
</p></dd></dl>
<dl>
<dt><a name="index-hmac_005fmd5_005fupdate"></a>Function: <em>void</em> <strong>hmac_md5_update</strong> <em>(struct hmac_md5_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Process some more data.
</p></dd></dl>
<dl>
<dt><a name="index-hmac_005fmd5_005fdigest"></a>Function: <em>void</em> <strong>hmac_md5_digest</strong> <em>(struct hmac_md5_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Extracts the <acronym>MAC</acronym>, writing it to <var>digest</var>. <var>length</var> may be smaller than
<code>MD5_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the <acronym>MAC</acronym> are written.
</p>
<p>This function also resets the context for processing new messages, with
the same key.
</p></dd></dl>
<a name="HMAC_002dRIPEMD160"></a>
<h4 class="subsubsection">6.5.2.2 <acronym>HMAC-RIPEMD160</acronym></h4>
<dl>
<dt><a name="index-struct-hmac_005fripemd160_005fctx"></a>Context struct: <strong>struct hmac_ripemd160_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-hmac_005fripemd160_005fset_005fkey"></a>Function: <em>void</em> <strong>hmac_ripemd160_set_key</strong> <em>(struct hmac_ripemd160_ctx *<var>ctx</var>, size_t <var>key_length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initializes the context with the key.
</p></dd></dl>
<dl>
<dt><a name="index-hmac_005fripemd160_005fupdate"></a>Function: <em>void</em> <strong>hmac_ripemd160_update</strong> <em>(struct hmac_ripemd160_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Process some more data.
</p></dd></dl>
<dl>
<dt><a name="index-hmac_005fripemd160_005fdigest"></a>Function: <em>void</em> <strong>hmac_ripemd160_digest</strong> <em>(struct hmac_ripemd160_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Extracts the <acronym>MAC</acronym>, writing it to <var>digest</var>. <var>length</var> may be smaller than
<code>RIPEMD160_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the <acronym>MAC</acronym> are written.
</p>
<p>This function also resets the context for processing new messages, with
the same key.
</p></dd></dl>
<a name="HMAC_002dSHA1"></a>
<h4 class="subsubsection">6.5.2.3 <acronym>HMAC-SHA1</acronym></h4>
<dl>
<dt><a name="index-struct-hmac_005fsha1_005fctx"></a>Context struct: <strong>struct hmac_sha1_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-hmac_005fsha1_005fset_005fkey"></a>Function: <em>void</em> <strong>hmac_sha1_set_key</strong> <em>(struct hmac_sha1_ctx *<var>ctx</var>, size_t <var>key_length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initializes the context with the key.
</p></dd></dl>
<dl>
<dt><a name="index-hmac_005fsha1_005fupdate"></a>Function: <em>void</em> <strong>hmac_sha1_update</strong> <em>(struct hmac_sha1_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Process some more data.
</p></dd></dl>
<dl>
<dt><a name="index-hmac_005fsha1_005fdigest"></a>Function: <em>void</em> <strong>hmac_sha1_digest</strong> <em>(struct hmac_sha1_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Extracts the <acronym>MAC</acronym>, writing it to <var>digest</var>. <var>length</var> may be smaller than
<code>SHA1_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the <acronym>MAC</acronym> are written.
</p>
<p>This function also resets the context for processing new messages, with
the same key.
</p></dd></dl>
<a name="HMAC_002dSHA256"></a>
<h4 class="subsubsection">6.5.2.4 <acronym>HMAC-SHA256</acronym></h4>
<dl>
<dt><a name="index-struct-hmac_005fsha256_005fctx"></a>Context struct: <strong>struct hmac_sha256_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-hmac_005fsha256_005fset_005fkey"></a>Function: <em>void</em> <strong>hmac_sha256_set_key</strong> <em>(struct hmac_sha256_ctx *<var>ctx</var>, size_t <var>key_length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initializes the context with the key.
</p></dd></dl>
<dl>
<dt><a name="index-hmac_005fsha256_005fupdate"></a>Function: <em>void</em> <strong>hmac_sha256_update</strong> <em>(struct hmac_sha256_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Process some more data.
</p></dd></dl>
<dl>
<dt><a name="index-hmac_005fsha256_005fdigest"></a>Function: <em>void</em> <strong>hmac_sha256_digest</strong> <em>(struct hmac_sha256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Extracts the <acronym>MAC</acronym>, writing it to <var>digest</var>. <var>length</var> may be smaller than
<code>SHA256_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the <acronym>MAC</acronym> are written.
</p>
<p>This function also resets the context for processing new messages, with
the same key.
</p></dd></dl>
<a name="HMAC_002dSHA512"></a>
<h4 class="subsubsection">6.5.2.5 <acronym>HMAC-SHA512</acronym></h4>
<dl>
<dt><a name="index-struct-hmac_005fsha512_005fctx"></a>Context struct: <strong>struct hmac_sha512_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-hmac_005fsha512_005fset_005fkey"></a>Function: <em>void</em> <strong>hmac_sha512_set_key</strong> <em>(struct hmac_sha512_ctx *<var>ctx</var>, size_t <var>key_length</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initializes the context with the key.
</p></dd></dl>
<dl>
<dt><a name="index-hmac_005fsha512_005fupdate"></a>Function: <em>void</em> <strong>hmac_sha512_update</strong> <em>(struct hmac_sha512_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Process some more data.
</p></dd></dl>
<dl>
<dt><a name="index-hmac_005fsha512_005fdigest"></a>Function: <em>void</em> <strong>hmac_sha512_digest</strong> <em>(struct hmac_sha512_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Extracts the <acronym>MAC</acronym>, writing it to <var>digest</var>. <var>length</var> may be smaller than
<code>SHA512_DIGEST_SIZE</code>, in which case only the first <var>length</var>
octets of the <acronym>MAC</acronym> are written.
</p>
<p>This function also resets the context for processing new messages, with
the same key.
</p></dd></dl>
<hr>
<a name="UMAC"></a>
<div class="header">
<p>
Next: <a href="#Poly1305" accesskey="n" rel="next">Poly1305</a>, Previous: <a href="#HMAC" accesskey="p" rel="prev">HMAC</a>, Up: <a href="#Keyed-hash-functions" accesskey="u" rel="up">Keyed hash functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="UMAC-1"></a>
<h4 class="subsection">6.5.3 <acronym>UMAC</acronym></h4>
<a name="index-UMAC"></a>
<p><acronym>UMAC</acronym> is a message authentication code based on universal
hashing, and designed for high performance on modern processors (in
contrast to GCM, See <a href="#GCM">GCM</a>, which is designed primarily for hardware
performance). On processors with good integer multiplication
performance, it can be 10 times faster than SHA256 and SHA512.
<acronym>UMAC</acronym> is specified in <cite>RFC 4418</cite>.
</p>
<p>The secret key is always 128 bits (16 octets). The key is used as an
encryption key for the <acronym>AES</acronym> block cipher. This cipher is used
in counter mode to generate various internal subkeys needed in
<acronym>UMAC</acronym>. Messages are of arbitrary size, and for each message,
<acronym>UMAC</acronym> also needs a unique nonce. Nonce values must not be
reused for two messages with the same key, but they need not be kept
secret.
</p>
<p>The nonce must be at least one octet, and at most 16; nonces shorter
than 16 octets are zero-padded. Nettle’s implementation of
<acronym>UMAC</acronym> increments the nonce automatically for each message, so
explicitly setting the nonce for each message is optional. This
auto-increment uses network byte order and it takes the length of the
nonce into account. E.g., if the initial nonce is “abc” (3 octets),
this value is zero-padded to 16 octets for the first message. For the
next message, the nonce is incremented to “abd”, and this incremented
value is zero-padded to 16 octets.
</p>
<p><acronym>UMAC</acronym> is defined in four variants, for different output sizes:
32 bits (4 octets), 64 bits (8 octets), 96 bits (12 octets) and 128 bits
(16 octets), corresponding to different trade-offs between speed and
security. Using a shorter output size sometimes (but not always!) gives
the same result as using a longer output size and truncating the result.
So it is important to use the right variant. For consistency with other
hash and <acronym>MAC</acronym> functions, Nettle’s <code>_digest</code> functions for
<acronym>UMAC</acronym> accept a length parameter so that the output can be
truncated to any desired size, but it is recommended to stick to the
specified output size and select the <acronym>umac</acronym> variant
corresponding to the desired size.
</p>
<p>The internal block size of <acronym>UMAC</acronym> is 1024 octets, and it also
generates more than 1024 bytes of subkeys. This makes the size of the
context struct quite a bit larger than other hash functions and
<acronym>MAC</acronym> algorithms in Nettle.
</p>
<p>Nettle defines <acronym>UMAC</acronym> in <samp><nettle/umac.h></samp>.
</p>
<dl>
<dt><a name="index-struct-umac32_005fctx"></a>Context struct: <strong>struct umac32_ctx</strong></dt>
<dt><a name="index-struct-umac64_005fctx"></a>Context struct: <strong>struct umac64_ctx</strong></dt>
<dt><a name="index-struct-umac96_005fctx"></a>Context struct: <strong>struct umac96_ctx</strong></dt>
<dt><a name="index-struct-umac128_005fctx"></a>Context struct: <strong>struct umac128_ctx</strong></dt>
<dd><p>Each <acronym>UMAC</acronym> variant uses its own context struct.
</p></dd></dl>
<dl>
<dt><a name="index-UMAC_005fKEY_005fSIZE"></a>Constant: <strong>UMAC_KEY_SIZE</strong></dt>
<dd><p>The UMAC key size, 16.
</p></dd></dl>
<dl>
<dt><a name="index-UMAC_005fMIN_005fNONCE_005fSIZE"></a>Constant: <strong>UMAC_MIN_NONCE_SIZE</strong></dt>
<dt><a name="index-UMAC_005fMAX_005fNONCE_005fSIZE"></a>Constant: <strong>UMAC_MAX_NONCE_SIZE</strong></dt>
<dd><p>The the minimum and maximum sizes for an UMAC nonce, 1 and 16,
respectively.
</p></dd></dl>
<dl>
<dt><a name="index-UMAC32_005fDIGEST_005fSIZE"></a>Constant: <strong>UMAC32_DIGEST_SIZE</strong></dt>
<dd><p>The size of an UMAC32 digest, 4.
</p></dd></dl>
<dl>
<dt><a name="index-UMAC64_005fDIGEST_005fSIZE"></a>Constant: <strong>UMAC64_DIGEST_SIZE</strong></dt>
<dd><p>The size of an UMAC64 digest, 8.
</p></dd></dl>
<dl>
<dt><a name="index-UMAC96_005fDIGEST_005fSIZE"></a>Constant: <strong>UMAC96_DIGEST_SIZE</strong></dt>
<dd><p>The size of an UMAC96 digest, 12.
</p></dd></dl>
<dl>
<dt><a name="index-UMAC128_005fDIGEST_005fSIZE"></a>Constant: <strong>UMAC128_DIGEST_SIZE</strong></dt>
<dd><p>The size of an UMAC128 digest, 16.
</p></dd></dl>
<dl>
<dt><a name="index-UMAC_005fBLOCK_005fSIZE"></a>Constant: <strong>UMAC_BLOCK_SIZE</strong></dt>
<dd><p>The internal block size of UMAC.
</p></dd></dl>
<dl>
<dt><a name="index-umac32_005fset_005fkey"></a>Function: <em>void</em> <strong>umac32_set_key</strong> <em>(struct umac32_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-umac64_005fset_005fkey"></a>Function: <em>void</em> <strong>umac64_set_key</strong> <em>(struct umac64_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-umac96_005fset_005fkey"></a>Function: <em>void</em> <strong>umac96_set_key</strong> <em>(struct umac96_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dt><a name="index-umac128_005fset_005fkey"></a>Function: <em>void</em> <strong>umac128_set_key</strong> <em>(struct umac128_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>These functions initialize the <acronym>UMAC</acronym> context struct. They also
initialize the nonce to zero (with length 16, for auto-increment).
</p></dd></dl>
<dl>
<dt><a name="index-umac32_005fset_005fnonce"></a>Function: <em>void</em> <strong>umac32_set_nonce</strong> <em>(struct umac32_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>nonce</var>)</em></dt>
<dt><a name="index-umac64_005fset_005fnonce"></a>Function: <em>void</em> <strong>umac64_set_nonce</strong> <em>(struct umac64_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>nonce</var>)</em></dt>
<dt><a name="index-umac96_005fset_005fnonce"></a>Function: <em>void</em> <strong>umac96_set_nonce</strong> <em>(struct umac96_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>nonce</var>)</em></dt>
<dt><a name="index-umac128_005fset_005fnonce"></a>Function: <em>void</em> <strong>umac128_set_nonce</strong> <em>(struct umac128_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>nonce</var>)</em></dt>
<dd><p>Sets the nonce to be used for the next message. In general, nonces
should be set before processing of the message. This is not strictly
required for <acronym>UMAC</acronym> (the nonce only affects the final processing
generating the digest), but it is nevertheless recommended that this
function is called <em>before</em> the first <code>_update</code> call for the
message.
</p></dd></dl>
<dl>
<dt><a name="index-umac32_005fupdate"></a>Function: <em>void</em> <strong>umac32_update</strong> <em>(struct umac32_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dt><a name="index-umac64_005fupdate"></a>Function: <em>void</em> <strong>umac64_update</strong> <em>(struct umac64_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dt><a name="index-umac96_005fupdate"></a>Function: <em>void</em> <strong>umac96_update</strong> <em>(struct umac96_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dt><a name="index-umac128_005fupdate"></a>Function: <em>void</em> <strong>umac128_update</strong> <em>(struct umac128_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>These functions are called zero or more times to process the message.
</p></dd></dl>
<dl>
<dt><a name="index-umac32_005fdigest"></a>Function: <em>void</em> <strong>umac32_digest</strong> <em>(struct umac32_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dt><a name="index-umac64_005fdigest"></a>Function: <em>void</em> <strong>umac64_digest</strong> <em>(struct umac64_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dt><a name="index-umac96_005fdigest"></a>Function: <em>void</em> <strong>umac96_digest</strong> <em>(struct umac96_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dt><a name="index-umac128_005fdigest"></a>Function: <em>void</em> <strong>umac128_digest</strong> <em>(struct umac128_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Extracts the <acronym>MAC</acronym> of the message, writing it to <var>digest</var>.
<var>length</var> is usually equal to the specified output size, but if you
provide a smaller value, only the first <var>length</var> octets of the
<acronym>MAC</acronym> are written. These functions reset the context for
processing of a new message with the same key. The nonce is incremented
as described above, the new value is used unless you call the
<code>_set_nonce</code> function explicitly for each message.
</p></dd></dl>
<hr>
<a name="Poly1305"></a>
<div class="header">
<p>
Previous: <a href="#UMAC" accesskey="p" rel="prev">UMAC</a>, Up: <a href="#Keyed-hash-functions" accesskey="u" rel="up">Keyed hash functions</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Poly1305-1"></a>
<h4 class="subsection">6.5.4 Poly1305</h4>
<p>Poly1305-<acronym>AES</acronym> is a message authentication code designed by D. J.
Bernstein. It treats the message as a polynomial modulo the prime number
<em>2^130 - 5</em>.
</p>
<p>The key, 256 bits, consists of two parts, where the first half is an
<acronym>AES</acronym>-128 key, and the second half specifies the point where the
polynomial is evaluated. Of the latter half, 22 bits are set to zero, to
enable high-performance implementation, leaving 106 bits for specifying
an evaluation point <code>r</code>. For each message, one must also provide a
128-bit nonce. The nonce is encrypted using the <acronym>AES</acronym> key, and
that’s the only thing <acronym>AES</acronym> is used for.
</p>
<p>The message is split into 128-bit chunks (with final chunk possibly
being shorter), each read as a little-endian integer. Each chunk has a
one-bit appended at the high end. The resulting integers are treated as
polynomial coefficients modulo <em>2^130 - 5</em>, and the polynomial is
evaluated at the point <code>r</code>. Finally, this value is reduced modulo
<em>2^128</em>, and added (also modulo <em>2^128</em>) to the encrypted
nonce, to produce an 128-bit authenticator for the message. See
<a href="http://cr.yp.to/mac/poly1305-20050329.pdf">http://cr.yp.to/mac/poly1305-20050329.pdf</a> for further details.
</p>
<p>Clearly, variants using a different cipher than <acronym>AES</acronym> could be
defined. Another variant is the ChaCha-Poly1305 <acronym>AEAD</acronym>
construction (see <a href="#ChaCha_002dPoly1305">ChaCha-Poly1305</a>). Nettle defines
Poly1305-<acronym>AES</acronym> in <samp>nettle/poly1305.h</samp>.
</p>
<dl>
<dt><a name="index-POLY1305_005fAES_005fKEY_005fSIZE"></a>Constant: <strong>POLY1305_AES_KEY_SIZE</strong></dt>
<dd><p>Key size, 32 octets.
</p></dd></dl>
<dl>
<dt><a name="index-POLY1305_005fAES_005fDIGEST_005fSIZE"></a>Constant: <strong>POLY1305_AES_DIGEST_SIZE</strong></dt>
<dd><p>Size of the digest or “authenticator”, 16 octets.
</p></dd></dl>
<dl>
<dt><a name="index-POLY1305_005fAES_005fNONCE_005fSIZE"></a>Constant: <strong>POLY1305_AES_NONCE_SIZE</strong></dt>
<dd><p>Nonce size, 16 octets.
</p></dd></dl>
<dl>
<dt><a name="index-struct-poly1305_005faes_005fctx"></a>Context struct: <strong>struct poly1305_aes_ctx</strong></dt>
<dd><p>The poly1305-aes context struct.
</p></dd></dl>
<dl>
<dt><a name="index-poly1305_005faes_005fset_005fkey"></a>Function: <em>void</em> <strong>poly1305_aes_set_key</strong> <em>(struct poly1305_aes_ctx *<var>ctx</var>, const uint8_t *<var>key</var>)</em></dt>
<dd><p>Initialize the context struct. Also sets the nonce to zero.
</p></dd></dl>
<dl>
<dt><a name="index-poly1305_005faes_005fset_005fnonce"></a>Function: <em>void</em> <strong>poly1305_aes_set_nonce</strong> <em>(struct poly1305_aes_ctx *<var>ctx</var>, const uint8_t *<var>nonce</var>)</em></dt>
<dd><p>Sets the nonce. Calling this function is optional, since the nonce is
incremented automatically for each message.
</p></dd></dl>
<dl>
<dt><a name="index-poly1305_005faes_005fupdate"></a>Function: <em>void</em> <strong>poly1305_aes_update</strong> <em>(struct poly1305_aes_ctx *<var>ctx</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Process more data.
</p></dd></dl>
<dl>
<dt><a name="index-poly1305_005faes_005fdigest"></a>Function: <em>void</em> <strong>poly1305_aes_digest</strong> <em>(struct poly1305_aes_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>digest</var>)</em></dt>
<dd><p>Extracts the digest. If <var>length</var> is smaller than
<code>POLY1305_AES_DIGEST_SIZE</code>, only the first <var>length</var> octets are
written. Also increments the nonce, and prepares the context for
processing a new message.
</p></dd></dl>
<hr>
<a name="Key-derivation-functions"></a>
<div class="header">
<p>
Next: <a href="#Public_002dkey-algorithms" accesskey="n" rel="next">Public-key algorithms</a>, Previous: <a href="#Keyed-hash-functions" accesskey="p" rel="prev">Keyed hash functions</a>, Up: <a href="#Reference" accesskey="u" rel="up">Reference</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Key-derivation-Functions"></a>
<h3 class="section">6.6 Key derivation Functions</h3>
<a name="index-Key-Derivation-Function"></a>
<a name="index-Password-Based-Key-Derivation-Function"></a>
<a name="index-PKCS-_00235"></a>
<a name="index-KDF"></a>
<a name="index-PBKDF"></a>
<p>A <em>key derivation function</em> (<acronym>KDF</acronym>) is a function that from
a given symmetric key derives other symmetric keys. A sub-class of KDFs
is the <em>password-based key derivation functions</em> (<acronym>PBKDFs</acronym>),
which take as input a password or passphrase, and its purpose is
typically to strengthen it and protect against certain pre-computation
attacks by using salting and expensive computation.
</p>
<a name="PBKDF2"></a>
<h4 class="subsection">6.6.1 <acronym>PBKDF2</acronym></h4>
<p>The most well known PBKDF is the <code>PKCS #5 PBKDF2</code> described in
<cite>RFC 2898</cite> which uses a pseudo-random function such as
<acronym>HMAC-SHA1</acronym>.
</p>
<p>Nettle’s <acronym>PBKDF2</acronym> functions are defined in
<samp><nettle/pbkdf2.h></samp>. There is an abstract function that operate on
any PRF implemented via the <code>nettle_hash_update_func</code>,
<code>nettle_hash_digest_func</code> interfaces. There is also helper macros
and concrete functions PBKDF2-HMAC-SHA1 and PBKDF2-HMAC-SHA256. First,
the abstract function:
</p>
<dl>
<dt><a name="index-pbkdf2"></a>Function: <em>void</em> <strong>pbkdf2</strong> <em>(void *mac_ctx, nettle_hash_update_func *update, nettle_hash_digest_func *digest, size_t digest_size, unsigned iterations, size_t salt_length, const uint8_t *salt, size_t length, uint8_t *dst)</em></dt>
<dd><p>Derive symmetric key from a password according to PKCS #5 PBKDF2. The
PRF is assumed to have been initialized and this function will call the
<var>update</var> and <var>digest</var> functions passing the <var>mac_ctx</var>
context parameter as an argument in order to compute digest of size
<var>digest_size</var>. Inputs are the salt <var>salt</var> of length
<var>salt_length</var>, the iteration counter <var>iterations</var> (> 0), and the
desired derived output length <var>length</var>. The output buffer is
<var>dst</var> which must have room for at least <var>length</var> octets.
</p></dd></dl>
<p>Like for CBC and HMAC, there is a macro to help use the function
correctly.
</p>
<dl>
<dt><a name="index-PBKDF2"></a>Macro: <strong>PBKDF2</strong> <em>(<var>ctx</var>, <var>update</var>, <var>digest</var>, <var>digest_size</var>, <var>iterations</var>, <var>salt_length</var>, <var>salt</var>, <var>length</var>, <var>dst</var>)</em></dt>
<dd><p><var>ctx</var> is a pointer to a context struct passed to the <var>update</var>
and <var>digest</var> functions (of the types <code>nettle_hash_update_func</code>
and <code>nettle_hash_digest_func</code> respectively) to implement the
underlying PRF with digest size of <var>digest_size</var>. Inputs are the
salt <var>salt</var> of length <var>salt_length</var>, the iteration counter
<var>iterations</var> (> 0), and the desired derived output length
<var>length</var>. The output buffer is <var>dst</var> which must have room for
at least <var>length</var> octets.
</p></dd></dl>
<a name="Concrete-PBKDF2-functions"></a>
<h4 class="subsection">6.6.2 Concrete <acronym>PBKDF2</acronym> functions</h4>
<p>Now we come to the specialized <acronym>PBKDF2</acronym> functions, which are
easier to use than the general <acronym>PBKDF2</acronym> function.
</p>
<a name="PBKDF2_002dHMAC_002dSHA1"></a>
<h4 class="subsubsection">6.6.2.1 <acronym>PBKDF2-HMAC-SHA1</acronym></h4>
<dl>
<dt><a name="index-pbkdf2_005fhmac_005fsha1"></a>Function: <em>void</em> <strong>pbkdf2_hmac_sha1</strong> <em>(size_t <var>key_length</var>, const uint8_t *<var>key</var>, unsigned <var>iterations</var>, size_t <var>salt_length</var>, const uint8_t *<var>salt</var>, size_t <var>length</var>, uint8_t *<var>dst</var>)</em></dt>
<dd><p>PBKDF2 with HMAC-SHA1. Derive <var>length</var> bytes of key into buffer
<var>dst</var> using the password <var>key</var> of length <var>key_length</var> and
salt <var>salt</var> of length <var>salt_length</var>, with iteration counter
<var>iterations</var> (> 0). The output buffer is <var>dst</var> which must have
room for at least <var>length</var> octets.
</p></dd></dl>
<a name="PBKDF2_002dHMAC_002dSHA256"></a>
<h4 class="subsubsection">6.6.2.2 <acronym>PBKDF2-HMAC-SHA256</acronym></h4>
<dl>
<dt><a name="index-pbkdf2_005fhmac_005fsha256"></a>Function: <em>void</em> <strong>pbkdf2_hmac_sha256</strong> <em>(size_t <var>key_length</var>, const uint8_t *<var>key</var>, unsigned <var>iterations</var>, size_t <var>salt_length</var>, const uint8_t *<var>salt</var>, size_t <var>length</var>, uint8_t *<var>dst</var>)</em></dt>
<dd><p>PBKDF2 with HMAC-SHA256. Derive <var>length</var> bytes of key into buffer
<var>dst</var> using the password <var>key</var> of length <var>key_length</var> and
salt <var>salt</var> of length <var>salt_length</var>, with iteration counter
<var>iterations</var> (> 0). The output buffer is <var>dst</var> which must have
room for at least <var>length</var> octets.
</p></dd></dl>
<hr>
<a name="Public_002dkey-algorithms"></a>
<div class="header">
<p>
Next: <a href="#Randomness" accesskey="n" rel="next">Randomness</a>, Previous: <a href="#Key-derivation-functions" accesskey="p" rel="prev">Key derivation functions</a>, Up: <a href="#Reference" accesskey="u" rel="up">Reference</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Public_002dkey-algorithms-1"></a>
<h3 class="section">6.7 Public-key algorithms</h3>
<p>Nettle uses <acronym>GMP</acronym>, the GNU bignum library, for all calculations
with large numbers. In order to use the public-key features of Nettle,
you must install <acronym>GMP</acronym>, at least version 3.0, before compiling
Nettle, and you need to link your programs with <code>-lhogweed -lnettle
-lgmp</code>.
</p>
<p>The concept of <em>Public-key</em> encryption and digital signatures was
discovered by Whitfield Diffie and Martin E. Hellman and described in a
paper 1976. In traditional, “symmetric”, cryptography, sender and
receiver share the same keys, and these keys must be distributed in a
secure way. And if there are many users or entities that need to
communicate, each <em>pair</em> needs a shared secret key known by nobody
else.
</p>
<a name="index-Public-Key-Cryptography"></a>
<a name="index-One_002dway-function"></a>
<p>Public-key cryptography uses trapdoor one-way functions. A
<em>one-way function</em> is a function <code>F</code> such that it is easy to
compute the value <code>F(x)</code> for any <code>x</code>, but given a value
<code>y</code>, it is hard to compute a corresponding <code>x</code> such that
<code>y = F(x)</code>. Two examples are cryptographic hash functions, and
exponentiation in certain groups.
</p>
<p>A <em>trapdoor one-way function</em> is a function <code>F</code> that is
one-way, unless one knows some secret information about <code>F</code>. If one
knows the secret, it is easy to compute both <code>F</code> and it’s inverse.
If this sounds strange, look at the <acronym>RSA</acronym> example below.
</p>
<p>Two important uses for one-way functions with trapdoors are public-key
encryption, and digital signatures. The public-key encryption functions
in Nettle are not yet documented; the rest of this chapter is about
digital signatures.
</p>
<p>To use a digital signature algorithm, one must first create a
<em>key-pair</em>: A public key and a corresponding private key. The private
key is used to sign messages, while the public key is used for verifying
that that signatures and messages match. Some care must be taken when
distributing the public key; it need not be kept secret, but if a bad
guy is able to replace it (in transit, or in some user’s list of known
public keys), bad things may happen.
</p>
<p>There are two operations one can do with the keys. The signature
operation takes a message and a private key, and creates a signature for
the message. A signature is some string of bits, usually at most a few
thousand bits or a few hundred octets. Unlike paper-and-ink signatures,
the digital signature depends on the message, so one can’t cut it out of
context and glue it to a different message.
</p>
<p>The verification operation takes a public key, a message, and a string
that is claimed to be a signature on the message, and returns true or
false. If it returns true, that means that the three input values
matched, and the verifier can be sure that someone went through with the
signature operation on that very message, and that the “someone” also
knows the private key corresponding to the public key.
</p>
<p>The desired properties of a digital signature algorithm are as follows:
Given the public key and pairs of messages and valid signatures on them,
it should be hard to compute the private key, and it should also be hard
to create a new message and signature that is accepted by the
verification operation.
</p>
<p>Besides signing meaningful messages, digital signatures can be used for
authorization. A server can be configured with a public key, such that
any client that connects to the service is given a random nonce message.
If the server gets a reply with a correct signature matching the nonce
message and the configured public key, the client is granted access. So
the configuration of the server can be understood as “grant access to
whoever knows the private key corresponding to this particular public
key, and to no others”.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#RSA" accesskey="1">RSA</a>:</td><td> </td><td align="left" valign="top">The RSA public key algorithm.
</td></tr>
<tr><td align="left" valign="top">• <a href="#DSA" accesskey="2">DSA</a>:</td><td> </td><td align="left" valign="top">The DSA digital signature algorithm.
</td></tr>
<tr><td align="left" valign="top">• <a href="#Elliptic-curves" accesskey="3">Elliptic curves</a>:</td><td> </td><td align="left" valign="top">Elliptic curves and ECDSA
</td></tr>
</table>
<hr>
<a name="RSA"></a>
<div class="header">
<p>
Next: <a href="#DSA" accesskey="n" rel="next">DSA</a>, Previous: <a href="#Public_002dkey-algorithms" accesskey="p" rel="prev">Public-key algorithms</a>, Up: <a href="#Public_002dkey-algorithms" accesskey="u" rel="up">Public-key algorithms</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="RSA-1"></a>
<h4 class="subsection">6.7.1 <acronym>RSA</acronym></h4>
<p>The <acronym>RSA</acronym> algorithm was the first practical digital signature
algorithm that was constructed. It was described 1978 in a paper by
Ronald Rivest, Adi Shamir and L.M. Adleman, and the technique was also
patented in the <acronym>USA</acronym> in 1983. The patent expired on September 20, 2000, and since
that day, <acronym>RSA</acronym> can be used freely, even in the <acronym>USA</acronym>.
</p>
<p>It’s remarkably simple to describe the trapdoor function behind
<acronym>RSA</acronym>. The “one-way”-function used is
</p>
<div class="example">
<pre class="example">F(x) = x^e mod n
</pre></div>
<p>I.e. raise x to the <code>e</code>’th power, while discarding all multiples of
<code>n</code>. The pair of numbers <code>n</code> and <code>e</code> is the public key.
<code>e</code> can be quite small, even <code>e = 3</code> has been used, although
slightly larger numbers are recommended. <code>n</code> should be about 2000
bits or larger.
</p>
<p>If <code>n</code> is large enough, and properly chosen, the inverse of F,
the computation of <code>e</code>’th roots modulo <code>n</code>, is very difficult.
But, where’s the trapdoor?
</p>
<p>Let’s first look at how <acronym>RSA</acronym> key-pairs are generated. First
<code>n</code> is chosen as the product of two large prime numbers <code>p</code>
and <code>q</code> of roughly the same size (so if <code>n</code> is 2000 bits,
<code>p</code> and <code>q</code> are about 1000 bits each). One also computes the
number <code>phi = (p-1)(q-1)</code>, in mathematical speak, <code>phi</code> is the
order of the multiplicative group of integers modulo n.
</p>
<p>Next, <code>e</code> is chosen. It must have no factors in common with <code>phi</code> (in
particular, it must be odd), but can otherwise be chosen more or less
randomly. <code>e = 65537</code> is a popular choice, because it makes raising
to the <code>e</code>’th power particularly efficient, and being prime, it
usually has no factors common with <code>phi</code>.
</p>
<p>Finally, a number <code>d</code>, <code>d < n</code> is computed such that <code>e d
mod phi = 1</code>. It can be shown that such a number exists (this is why
<code>e</code> and <code>phi</code> must have no common factors), and that for all x,
</p>
<div class="example">
<pre class="example">(x^e)^d mod n = x^(ed) mod n = (x^d)^e mod n = x
</pre></div>
<p>Using Euclid’s algorithm, <code>d</code> can be computed quite easily from
<code>phi</code> and <code>e</code>. But it is still hard to get <code>d</code> without
knowing <code>phi</code>, which depends on the factorization of <code>n</code>.
</p>
<p>So <code>d</code> is the trapdoor, if we know <code>d</code> and <code>y = F(x)</code>, we can
recover x as <code>y^d mod n</code>. <code>d</code> is also the private half of
the <acronym>RSA</acronym> key-pair.
</p>
<p>The most common signature operation for <acronym>RSA</acronym> is defined in
<cite>PKCS#1</cite>, a specification by RSA Laboratories. The message to be
signed is first hashed using a cryptographic hash function, e.g.
<acronym>MD5</acronym> or <acronym>SHA1</acronym>. Next, some padding, the <acronym>ASN.1</acronym>
“Algorithm Identifier” for the hash function, and the message digest
itself, are concatenated and converted to a number <code>x</code>. The
signature is computed from <code>x</code> and the private key as <code>s = x^d
mod n</code><a name="DOCF1" href="#FOOT1"><sup>1</sup></a>. The signature, <code>s</code> is a
number of about the same size of <code>n</code>, and it usually encoded as a
sequence of octets, most significant octet first.
</p>
<p>The verification operation is straight-forward, <code>x</code> is computed
from the message in the same way as above. Then <code>s^e mod n</code> is
computed, the operation returns true if and only if the result equals
<code>x</code>.
</p>
<p>The <acronym>RSA</acronym> algorithm can also be used for encryption. RSA encryption uses
the public key <code>(n,e)</code> to compute the ciphertext <code>m^e mod n</code>.
The <cite>PKCS#1</cite> padding scheme will use at least 8 random and non-zero
octets, using <var>m</var> of the form <code>[00 02 padding 00 plaintext]</code>.
It is required that <code>m < n</code>, and therefor the plaintext must be
smaller than the octet size of the modulo <code>n</code>, with some margin.
</p>
<p>To decrypt the message, one needs the private key to compute <code>m =
c^e mod n</code> followed by checking and removing the padding.
</p>
<a name="Nettle_0027s-RSA-support"></a>
<h4 class="subsubsection">6.7.1.1 Nettle’s <acronym>RSA</acronym> support</h4>
<p>Nettle represents <acronym>RSA</acronym> keys using two structures that contain
large numbers (of type <code>mpz_t</code>).
</p>
<dl>
<dt><a name="index-rsa_005fpublic_005fkey"></a>Context struct: <strong>rsa_public_key</strong> <em>size n e</em></dt>
<dd><p><code>size</code> is the size, in octets, of the modulo, and is used internally.
<code>n</code> and <code>e</code> is the public key.
</p></dd></dl>
<dl>
<dt><a name="index-rsa_005fprivate_005fkey"></a>Context struct: <strong>rsa_private_key</strong> <em>size d p q a b c</em></dt>
<dd><p><code>size</code> is the size, in octets, of the modulo, and is used internally.
<code>d</code> is the secret exponent, but it is not actually used when
signing. Instead, the factors <code>p</code> and <code>q</code>, and the parameters
<code>a</code>, <code>b</code> and <code>c</code> are used. They are computed from <code>p</code>,
<code>q</code> and <code>e</code> such that <code>a e mod (p - 1) = 1, b e mod (q -
1) = 1, c q mod p = 1</code>.
</p></dd></dl>
<p>Before use, these structs must be initialized by calling one of
</p>
<dl>
<dt><a name="index-rsa_005fpublic_005fkey_005finit"></a>Function: <em>void</em> <strong>rsa_public_key_init</strong> <em>(struct rsa_public_key *<var>pub</var>)</em></dt>
<dt><a name="index-rsa_005fprivate_005fkey_005finit"></a>Function: <em>void</em> <strong>rsa_private_key_init</strong> <em>(struct rsa_private_key *<var>key</var>)</em></dt>
<dd><p>Calls <code>mpz_init</code> on all numbers in the key struct.
</p></dd></dl>
<p>and when finished with them, the space for the numbers must be
deallocated by calling one of
</p>
<dl>
<dt><a name="index-rsa_005fpublic_005fkey_005fclear"></a>Function: <em>void</em> <strong>rsa_public_key_clear</strong> <em>(struct rsa_public_key *<var>pub</var>)</em></dt>
<dt><a name="index-rsa_005fprivate_005fkey_005fclear"></a>Function: <em>void</em> <strong>rsa_private_key_clear</strong> <em>(struct rsa_private_key *<var>key</var>)</em></dt>
<dd><p>Calls <code>mpz_clear</code> on all numbers in the key struct.
</p></dd></dl>
<p>In general, Nettle’s <acronym>RSA</acronym> functions deviates from Nettle’s “no
memory allocation”-policy. Space for all the numbers, both in the key structs
above, and temporaries, are allocated dynamically. For information on how
to customize allocation, see
See <a href="http://www.gmplib.org/manual/Custom-Allocation.html#Custom-Allocation">GMP Allocation</a> in <cite>GMP Manual</cite>.
</p>
<p>When you have assigned values to the attributes of a key, you must call
</p>
<dl>
<dt><a name="index-rsa_005fpublic_005fkey_005fprepare"></a>Function: <em>int</em> <strong>rsa_public_key_prepare</strong> <em>(struct rsa_public_key *<var>pub</var>)</em></dt>
<dt><a name="index-rsa_005fprivate_005fkey_005fprepare"></a>Function: <em>int</em> <strong>rsa_private_key_prepare</strong> <em>(struct rsa_private_key *<var>key</var>)</em></dt>
<dd><p>Computes the octet size of the key (stored in the <code>size</code> attribute,
and may also do other basic sanity checks. Returns one if successful, or
zero if the key can’t be used, for instance if the modulo is smaller
than the minimum size needed for <acronym>RSA</acronym> operations specified by PKCS#1.
</p></dd></dl>
<p>For each operation using the private key, there are two variants, e.g.,
<code>rsa_sha256_sign</code> and <code>rsa_sha256_sign_tr</code>. The former
function is older, and it should be avoided, because it provides no
defenses against side-channel attacks. The latter function use
randomized <acronym>RSA</acronym> blinding, which defends against timing attacks
using chosen-ciphertext, and it also checks the correctness of the
private key computation using the public key, which defends against
software or hardware errors which could leak the private key.
</p>
<p>Before signing or verifying a message, you first hash it with the
appropriate hash function. You pass the hash function’s context struct
to the <acronym>RSA</acronym> signature function, and it will extract the message
digest and do the rest of the work. There are also alternative functions
that take the hash digest as argument.
</p>
<p>There is currently no support for using SHA224 or SHA384 with
<acronym>RSA</acronym> signatures, since there’s no gain in either computation
time nor message size compared to using SHA256 and SHA512, respectively.
</p>
<p>Creating an <acronym>RSA</acronym> signature is done with one of the following
functions:
</p>
<dl>
<dt><a name="index-rsa_005fmd5_005fsign_005ftr_0028const"></a>Function: <em>int</em> <strong>rsa_md5_sign_tr(const</strong> <em>struct rsa_public_key *<var>pub</var>, const struct rsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, struct md5_ctx *<var>hash</var>, mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha1_005fsign_005ftr_0028const"></a>Function: <em>int</em> <strong>rsa_sha1_sign_tr(const</strong> <em>struct rsa_public_key *<var>pub</var>, const struct rsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, struct sha1_ctx *<var>hash</var>, mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha256_005fsign_005ftr_0028const"></a>Function: <em>int</em> <strong>rsa_sha256_sign_tr(const</strong> <em>struct rsa_public_key *<var>pub</var>, const struct rsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, struct sha256_ctx *<var>hash</var>, mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha512_005fsign_005ftr_0028const"></a>Function: <em>int</em> <strong>rsa_sha512_sign_tr(const</strong> <em>struct rsa_public_key *<var>pub</var>, const struct rsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, struct sha512_ctx *<var>hash</var>, mpz_t <var>signature</var>)</em></dt>
<dd><p>The signature is stored in <var>signature</var> (which must have been
<code>mpz_init</code>’ed earlier). The hash context is reset so that it can be
used for new messages. The <var>random_ctx</var> and <var>random</var> pointers
are used to generate the <acronym>RSA</acronym> blinding. Returns one on success,
or zero on failure. Signing fails if an error in the computation was
detected, or if the key is too small for the given hash size, e.g., it’s
not possible to create a signature using SHA512 and a 512-bit
<acronym>RSA</acronym> key.
</p></dd></dl>
<dl>
<dt><a name="index-rsa_005fmd5_005fsign_005fdigest_005ftr_0028const"></a>Function: <em>int</em> <strong>rsa_md5_sign_digest_tr(const</strong> <em>struct rsa_public_key *<var>pub</var>, const struct rsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, const uint8_t *<var>digest</var>, mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha1_005fsign_005fdigest_005ftr_0028const"></a>Function: <em>int</em> <strong>rsa_sha1_sign_digest_tr(const</strong> <em>struct rsa_public_key *<var>pub</var>, const struct rsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, const uint8_t *<var>digest</var>, mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha256_005fsign_005fdigest_005ftr_0028const"></a>Function: <em>int</em> <strong>rsa_sha256_sign_digest_tr(const</strong> <em>struct rsa_public_key *<var>pub</var>, const struct rsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, const uint8_t *<var>digest</var>, mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha512_005fsign_005fdigest_005ftr_0028const"></a>Function: <em>int</em> <strong>rsa_sha512_sign_digest_tr(const</strong> <em>struct rsa_public_key *<var>pub</var>, const struct rsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, const uint8_t *<var>digest</var>, mpz_t <var>signature</var>)</em></dt>
<dd><p>Creates a signature from the given hash digest. <var>digest</var> should
point to a digest of size <code>MD5_DIGEST_SIZE</code>,
<code>SHA1_DIGEST_SIZE</code>, <code>SHA256_DIGEST_SIZE</code>, or
<code>SHA512_DIGEST_SIZE</code>respectively. The signature is stored in
<var>signature</var> (which must have been <code>mpz_init</code>:ed earlier).
Returns one on success, or zero on failure.
</p></dd></dl>
<dl>
<dt><a name="index-rsa_005fpkcs1_005fsign_005ftr_0028const"></a>Function: <em>int</em> <strong>rsa_pkcs1_sign_tr(const</strong> <em>struct rsa_public_key *<var>pub</var>, const struct rsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, size_t <var>length</var>, const uint8_t *<var>digest_info</var>, mpz_t <var>signature</var>)</em></dt>
<dd><p>Similar to the above <code>_sign_digest_tr</code> functions, but the input is not the
plain hash digest, but a PKCS#1 “DigestInfo”, an ASN.1 DER-encoding
of the digest together with an object identifier for the used hash
algorithm.
</p></dd></dl>
<dl>
<dt><a name="index-rsa_005fmd5_005fsign"></a>Function: <em>int</em> <strong>rsa_md5_sign</strong> <em>(const struct rsa_private_key *<var>key</var>, struct md5_ctx *<var>hash</var>, mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha1_005fsign"></a>Function: <em>int</em> <strong>rsa_sha1_sign</strong> <em>(const struct rsa_private_key *<var>key</var>, struct sha1_ctx *<var>hash</var>, mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha256_005fsign"></a>Function: <em>int</em> <strong>rsa_sha256_sign</strong> <em>(const struct rsa_private_key *<var>key</var>, struct sha256_ctx *<var>hash</var>, mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha512_005fsign"></a>Function: <em>int</em> <strong>rsa_sha512_sign</strong> <em>(const struct rsa_private_key *<var>key</var>, struct sha512_ctx *<var>hash</var>, mpz_t <var>signature</var>)</em></dt>
<dd><p>The signature is stored in <var>signature</var> (which must have been
<code>mpz_init</code>’ed earlier). The hash context is reset so that it can be
used for new messages. Returns one on success, or zero on failure.
Signing fails if the key is too small for the given hash size, e.g.,
it’s not possible to create a signature using SHA512 and a 512-bit
<acronym>RSA</acronym> key.
</p></dd></dl>
<dl>
<dt><a name="index-rsa_005fmd5_005fsign_005fdigest"></a>Function: <em>int</em> <strong>rsa_md5_sign_digest</strong> <em>(const struct rsa_private_key *<var>key</var>, const uint8_t *<var>digest</var>, mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha1_005fsign_005fdigest"></a>Function: <em>int</em> <strong>rsa_sha1_sign_digest</strong> <em>(const struct rsa_private_key *<var>key</var>, const uint8_t *<var>digest</var>, mpz_t <var>signature</var>);</em></dt>
<dt><a name="index-rsa_005fsha256_005fsign_005fdigest"></a>Function: <em>int</em> <strong>rsa_sha256_sign_digest</strong> <em>(const struct rsa_private_key *<var>key</var>, const uint8_t *<var>digest</var>, mpz_t <var>signature</var>);</em></dt>
<dt><a name="index-rsa_005fsha512_005fsign_005fdigest"></a>Function: <em>int</em> <strong>rsa_sha512_sign_digest</strong> <em>(const struct rsa_private_key *<var>key</var>, const uint8_t *<var>digest</var>, mpz_t <var>signature</var>);</em></dt>
<dd><p>Creates a signature from the given hash digest; otherwise analoguous to
the above signing functions. <var>digest</var> should point to a digest of
size <code>MD5_DIGEST_SIZE</code>, <code>SHA1_DIGEST_SIZE</code>,
<code>SHA256_DIGEST_SIZE</code>, or <code>SHA512_DIGEST_SIZE</code>, respectively.
The signature is stored in <var>signature</var> (which must have been
<code>mpz_init</code>:ed earlier). Returns one on success, or zero on failure.
</p></dd></dl>
<dl>
<dt><a name="index-rsa_005fpkcs1_005fsign_0028const"></a>Function: <em>int</em> <strong>rsa_pkcs1_sign(const</strong> <em>struct rsa_private_key *<var>key</var>, size_t <var>length</var>, const uint8_t *<var>digest_info</var>, mpz_t <var>s</var>)</em></dt>
<dd><p>Similar to the above _sign_digest functions, but the input is not the
plain hash digest, but a PKCS#1 “DigestInfo”, an ASN.1 DER-encoding
of the digest together with an object identifier for the used hash
algorithm.
</p></dd></dl>
<p>Verifying an RSA signature is done with one of the following functions:
</p>
<dl>
<dt><a name="index-rsa_005fmd5_005fverify"></a>Function: <em>int</em> <strong>rsa_md5_verify</strong> <em>(const struct rsa_public_key *<var>key</var>, struct md5_ctx *<var>hash</var>, const mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha1_005fverify"></a>Function: <em>int</em> <strong>rsa_sha1_verify</strong> <em>(const struct rsa_public_key *<var>key</var>, struct sha1_ctx *<var>hash</var>, const mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha256_005fverify"></a>Function: <em>int</em> <strong>rsa_sha256_verify</strong> <em>(const struct rsa_public_key *<var>key</var>, struct sha256_ctx *<var>hash</var>, const mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha512_005fverify"></a>Function: <em>int</em> <strong>rsa_sha512_verify</strong> <em>(const struct rsa_public_key *<var>key</var>, struct sha512_ctx *<var>hash</var>, const mpz_t <var>signature</var>)</em></dt>
<dd><p>Returns 1 if the signature is valid, or 0 if it isn’t. In either case,
the hash context is reset so that it can be used for new messages.
</p></dd></dl>
<dl>
<dt><a name="index-rsa_005fmd5_005fverify_005fdigest"></a>Function: <em>int</em> <strong>rsa_md5_verify_digest</strong> <em>(const struct rsa_public_key *<var>key</var>, const uint8_t *<var>digest</var>, const mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha1_005fverify_005fdigest"></a>Function: <em>int</em> <strong>rsa_sha1_verify_digest</strong> <em>(const struct rsa_public_key *<var>key</var>, const uint8_t *<var>digest</var>, const mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha256_005fverify_005fdigest"></a>Function: <em>int</em> <strong>rsa_sha256_verify_digest</strong> <em>(const struct rsa_public_key *<var>key</var>, const uint8_t *<var>digest</var>, const mpz_t <var>signature</var>)</em></dt>
<dt><a name="index-rsa_005fsha512_005fverify_005fdigest"></a>Function: <em>int</em> <strong>rsa_sha512_verify_digest</strong> <em>(const struct rsa_public_key *<var>key</var>, const uint8_t *<var>digest</var>, const mpz_t <var>signature</var>)</em></dt>
<dd><p>Returns 1 if the signature is valid, or 0 if it isn’t. <var>digest</var>
should point to a digest of size <code>MD5_DIGEST_SIZE</code>,
<code>SHA1_DIGEST_SIZE</code>, <code>SHA256_DIGEST_SIZE</code>, or
<code>SHA512_DIGEST_SIZE</code> respectively.
</p></dd></dl>
<dl>
<dt><a name="index-rsa_005fpkcs1_005fverify_0028const"></a>Function: <em>int</em> <strong>rsa_pkcs1_verify(const</strong> <em>struct rsa_public_key *<var>key</var>, size_t <var>length</var>, const uint8_t *<var>digest_info</var>, const mpz_t <var>signature</var>)</em></dt>
<dd><p>Similar to the above _verify_digest functions, but the input is not the
plain hash digest, but a PKCS#1 “DigestInfo”, and ASN.1 DER-encoding
of the digest together with an object identifier for the used hash
algorithm.
</p></dd></dl>
<p>The following function is used to encrypt a clear text message using RSA.
</p><dl>
<dt><a name="index-rsa_005fencrypt"></a>Function: <em>int</em> <strong>rsa_encrypt</strong> <em>(const struct rsa_public_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, size_t <var>length</var>, const uint8_t *<var>cleartext</var>, mpz_t <var>ciphertext</var>)</em></dt>
<dd><p>Returns 1 on success, 0 on failure. If the message is too long then this
will lead to a failure.
</p></dd></dl>
<p>The following function is used to decrypt a cipher text message using RSA.
</p><dl>
<dt><a name="index-rsa_005fdecrypt"></a>Function: <em>int</em> <strong>rsa_decrypt</strong> <em>(const struct rsa_private_key *<var>key</var>, size_t *<var>length</var>, uint8_t *<var>cleartext</var>, const mpz_t <var>ciphertext</var>)</em></dt>
<dd><p>Returns 1 on success, 0 on failure. Causes of failure include decryption
failing or the resulting message being to large. The message buffer
pointed to by <var>cleartext</var> must be of size *<var>length</var>. After
decryption, *<var>length</var> will be updated with the size of the
message.
</p></dd></dl>
<p>There is also a timing resistant version of decryption that utilizes
randomized RSA blinding.
</p><dl>
<dt><a name="index-rsa_005fdecrypt_005ftr"></a>Function: <em>int</em> <strong>rsa_decrypt_tr</strong> <em>(const struct rsa_public_key *<var>pub</var>, const struct rsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, size_t *<var>length</var>, uint8_t *<var>message</var>, const mpz_t <var>ciphertext</var>)</em></dt>
<dd><p>Returns 1 on success, 0 on failure.
</p></dd></dl>
<p>If you need to use the <acronym>RSA</acronym> trapdoor, the private key, in a way
that isn’t supported by the above functions Nettle also includes a
function that computes <code>x^d mod n</code> and nothing more, using the
<acronym>CRT</acronym> optimization.
</p>
<dl>
<dt><a name="index-rsa_005fcompute_005froot_005ftr_0028const"></a>Function: <em>int</em> <strong>rsa_compute_root_tr(const</strong> <em>struct rsa_public_key *<var>pub</var>, const struct rsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, mpz_t <var>x</var>, const mpz_t <var>m</var>)</em></dt>
<dd><p>Computes <code>x = m^d</code>. Returns one on success, or zero if a failure in
the computation was detected.
</p></dd></dl>
<dl>
<dt><a name="index-rsa_005fcompute_005froot"></a>Function: <em>void</em> <strong>rsa_compute_root</strong> <em>(struct rsa_private_key *<var>key</var>, mpz_t <var>x</var>, const mpz_t <var>m</var>)</em></dt>
<dd><p>Computes <code>x = m^d</code>.
</p></dd></dl>
<p>At last, how do you create new keys?
</p>
<dl>
<dt><a name="index-rsa_005fgenerate_005fkeypair"></a>Function: <em>int</em> <strong>rsa_generate_keypair</strong> <em>(struct rsa_public_key *<var>pub</var>, struct rsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func <var>random</var>, void *<var>progress_ctx</var>, nettle_progress_func <var>progress</var>, unsigned <var>n_size</var>, unsigned <var>e_size</var>);</em></dt>
<dd><p>There are lots of parameters. <var>pub</var> and <var>key</var> is where the
resulting key pair is stored. The structs should be initialized, but you
don’t need to call <code>rsa_public_key_prepare</code> or
<code>rsa_private_key_prepare</code> after key generation.
</p>
<p><var>random_ctx</var> and <var>random</var> is a randomness generator.
<code>random(random_ctx, length, dst)</code> should generate <code>length</code>
random octets and store them at <code>dst</code>. For advice, see
See <a href="#Randomness">Randomness</a>.
</p>
<p><var>progress</var> and <var>progress_ctx</var> can be used to get callbacks
during the key generation process, in order to uphold an illusion of
progress. <var>progress</var> can be NULL, in that case there are no
callbacks.
</p>
<p><var>size_n</var> is the desired size of the modulo, in bits. If <var>size_e</var>
is non-zero, it is the desired size of the public exponent and a random
exponent of that size is selected. But if <var>e_size</var> is zero, it is
assumed that the caller has already chosen a value for <code>e</code>, and
stored it in <var>pub</var>.
Returns one on success, and zero on failure. The function can fail for
example if if <var>n_size</var> is too small, or if <var>e_size</var> is zero and
<code>pub->e</code> is an even number.
</p></dd></dl>
<hr>
<a name="DSA"></a>
<div class="header">
<p>
Next: <a href="#Elliptic-curves" accesskey="n" rel="next">Elliptic curves</a>, Previous: <a href="#RSA" accesskey="p" rel="prev">RSA</a>, Up: <a href="#Public_002dkey-algorithms" accesskey="u" rel="up">Public-key algorithms</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="DSA-1"></a>
<h4 class="subsection">6.7.2 <acronym>DSA</acronym></h4>
<p>The <acronym>DSA</acronym> digital signature algorithm is more complex than
<acronym>RSA</acronym>. It was specified during the early 1990s, and in 1994 NIST
published <acronym>FIPS</acronym> 186 which is the authoritative specification.
Sometimes <acronym>DSA</acronym> is referred to using the acronym <acronym>DSS</acronym>,
for Digital Signature Standard. The most recent revision of the
specification, FIPS186-3, was issued in 2009, and it adds support for
larger hash functions than <acronym>sha1</acronym>.
</p>
<p>For <acronym>DSA</acronym>, the underlying mathematical problem is the
computation of discrete logarithms. The public key consists of a large
prime <code>p</code>, a small prime <code>q</code> which is a factor of <code>p-1</code>,
a number <code>g</code> which generates a subgroup of order <code>q</code> modulo
<code>p</code>, and an element <code>y</code> in that subgroup.
</p>
<p>In the original <acronym>DSA</acronym>, the size of <code>q</code> is fixed to 160
bits, to match with the <acronym>SHA1</acronym> hash algorithm. The size of
<code>p</code> is in principle unlimited, but the
standard specifies only nine specific sizes: <code>512 + l*64</code>, where
<code>l</code> is between 0 and 8. Thus, the maximum size of <code>p</code> is 1024
bits, and sizes less than 1024 bits are considered obsolete and not
secure.
</p>
<p>The subgroup requirement means that if you compute
</p>
<div class="example">
<pre class="example">g^t mod p
</pre></div>
<p>for all possible integers <code>t</code>, you will get precisely <code>q</code>
distinct values.
</p>
<p>The private key is a secret exponent <code>x</code>, such that
</p>
<div class="example">
<pre class="example">g^x = y mod p
</pre></div>
<p>In mathematical speak, <code>x</code> is the <em>discrete logarithm</em> of
<code>y</code> mod <code>p</code>, with respect to the generator <code>g</code>. The size
of <code>x</code> will also be about the same size as <code>q</code>. The security of the
<acronym>DSA</acronym> algorithm relies on the difficulty of the discrete
logarithm problem. Current algorithms to compute discrete logarithms in
this setting, and hence crack <acronym>DSA</acronym>, are of two types. The first
type works directly in the (multiplicative) group of integers mod
<code>p</code>. The best known algorithm of this type is the Number Field
Sieve, and it’s complexity is similar to the complexity of factoring
numbers of the same size as <code>p</code>. The other type works in the
smaller <code>q</code>-sized subgroup generated by <code>g</code>, which has a more
difficult group structure. One good algorithm is Pollard-rho, which has
complexity <code>sqrt(q)</code>.
</p>
<p>The important point is that security depends on the size of <em>both</em>
<code>p</code> and <code>q</code>, and they should be chosen so that the difficulty
of both discrete logarithm methods are comparable. Today, the security
margin of the original <acronym>DSA</acronym> may be uncomfortably small. Using a
<code>p</code> of 1024 bits implies that cracking using the number field sieve
is expected to take about the same time as factoring a 1024-bit
<acronym>RSA</acronym> modulo, and using a <code>q</code> of size 160 bits implies
that cracking using Pollard-rho will take roughly <code>2^80</code> group
operations. With the size of <code>q</code> fixed, tied to the <acronym>SHA1</acronym>
digest size, it may be tempting to increase the size of <code>p</code> to,
say, 4096 bits. This will provide excellent resistance against attacks
like the number field sieve which works in the large group. But it will
do very little to defend against Pollard-rho attacking the small
subgroup; the attacker is slowed down at most by a single factor of 10
due to the more expensive group operation. And the attacker will surely
choose the latter attack.
</p>
<p>The signature generation algorithm is randomized; in order to create a
<acronym>DSA</acronym> signature, you need a good source for random numbers
(see <a href="#Randomness">Randomness</a>). Let us describe the common case of a 160-bit
<code>q</code>.
</p>
<p>To create a signature, one starts with the hash digest of the message,
<code>h</code>, which is a 160 bit number, and a random number <code>k,
0<k<q</code>, also 160 bits. Next, one computes
</p>
<div class="example">
<pre class="example">r = (g^k mod p) mod q
s = k^-1 (h + x r) mod q
</pre></div>
<p>The signature is the pair <code>(r, s)</code>, two 160 bit numbers. Note the
two different mod operations when computing <code>r</code>, and the use of the
secret exponent <code>x</code>.
</p>
<p>To verify a signature, one first checks that <code>0 < r,s < q</code>, and
then one computes backwards,
</p>
<div class="example">
<pre class="example">w = s^-1 mod q
v = (g^(w h) y^(w r) mod p) mod q
</pre></div>
<p>The signature is valid if <code>v = r</code>. This works out because <code>w =
s^-1 mod q = k (h + x r)^-1 mod q</code>, so that
</p>
<div class="example">
<pre class="example">g^(w h) y^(w r) = g^(w h) (g^x)^(w r) = g^(w (h + x r)) = g^k
</pre></div>
<p>When reducing mod <code>q</code> this yields <code>r</code>. Note that when
verifying a signature, we don’t know either <code>k</code> or <code>x</code>: those
numbers are secret.
</p>
<p>If you can choose between <acronym>RSA</acronym> and <acronym>DSA</acronym>, which one is
best? Both are believed to be secure. <acronym>DSA</acronym> gained popularity in
the late 1990s, as a patent free alternative to <acronym>RSA</acronym>. Now that
the <acronym>RSA</acronym> patents have expired, there’s no compelling reason to
want to use <acronym>DSA</acronym>. Today, the original <acronym>DSA</acronym> key size
does not provide a large security margin, and it should probably be
phased out together with <acronym>RSA</acronym> keys of 1024 bits. Using the
revised <acronym>DSA</acronym> algorithm with a larger hash function, in
particular, <acronym>SHA256</acronym>, a 256-bit <code>q</code>, and <code>p</code> of size
2048 bits or more, should provide for a more comfortable security
margin, but these variants are not yet in wide use.
</p>
<p><acronym>DSA</acronym> signatures are smaller than <acronym>RSA</acronym> signatures,
which is important for some specialized applications.
</p>
<p>From a practical point of view, <acronym>DSA</acronym>’s need for a good
randomness source is a serious disadvantage. If you ever use the same
<code>k</code> (and <code>r</code>) for two different message, you leak your private
key.
</p>
<a name="Nettle_0027s-DSA-support"></a>
<h4 class="subsubsection">6.7.2.1 Nettle’s <acronym>DSA</acronym> support</h4>
<p>Like for <acronym>RSA</acronym>, Nettle represents <acronym>DSA</acronym> keys using two
structures, containing values of type <code>mpz_t</code>. For information on
how to customize allocation, see See <a href="http://www.gmplib.org/manual/Custom-Allocation.html#Custom-Allocation">GMP
Allocation</a> in <cite>GMP Manual</cite>. Nettle’s <acronym>DSA</acronym> interface is defined
in <samp><nettle/dsa.h></samp>.
</p>
<p>A <acronym>DSA</acronym> group is represented using the following struct.
</p>
<dl>
<dt><a name="index-dsa_005fparams"></a>Context struct: <strong>dsa_params</strong> <em>p q g</em></dt>
<dd><p>Parameters of the <acronym>DSA</acronym> group.
</p></dd></dl>
<dl>
<dt><a name="index-dsa_005fparams_005finit"></a>Function: <em>void</em> <strong>dsa_params_init</strong> <em>(struct dsa_params *<var>params</var>)</em></dt>
<dd><p>Calls <code>mpz_init</code> on all numbers in the struct.
</p></dd></dl>
<dl>
<dt><a name="index-dsa_005fparams_005fclear"></a>Function: <em>void</em> <strong>dsa_params_clear</strong> <em>(struct dsa_params *<var>params</var>params)</em></dt>
<dd><p>Calls <code>mpz_clear</code> on all numbers in the struct.
</p></dd></dl>
<dl>
<dt><a name="index-dsa_005fgenerate_005fparams"></a>Function: <em>int</em> <strong>dsa_generate_params</strong> <em>(struct dsa_params *<var>params</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, void *<var>progress_ctx</var>, nettle_progress_func *<var>progress</var>, unsigned <var>p_bits</var>, unsigned <var>q_bits</var>)</em></dt>
<dd><p>Generates paramaters of a new group. The <var>params</var> struct should be
initialized before you call this function.
</p>
<p><var>random_ctx</var> and <var>random</var> is a randomness generator.
<code>random(random_ctx, length, dst)</code> should generate <code>length</code>
random octets and store them at <code>dst</code>. For advice, see
See <a href="#Randomness">Randomness</a>.
</p>
<p><var>progress</var> and <var>progress_ctx</var> can be used to get callbacks
during the key generation process, in order to uphold an illusion of
progress. <var>progress</var> can be NULL, in that case there are no
callbacks.
</p>
<p><var>p_bits</var> and <var>q_bits</var> are the desired sizes of <code>p</code> and
<code>q</code>. To generate keys that conform to the original <acronym>DSA</acronym>
standard, you must use <code>q_bits = 160</code> and select <var>p_bits</var> of
the form <code>p_bits = 512 + l*64</code>, for <code>0 <= l <= 8</code>, where the
smaller sizes are no longer recommended, so you should most likely stick
to <code>p_bits = 1024</code>. Non-standard sizes are possible, in particular
<code>p_bits</code> larger than 1024, although <acronym>DSA</acronym> implementations
can not in general be expected to support such keys. Also note that
using very large <var>p_bits</var>, with <var>q_bits</var> fixed at 160, doesn’t
make much sense, because the security is also limited by the size of the
smaller prime. To generate <acronym>DSA</acronym> keys for use with
<acronym>SHA256</acronym>, use <code>q_bits = 256</code> and, e.g., <code>p_bits =
2048</code>.
</p>
<p>Returns one on success, and zero on failure. The function will fail if
<var>q_bits</var> is too small, or too close to <var>p_bits</var>.
</p></dd></dl>
<p>Signatures are represented using the structure below.
</p>
<dl>
<dt><a name="index-dsa_005fsignature"></a>Context struct: <strong>dsa_signature</strong> <em>r s</em></dt>
</dl>
<dl>
<dt><a name="index-dsa_005fsignature_005finit"></a>Function: <em>void</em> <strong>dsa_signature_init</strong> <em>(struct dsa_signature *<var>signature</var>)</em></dt>
<dt><a name="index-dsa_005fsignature_005fclear"></a>Function: <em>void</em> <strong>dsa_signature_clear</strong> <em>(struct dsa_signature *<var>signature</var>)</em></dt>
<dd><p>You must call <code>dsa_signature_init</code> before creating or using a
signature, and call <code>dsa_signature_clear</code> when you are finished
with it.
</p></dd></dl>
<p>Keys are represented as bignums, of type <code>mpz_t</code>. A public keys
represent a group element, and is of the same size as <code>p</code>, while a
private key is an exponent, of the same size as <code>q</code>.
</p>
<dl>
<dt><a name="index-dsa_005fsign"></a>Function: <em>int</em> <strong>dsa_sign</strong> <em>(const struct dsa_params *<var>params</var>, const mpz_t <var>x</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, size_t <var>digest_size</var>, const uint8_t *<var>digest</var>, struct dsa_signature *<var>signature</var>)</em></dt>
<dd><p>Creates a signature from the given hash digest, using the private key
<var>x</var>. <var>random_ctx</var> and <var>random</var> is a randomness generator.
<code>random(random_ctx, length, dst)</code> should generate <code>length</code>
random octets and store them at <code>dst</code>. For advice, see
See <a href="#Randomness">Randomness</a>. Returns one on success, or zero on failure. Signing
can fail only if the key is invalid, so that inversion modulo <code>q</code>
fails.
</p></dd></dl>
<dl>
<dt><a name="index-dsa_005fverify"></a>Function: <em>int</em> <strong>dsa_verify</strong> <em>(const struct dsa_params *<var>params</var>, const mpz_t <var>y</var>, size_t <var>digest_size</var>, const uint8_t *<var>digest</var>, const struct dsa_signature *<var>signature</var>)</em></dt>
<dd><p>Verifies a signature, using the public key y. Returns 1 if the signature
is valid, otherwise 0.
</p></dd></dl>
<p>To generate a keypair, first generate a <acronym>DSA</acronym> group using
<code>dsa_generate_params</code>. A keypair in this group is then created
using
</p>
<dl>
<dt><a name="index-dsa_005fgenerate_005fkeypair"></a>Function: <em>void</em> <strong>dsa_generate_keypair</strong> <em>(const struct dsa_params *<var>params</var>, mpz_t <var>pub</var>, mpz_t <var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>)</em></dt>
<dd><p>Generates a new keypair, using the group <var>params</var>. The public key is
stored in <var>pub</var>, and the private key in <var>key</var>. Both variables
must be initialized using <code>mpz_init</code> before this call.
</p>
<p><var>random_ctx</var> and <var>random</var> is a randomness generator.
<code>random(random_ctx, length, dst)</code> should generate <code>length</code>
random octets and store them at <code>dst</code>. For advice, see
See <a href="#Randomness">Randomness</a>.
</p></dd></dl>
<a name="Old_002c-deprecated_002c-DSA-interface"></a>
<h4 class="subsubsection">6.7.2.2 Old, deprecated, <acronym>DSA</acronym> interface</h4>
<p>Versions before nettle-3.0 used a different interface for <acronym>DSA</acronym>
signatures, where the group parameters and the public key was packed
together as <code>struct dsa_public_key</code>. Most of this interface is kept
for backwards compatibility, and declared in <samp>nettle/dsa-compat.h</samp>.
Below is the old documentation. The old and new interface use distinct
names and don’t confict, with one exception: The key generation
function. The <samp>nettle/dsa-compat.h</samp> redefines
<code>dsa_generate_keypair</code> as an alias for
<code>dsa_compat_generate_keypair</code>, compatible with the old interface
and documented below.
</p>
<p>The old <acronym>DSA</acronym> functions are very similar to the corresponding
<acronym>RSA</acronym> functions, but there are a few differences pointed out
below. For a start, there are no functions corresponding to
<code>rsa_public_key_prepare</code> and <code>rsa_private_key_prepare</code>.
</p>
<dl>
<dt><a name="index-dsa_005fpublic_005fkey"></a>Context struct: <strong>dsa_public_key</strong> <em>p q g y</em></dt>
<dd><p>The public parameters described above.
</p></dd></dl>
<dl>
<dt><a name="index-dsa_005fprivate_005fkey"></a>Context struct: <strong>dsa_private_key</strong> <em>x</em></dt>
<dd><p>The private key <code>x</code>.
</p></dd></dl>
<p>Before use, these structs must be initialized by calling one of
</p>
<dl>
<dt><a name="index-dsa_005fpublic_005fkey_005finit"></a>Function: <em>void</em> <strong>dsa_public_key_init</strong> <em>(struct dsa_public_key *<var>pub</var>)</em></dt>
<dt><a name="index-dsa_005fprivate_005fkey_005finit"></a>Function: <em>void</em> <strong>dsa_private_key_init</strong> <em>(struct dsa_private_key *<var>key</var>)</em></dt>
<dd><p>Calls <code>mpz_init</code> on all numbers in the key struct.
</p></dd></dl>
<p>When finished with them, the space for the numbers must be
deallocated by calling one of
</p>
<dl>
<dt><a name="index-dsa_005fpublic_005fkey_005fclear"></a>Function: <em>void</em> <strong>dsa_public_key_clear</strong> <em>(struct dsa_public_key *<var>pub</var>)</em></dt>
<dt><a name="index-dsa_005fprivate_005fkey_005fclear"></a>Function: <em>void</em> <strong>dsa_private_key_clear</strong> <em>(struct dsa_private_key *<var>key</var>)</em></dt>
<dd><p>Calls <code>mpz_clear</code> on all numbers in the key struct.
</p></dd></dl>
<p>Signatures are represented using <code>struct dsa_signature</code>, described
earlier.
</p>
<p>For signing, you need to provide both the public and the private key
(unlike <acronym>RSA</acronym>, where the private key struct includes all
information needed for signing), and a source for random numbers.
Signatures can use the <acronym>SHA1</acronym> or the <acronym>SHA256</acronym> hash
function, although the implementation of <acronym>DSA</acronym> with
<acronym>SHA256</acronym> should be considered somewhat experimental due to lack
of official test vectors and interoperability testing.
</p>
<dl>
<dt><a name="index-dsa_005fsha1_005fsign"></a>Function: <em>int</em> <strong>dsa_sha1_sign</strong> <em>(const struct dsa_public_key *<var>pub</var>, const struct dsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func <var>random</var>, struct sha1_ctx *<var>hash</var>, struct dsa_signature *<var>signature</var>)</em></dt>
<dt><a name="index-dsa_005fsha1_005fsign_005fdigest"></a>Function: <em>int</em> <strong>dsa_sha1_sign_digest</strong> <em>(const struct dsa_public_key *<var>pub</var>, const struct dsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func <var>random</var>, const uint8_t *<var>digest</var>, struct dsa_signature *<var>signature</var>)</em></dt>
<dt><a name="index-dsa_005fsha256_005fsign"></a>Function: <em>int</em> <strong>dsa_sha256_sign</strong> <em>(const struct dsa_public_key *<var>pub</var>, const struct dsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func <var>random</var>, struct sha256_ctx *<var>hash</var>, struct dsa_signature *<var>signature</var>)</em></dt>
<dt><a name="index-dsa_005fsha256_005fsign_005fdigest"></a>Function: <em>int</em> <strong>dsa_sha256_sign_digest</strong> <em>(const struct dsa_public_key *<var>pub</var>, const struct dsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func <var>random</var>, const uint8_t *<var>digest</var>, struct dsa_signature *<var>signature</var>)</em></dt>
<dd><p>Creates a signature from the given hash context or digest.
<var>random_ctx</var> and <var>random</var> is a randomness generator.
<code>random(random_ctx, length, dst)</code> should generate <code>length</code>
random octets and store them at <code>dst</code>. For advice, see
See <a href="#Randomness">Randomness</a>. Returns one on success, or zero on failure.
Signing fails if the key size and the hash size don’t match.
</p></dd></dl>
<p>Verifying signatures is a little easier, since no randomness generator is
needed. The functions are
</p>
<dl>
<dt><a name="index-dsa_005fsha1_005fverify"></a>Function: <em>int</em> <strong>dsa_sha1_verify</strong> <em>(const struct dsa_public_key *<var>key</var>, struct sha1_ctx *<var>hash</var>, const struct dsa_signature *<var>signature</var>)</em></dt>
<dt><a name="index-dsa_005fsha1_005fverify_005fdigest"></a>Function: <em>int</em> <strong>dsa_sha1_verify_digest</strong> <em>(const struct dsa_public_key *<var>key</var>, const uint8_t *<var>digest</var>, const struct dsa_signature *<var>signature</var>)</em></dt>
<dt><a name="index-dsa_005fsha256_005fverify"></a>Function: <em>int</em> <strong>dsa_sha256_verify</strong> <em>(const struct dsa_public_key *<var>key</var>, struct sha256_ctx *<var>hash</var>, const struct dsa_signature *<var>signature</var>)</em></dt>
<dt><a name="index-dsa_005fsha256_005fverify_005fdigest"></a>Function: <em>int</em> <strong>dsa_sha256_verify_digest</strong> <em>(const struct dsa_public_key *<var>key</var>, const uint8_t *<var>digest</var>, const struct dsa_signature *<var>signature</var>)</em></dt>
<dd><p>Verifies a signature. Returns 1 if the signature is valid, otherwise 0.
</p></dd></dl>
<p>Key generation uses mostly the same parameters as the corresponding
<acronym>RSA</acronym> function.
</p>
<dl>
<dt><a name="index-dsa_005fcompat_005fgenerate_005fkeypair"></a>Function: <em>int</em> <strong>dsa_compat_generate_keypair</strong> <em>(struct dsa_public_key *<var>pub</var>, struct dsa_private_key *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func <var>random</var>, void *<var>progress_ctx</var>, nettle_progress_func <var>progress</var>, unsigned <var>p_bits</var>, unsigned <var>q_bits</var>)</em></dt>
<dd><p><var>pub</var> and <var>key</var> is where the resulting key pair is stored. The
structs should be initialized before you call this function.
</p>
<p><var>random_ctx</var> and <var>random</var> is a randomness generator.
<code>random(random_ctx, length, dst)</code> should generate <code>length</code>
random octets and store them at <code>dst</code>. For advice, see
See <a href="#Randomness">Randomness</a>.
</p>
<p><var>progress</var> and <var>progress_ctx</var> can be used to get callbacks
during the key generation process, in order to uphold an illusion of
progress. <var>progress</var> can be NULL, in that case there are no
callbacks.
</p>
<p><var>p_bits</var> and <var>q_bits</var> are the desired sizes of <code>p</code> and
<code>q</code>. See <code>dsa_generate_keypair</code> for details.
</p></dd></dl>
<hr>
<a name="Elliptic-curves"></a>
<div class="header">
<p>
Previous: <a href="#DSA" accesskey="p" rel="prev">DSA</a>, Up: <a href="#Public_002dkey-algorithms" accesskey="u" rel="up">Public-key algorithms</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Elliptic-curves-1"></a>
<h4 class="subsection">6.7.3 <acronym>Elliptic curves</acronym></h4>
<p>For cryptographic purposes, an elliptic curve is a mathematical group of
points, and computing logarithms in this group is computationally
difficult problem. Nettle uses additive notation for elliptic curve
groups. If <em>P</em> and <em>Q</em> are two points, and <em>k</em> is an
integer, the point sum, <em>P + Q</em>, and the multiple <em>k P</em> can be
computed efficiently, but given only two points <em>P</em> and <em>Q</em>,
finding an integer <em>k</em> such that <em>Q = k P</em> is the elliptic
curve discrete logarithm problem.
</p>
<p>Nettle supports standard curves which are all of the form <em>y^2 =
x^3 - 3 x + b (mod p)</em>, i.e., the points have coordinates <em>(x,y)</em>,
both considered as integers modulo a specified prime <em>p</em>. Curves
are represented as a <code>struct ecc_curve</code>. It also supports
curve25519, which uses a different form of curve. Supported curves are
declared in <samp><nettle/ecc-curve.h></samp>, e.g., <code>nettle_secp_256r1</code>
for a standardized curve using the 256-bit prime <em>p = 2^{256} -
2^{224} + 2^{192} + 2^{96} - 1</em>. The contents of these structs is not
visible to nettle users. The “bitsize of the curve” is used as a
shorthand for the bitsize of the curve’s prime <em>p</em>, e.g., 256 bits
for <code>nettle_secp_256r1</code>.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Side_002dchannel-silence" accesskey="1">Side-channel silence</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#ECDSA" accesskey="2">ECDSA</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Curve-25519" accesskey="3">Curve 25519</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Side_002dchannel-silence"></a>
<div class="header">
<p>
Next: <a href="#ECDSA" accesskey="n" rel="next">ECDSA</a>, Up: <a href="#Elliptic-curves" accesskey="u" rel="up">Elliptic curves</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Side_002dchannel-silence-1"></a>
<h4 class="subsubsection">6.7.3.1 Side-channel silence</h4>
<a name="index-Side_002dchannel-attack"></a>
<p>Nettle’s implementation of the elliptic curve operations is intended to
be side-channel silent. The side-channel attacks considered are:
</p>
<ul>
<li> Timing attacks
If the timing of operations depends on secret values, an attacker
interacting with your system can measure the response time, and infer
information about your secrets, e.g., a private signature key.
</li><li> Attacks using memory caches
Assume you have some secret data on a multi-user system, and that this
data is properly protected so that other users get no direct access to
it. If you have a process operating on the secret data, and this process
does memory accesses depending on the data, e.g, an internal lookup
table in some cryptographic algorithm, an attacker running a separate
process on the same system may use behavior of internal CPU caches to
get information about your secrets. This type of attack can even cross
virtual machine boundaries.
</li></ul>
<p>Nettle’s ECC implementation is designed to be <em>side-channel silent</em>,
and not leak any information to these attacks. Timing and memory
accesses depend only on the size of the input data and its location in
memory, not on the actual data bits. This implies a performance penalty
in several of the building blocks.
</p>
<hr>
<a name="ECDSA"></a>
<div class="header">
<p>
Next: <a href="#Curve-25519" accesskey="n" rel="next">Curve 25519</a>, Previous: <a href="#Side_002dchannel-silence" accesskey="p" rel="prev">Side-channel silence</a>, Up: <a href="#Elliptic-curves" accesskey="u" rel="up">Elliptic curves</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ECDSA-1"></a>
<h4 class="subsubsection">6.7.3.2 ECDSA</h4>
<p>ECDSA is a variant of the DSA digital signature scheme (see <a href="#DSA">DSA</a>),
which works over an elliptic curve group rather than over a (subgroup
of) integers modulo <em>p</em>. Like DSA, creating a signature requires a unique
random nonce (repeating the nonce with two different messages reveals
the private key, and any leak or bias in the generation of the nonce
also leaks information about the key).
</p>
<p>Unlike DSA, signatures are in general not tied to any particular hash
function or even hash size. Any hash function can be used, and the hash
value is truncated or padded as needed to get a size matching the curve
being used. It is recommended to use a strong cryptographic hash
function with digest size close to the bit size of the curve, e.g.,
SHA256 is a reasonable choice when using ECDSA signature over the curve
secp256r1. A protocol or application using ECDSA has to specify which
curve and which hash function to use, or provide some mechanism for
negotiating.
</p>
<p>Nettle defines ECDSA in <samp><nettle/ecdsa.h></samp>. We first need
to define the data types used to represent public and private keys.
</p>
<dl>
<dt><a name="index-struct-ecc_005fpoint"></a>struct: <strong>struct ecc_point</strong></dt>
<dd><p>Represents a point on an elliptic curve. In particular, it is used to
represent an ECDSA public key.
</p></dd></dl>
<dl>
<dt><a name="index-ecc_005fpoint_005finit"></a>Function: <em>void</em> <strong>ecc_point_init</strong> <em>(struct ecc_point *<var>p</var>, const struct ecc_curve *<var>ecc</var>)</em></dt>
<dd><p>Initializes <var>p</var> to represent points on the given curve <var>ecc</var>.
Allocates storage for the coordinates, using the same allocation
functions as GMP.
</p></dd></dl>
<dl>
<dt><a name="index-ecc_005fpoint_005fclear"></a>Function: <em>void</em> <strong>ecc_point_clear</strong> <em>(struct ecc_point *<var>p</var>)</em></dt>
<dd><p>Deallocate storage.
</p></dd></dl>
<dl>
<dt><a name="index-ecc_005fpoint_005fset"></a>Function: <em>int</em> <strong>ecc_point_set</strong> <em>(struct ecc_point *<var>p</var>, const mpz_t <var>x</var>, const mpz_t <var>y</var>)</em></dt>
<dd><p>Check that the given coordinates represent a point on the curve. If so,
the coordinates are copied and converted to internal representation, and
the function returns 1. Otherwise, it returns 0. Currently, the
infinity point (or zero point, with additive notation) is not allowed.
</p></dd></dl>
<dl>
<dt><a name="index-ecc_005fpoint_005fget"></a>Function: <em>void</em> <strong>ecc_point_get</strong> <em>(const struct ecc_point *<var>p</var>, mpz_t <var>x</var>, mpz_t <var>y</var>)</em></dt>
<dd><p>Extracts the coordinate of the point <var>p</var>. The output parameters
<var>x</var> or <var>y</var> may be NULL if the caller doesn’t want that
coordinate.
</p></dd></dl>
<dl>
<dt><a name="index-struct-ecc_005fscalar"></a>struct: <strong>struct ecc_scalar</strong></dt>
<dd><p>Represents an integer in the range <em>0 < x < group order</em>, where the
“group order” refers to the order of an ECC group. In particular, it
is used to represent an ECDSA private key.
</p></dd></dl>
<dl>
<dt><a name="index-ecc_005fscalar_005finit"></a>Function: <em>void</em> <strong>ecc_scalar_init</strong> <em>(struct ecc_scalar *<var>s</var>, const struct ecc_curve *<var>ecc</var>)</em></dt>
<dd><p>Initializes <var>s</var> to represent a scalar suitable for the given curve
<var>ecc</var>. Allocates storage using the same allocation functions as GMP.
</p></dd></dl>
<dl>
<dt><a name="index-ecc_005fscalar_005fclear"></a>Function: <em>void</em> <strong>ecc_scalar_clear</strong> <em>(struct ecc_scalar *<var>s</var>)</em></dt>
<dd><p>Deallocate storage.
</p></dd></dl>
<dl>
<dt><a name="index-ecc_005fscalar_005fset"></a>Function: <em>int</em> <strong>ecc_scalar_set</strong> <em>(struct ecc_scalar *<var>s</var>, const mpz_t <var>z</var>)</em></dt>
<dd><p>Check that <var>z</var> is in the correct range. If so, copies the value to
<var>s</var> and returns 1, otherwise returns 0.
</p></dd></dl>
<dl>
<dt><a name="index-ecc_005fscalar_005fget"></a>Function: <em>void</em> <strong>ecc_scalar_get</strong> <em>(const struct ecc_scalar *<var>s</var>, mpz_t <var>z</var>)</em></dt>
<dd><p>Extracts the scalar, in GMP <code>mpz_t</code> representation.
</p></dd></dl>
<p>To create and verify ECDSA signatures, the following functions are used.
</p>
<dl>
<dt><a name="index-ecdsa_005fsign"></a>Function: <em>void</em> <strong>ecdsa_sign</strong> <em>(const struct ecc_scalar *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>, size_t <var>digest_length</var>, const uint8_t *<var>digest</var>, struct dsa_signature *<var>signature</var>)</em></dt>
<dd><p>Uses the private key <var>key</var> to create a signature on <var>digest</var>.
<var>random_ctx</var> and <var>random</var> is a randomness generator.
<code>random(random_ctx, length, dst)</code> should generate <code>length</code>
random octets and store them at <code>dst</code>. The signature is stored in
<var>signature</var>, in the same was as for plain DSA.
</p></dd></dl>
<dl>
<dt><a name="index-ecdsa_005fverify"></a>Function: <em>int</em> <strong>ecdsa_verify</strong> <em>(const struct ecc_point *<var>pub</var>, size_t <var>length</var>, const uint8_t *<var>digest</var>, const struct dsa_signature *<var>signature</var>)</em></dt>
<dd><p>Uses the public key <var>pub</var> to verify that <var>signature</var> is a valid
signature for the message digest <var>digest</var> (of <var>length</var> octets).
Returns 1 if the signature is valid, otherwise 0.
</p></dd></dl>
<p>Finally, to generation of new an ECDSA key pairs
</p>
<dl>
<dt><a name="index-ecdsa_005fgenerate_005fkeypair"></a>Function: <em>void</em> <strong>ecdsa_generate_keypair</strong> <em>(struct ecc_point *<var>pub</var>, struct ecc_scalar *<var>key</var>, void *<var>random_ctx</var>, nettle_random_func *<var>random</var>);</em></dt>
<dd><p><var>pub</var> and <var>key</var> is where the resulting key pair is stored. The
structs should be initialized, for the desired ECC curve, before you call this function.
</p>
<p><var>random_ctx</var> and <var>random</var> is a randomness generator.
<code>random(random_ctx, length, dst)</code> should generate <code>length</code>
random octets and store them at <code>dst</code>. For advice, see
See <a href="#Randomness">Randomness</a>.
</p></dd></dl>
<hr>
<a name="Curve-25519"></a>
<div class="header">
<p>
Previous: <a href="#ECDSA" accesskey="p" rel="prev">ECDSA</a>, Up: <a href="#Elliptic-curves" accesskey="u" rel="up">Elliptic curves</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Curve25519"></a>
<h4 class="subsubsection">6.7.3.3 Curve25519</h4>
<a name="index-Curve-25519"></a>
<p>Curve25519 is an elliptic curve of Montgomery type, <em>y^2 = x^3 +
486662 x^2 + x (mod p)</em>, with <em>p = 2^255 - 19</em>. Montgomery curves
have the advantage of simple and efficient point addition based on the
x-coordinate only. This particular curve was proposed by D. J. Bernstein
in 2006, for fast Diffie-Hellman key exchange, and is also described in
<cite>RFC 7748</cite>. The group generator is defined by <em>x = 9</em> (there
are actually two points with <em>x = 9</em>, differing by the sign of the
y-coordinate, but that doesn’t matter for the curve25519 operations
which work with the x-coordinate only).
</p>
<p>The curve25519 functions are defined as operations on octet strings,
representing 255-bit scalars or x-coordinates, in little-endian byte
order. The most significant input bit, i.e, the most significant bit of
the last octet, is always ignored.
</p>
<p>For scalars, in addition, the least significant three bits are ignored,
and treated as zero, and the second most significant bit is ignored too,
and treated as one. Then the scalar input string always represents 8
times a number in the range <em>2^251 <= s < 2^252</em>.
</p>
<p>Of all the possible input strings, only about half correspond to
x-coordinates of points on curve25519, i.e., a value <em>x</em> for which
the the curve equation can be solved for <em>y</em>. The other half
correspond to points on a related “twist curve”. The function
<code>curve25519_mul</code> uses a Montgomery ladder for the scalar
multiplication, as suggested in the curve25519 literature, and required
by <cite>RFC 7748</cite>. The output is therefore well defined for
<em>all</em> possible inputs, no matter if the input string represents a
valid point on the curve or not.
</p>
<p>Note that the curve25519 implementation in earlier versions of Nettle
deviates slightly from <cite>RFC 7748</cite>, in that bit 255 of the <em>x</em>
coordinate of the point input to curve25519_mul was not ignored. The
<samp>nette/curve25519.h</samp> defines a preprocessor symbol
<code>NETTLE_CURVE25519_RFC7748</code> to indicate conformance with the
standard.
</p>
<p>Nettle defines Curve 25519 in <samp><nettle/curve25519.h></samp>.
</p>
<dl>
<dt><a name="index-NETTLE_005fCURVE25519_005fRFC7748"></a>Constant: <strong>NETTLE_CURVE25519_RFC7748</strong></dt>
<dd><p>Defined to 1 in Nettle versions conforming to RFC 7748. Undefined in
earlier versions.
</p></dd></dl>
<dl>
<dt><a name="index-CURVE25519_005fSIZE"></a>Constant: <strong>CURVE25519_SIZE</strong></dt>
<dd><p>The size of the strings representing curve25519 points and scalars, 32.
</p></dd></dl>
<dl>
<dt><a name="index-curve25519_005fmul_005fg"></a>Function: <em>void</em> <strong>curve25519_mul_g</strong> <em>(uint8_t *<var>q</var>, const uint8_t *<var>n</var>)</em></dt>
<dd><p>Computes <em>Q = N G</em>, where <em>G</em> is the group generator and
<em>N</em> is an integer. The input argument <var>n</var> and the output
argument <var>q</var> use a little-endian representation of the scalar and
the x-coordinate, respectively. They are both of size
<code>CURVE25519_SIZE</code>.
</p>
<p>This function is intended to be compatible with the function
<code>crypto_scalar_mult_base</code> in the NaCl library.
</p></dd></dl>
<dl>
<dt><a name="index-curve25519_005fmul"></a>Function: <em>void</em> <strong>curve25519_mul</strong> <em>(uint8_t *<var>q</var>, const uint8_t *<var>n</var>, const uint8_t *<var>p</var>)</em></dt>
<dd><p>Computes <em>Q = N P</em>, where <em>P</em> is an input point and <em>N</em>
is an integer. The input arguments <var>n</var> and <var>p</var> and the output
argument <var>q</var> use a little-endian representation of the scalar and
the x-coordinates, respectively. They are all of size
<code>CURVE25519_SIZE</code>.
</p>
<p>This function is intended to be compatible with the function
<code>crypto_scalar_mult</code> in the NaCl library.
</p></dd></dl>
<a name="EdDSA"></a>
<h4 class="subsubsection">6.7.3.4 EdDSA</h4>
<a name="index-eddsa"></a>
<p>EdDSA is a signature scheme proposed by D. J. Bernstein et al. in 2011.
It is defined using a “Twisted Edwards curve”, of the form <em>-x^2
+ y^2 = 1 + d x^2 y^2</em>. The specific signature scheme Ed25519 uses a
curve which is equivalent to curve25519: The two groups used differ only
by a simple change of coordinates, so that the discrete logarithm
problem is of equal difficulty in both groups.
</p>
<p>Unlike other signature schemes in Nettle, the input to the EdDSA sign
and verify functions is the possibly large message itself, not a hash
digest. EdDSA is a variant of Schnorr signatures, where the message is
hashed together with other data during the signature process, providing
resilience to hash-collisions: A successful attack finding collisions in
the hash function does not automatically translate into an attack to
forge signatures. EdDSA also avoids the use of a randomness source by
generating the needed signature nonce from a hash of the private key and
the message, which means that the message is actually hashed twice when
creating a signature. If signing huge messages, it is possible to hash
the message first and pass the short message digest as input to the sign
and verify functions, however, the resilience to hash collision is then
lost.
</p>
<dl>
<dt><a name="index-ED25519_005fKEY_005fSIZE"></a>Constant: <strong>ED25519_KEY_SIZE</strong></dt>
<dd><p>The size of a private or public Ed25519 key, 32 octets.
</p></dd></dl>
<dl>
<dt><a name="index-ED25519_005fSIGNATURE_005fSIZE"></a>Constant: <strong>ED25519_SIGNATURE_SIZE</strong></dt>
<dd><p>The size of an Ed25519 signature, 64 octets.
</p></dd></dl>
<dl>
<dt><a name="index-ed25519_005fsha512_005fpublic_005fkey"></a>Function: <em>void</em> <strong>ed25519_sha512_public_key</strong> <em>(uint8_t *<var>pub</var>, const uint8_t *<var>priv</var>)</em></dt>
<dd><p>Computes the public key corresponding to the given private key. Both
input and output are of size <code>ED25519_KEY_SIZE</code>.
</p></dd></dl>
<dl>
<dt><a name="index-ed25519_005fsha512_005fsign"></a>Function: <em>void</em> <strong>ed25519_sha512_sign</strong> <em>(const uint8_t *<var>pub</var>, const uint8_t *<var>priv</var>, size_t <var>length</var>, const uint8_t *<var>msg</var>, uint8_t *<var>signature</var>)</em></dt>
<dd><p>Signs a message using the provided key pair.
</p></dd></dl>
<dl>
<dt><a name="index-ed25519_005fsha512_005fverify"></a>Function: <em>int</em> <strong>ed25519_sha512_verify</strong> <em>(const uint8_t *<var>pub</var>, size_t <var>length</var>, const uint8_t *<var>msg</var>, const uint8_t *<var>signature</var>)</em></dt>
<dd><p>Verifies a message using the provided public key. Returns 1 if the
signature is valid, otherwise 0.
</p></dd></dl>
<hr>
<a name="Randomness"></a>
<div class="header">
<p>
Next: <a href="#ASCII-encoding" accesskey="n" rel="next">ASCII encoding</a>, Previous: <a href="#Public_002dkey-algorithms" accesskey="p" rel="prev">Public-key algorithms</a>, Up: <a href="#Reference" accesskey="u" rel="up">Reference</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Randomness-1"></a>
<h3 class="section">6.8 Randomness</h3>
<a name="index-Randomness"></a>
<p>A crucial ingredient in many cryptographic contexts is randomness: Let
<code>p</code> be a random prime, choose a random initialization vector
<code>iv</code>, a random key <code>k</code> and a random exponent <code>e</code>, etc. In
the theories, it is assumed that you have plenty of randomness around.
If this assumption is not true in practice, systems that are otherwise
perfectly secure, can be broken. Randomness has often turned out to be
the weakest link in the chain.
</p>
<p>In non-cryptographic applications, such as games as well as scientific
simulation, a good randomness generator usually means a generator that
has good statistical properties, and is seeded by some simple function
of things like the current time, process id, and host name.
</p>
<p>However, such a generator is inadequate for cryptography, for at least
two reasons:
</p>
<ul>
<li> It’s too easy for an attacker to guess the initial seed. Even if it will
take some 2^32 tries before he guesses right, that’s far too easy. For
example, if the process id is 16 bits, the resolution of “current time”
is one second, and the attacker knows what day the generator was seeded,
there are only about 2^32 possibilities to try if all possible values
for the process id and time-of-day are tried.
</li><li> The generator output reveals too much. By observing only a small segment
of the generator’s output, its internal state can be recovered, and from
there, all previous output and all future output can be computed by the
attacker.
</li></ul>
<p>A randomness generator that is used for cryptographic purposes must have
better properties. Let’s first look at the seeding, as the issues here
are mostly independent of the rest of the generator. The initial state
of the generator (its seed) must be unguessable by the attacker. So
what’s unguessable? It depends on what the attacker already knows. The
concept used in information theory to reason about such things is called
“entropy”, or “conditional entropy” (not to be confused with the
thermodynamic concept with the same name). A reasonable requirement is
that the seed contains a conditional entropy of at least some 80-100
bits. This property can be explained as follows: Allow the attacker to
ask <code>n</code> yes-no-questions, of his own choice, about the seed. If
the attacker, using this question-and-answer session, as well as any
other information he knows about the seeding process, still can’t guess
the seed correctly, then the conditional entropy is more than <code>n</code>
bits.
</p>
<a name="index-Entropy"></a>
<a name="index-Conditional-entropy"></a>
<p>Let’s look at an example. Say information about timing of received
network packets is used in the seeding process. If there is some random
network traffic going on, this will contribute some bits of entropy or
“unguessability” to the seed. However, if the attacker can listen in to
the local network, or if all but a small number of the packets were
transmitted by machines that the attacker can monitor, this additional
information makes the seed easier for the attacker to figure out. Even
if the information is exactly the same, the conditional entropy, or
unguessability, is smaller for an attacker that knows some of it already
before the hypothetical question-and-answer session.
</p>
<p>Seeding of good generators is usually based on several sources. The key
point here is that the amount of unguessability that each source
contributes, depends on who the attacker is. Some sources that have been
used are:
</p>
<dl compact="compact">
<dt>High resolution timing of i/o activities</dt>
<dd><p>Such as completed blocks from spinning hard disks, network packets, etc.
Getting access to such information is quite system dependent, and not
all systems include suitable hardware. If available, it’s one of the
better randomness source one can find in a digital, mostly predictable,
computer.
</p>
</dd>
<dt>User activity</dt>
<dd><p>Timing and contents of user interaction events is another popular source
that is available for interactive programs (even if I suspect that it is
sometimes used in order to make the user feel good, not because the
quality of the input is needed or used properly). Obviously, not
available when a machine is unattended. Also beware of networks: User
interaction that happens across a long serial cable, <acronym>TELNET</acronym>
session, or even <acronym>SSH</acronym> session may be visible to an attacker, in
full or partially.
</p>
</dd>
<dt>Audio input</dt>
<dd><p>Any room, or even a microphone input that’s left unconnected, is a
source of some random background noise, which can be fed into the
seeding process.
</p>
</dd>
<dt>Specialized hardware</dt>
<dd><p>Hardware devices with the sole purpose of generating random data have
been designed. They range from radioactive samples with an attached
Geiger counter, to amplification of the inherent noise in electronic
components such as diodes and resistors, to low-frequency sampling of
chaotic systems. Hashing successive images of a Lava lamp is a
spectacular example of the latter type.
</p>
</dd>
<dt>Secret information</dt>
<dd><p>Secret information, such as user passwords or keys, or private files
stored on disk, can provide some unguessability. A problem is that if
the information is revealed at a later time, the unguessability
vanishes. Another problem is that this kind of information tends to be
fairly constant, so if you rely on it and seed your generator regularly,
you risk constructing almost similar seeds or even constructing the same
seed more than once.
</p></dd>
</dl>
<p>For all practical sources, it’s difficult but important to provide a
reliable lower bound on the amount of unguessability that it provides.
Two important points are to make sure that the attacker can’t observe
your sources (so if you like the Lava lamp idea, remember that you have
to get your own lamp, and not put it by a window or anywhere else where
strangers can see it), and that hardware failures are detected. What if
the bulb in the Lava lamp, which you keep locked into a cupboard
following the above advice, breaks after a few months?
</p>
<p>So let’s assume that we have been able to find an unguessable seed,
which contains at least 80 bits of conditional entropy, relative to all
attackers that we care about (typically, we must at the very least
assume that no attacker has root privileges on our machine).
</p>
<p>How do we generate output from this seed, and how much can we get? Some
generators (notably the Linux <samp>/dev/random</samp> generator) tries to
estimate available entropy and restrict the amount of output. The goal
is that if you read 128 bits from <samp>/dev/random</samp>, you should get 128
“truly random” bits. This is a property that is useful in some
specialized circumstances, for instance when generating key material for
a one time pad, or when working with unconditional blinding, but in most
cases, it doesn’t matter much. For most application, there’s no limit on
the amount of useful “random” data that we can generate from a small
seed; what matters is that the seed is unguessable and that the
generator has good cryptographic properties.
</p>
<p>At the heart of all generators lies its internal state. Future output
is determined by the internal state alone. Let’s call it the generator’s
key. The key is initialized from the unguessable seed. Important
properties of a generator are:
</p>
<dl compact="compact">
<dt><em>Key-hiding</em></dt>
<dd><p>An attacker observing the output should not be able to recover the
generator’s key.
</p>
</dd>
<dt><em>Independence of outputs</em></dt>
<dd><p>Observing some of the output should not help the attacker to guess
previous or future output.
</p>
</dd>
<dt><em>Forward secrecy</em></dt>
<dd><p>Even if an attacker compromises the generator’s key, he should not be
able to guess the generator output <em>before</em> the key compromise.
</p>
</dd>
<dt><em>Recovery from key compromise</em></dt>
<dd><p>If an attacker compromises the generator’s key, he can compute
<em>all</em> future output. This is inevitable if the generator is seeded
only once, at startup. However, the generator can provide a reseeding
mechanism, to achieve recovery from key compromise. More precisely: If
the attacker compromises the key at a particular time <code>t_1</code>, there
is another later time <code>t_2</code>, such that if the attacker observes all
output generated between <code>t_1</code> and <code>t_2</code>, he still can’t guess
what output is generated after <code>t_2</code>.
</p>
</dd>
</dl>
<p>Nettle includes one randomness generator that is believed to have all
the above properties, and two simpler ones.
</p>
<p><acronym>ARCFOUR</acronym>, like any stream cipher, can be used as a randomness
generator. Its output should be of reasonable quality, if the seed is
hashed properly before it is used with <code>arcfour_set_key</code>. There’s
no single natural way to reseed it, but if you need reseeding, you
should be using Yarrow instead.
</p>
<p>The “lagged Fibonacci” generator in <samp><nettle/knuth-lfib.h></samp> is a
fast generator with good statistical properties, but is <strong>not</strong> for
cryptographic use, and therefore not documented here. It is included
mostly because the Nettle test suite needs to generate some test data
from a small seed.
</p>
<p>The recommended generator to use is Yarrow, described below.
</p>
<a name="Yarrow"></a>
<h4 class="subsection">6.8.1 Yarrow</h4>
<p>Yarrow is a family of pseudo-randomness generators, designed for
cryptographic use, by John Kelsey, Bruce Schneier and Niels Ferguson.
Yarrow-160 is described in a paper at
<a href="http://www.counterpane.com/yarrow.html">http://www.counterpane.com/yarrow.html</a>, and it uses <acronym>SHA1</acronym>
and triple-DES, and has a 160-bit internal state. Nettle implements
Yarrow-256, which is similar, but uses <acronym>SHA256</acronym> and
<acronym>AES</acronym> to get an internal state of 256 bits.
</p>
<p>Yarrow was an almost finished project, the paper mentioned above is the
closest thing to a specification for it, but some smaller details are
left out. There is no official reference implementation or test cases.
This section includes an overview of Yarrow, but for the details of
Yarrow-256, as implemented by Nettle, you have to consult the source
code. Maybe a complete specification can be written later.
</p>
<p>Yarrow can use many sources (at least two are needed for proper
reseeding), and two randomness “pools”, referred to as the “slow pool” and
the “fast pool”. Input from the sources is fed alternatingly into the
two pools. When one of the sources has contributed 100 bits of entropy
to the fast pool, a “fast reseed” happens and the fast pool is mixed
into the internal state. When at least two of the sources have
contributed at least 160 bits each to the slow pool, a “slow reseed”
takes place. The contents of both pools are mixed into the internal
state. These procedures should ensure that the generator will eventually
recover after a key compromise.
</p>
<p>The output is generated by using <acronym>AES</acronym> to encrypt a counter,
using the generator’s current key. After each request for output,
another 256 bits are generated which replace the key. This ensures
forward secrecy.
</p>
<p>Yarrow can also use a <em>seed file</em> to save state across restarts.
Yarrow is seeded by either feeding it the contents of the previous seed
file, or feeding it input from its sources until a slow reseed happens.
</p>
<p>Nettle defines Yarrow-256 in <samp><nettle/yarrow.h></samp>.
</p>
<dl>
<dt><a name="index-struct-yarrow256_005fctx"></a>Context struct: <strong>struct yarrow256_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-struct-yarrow_005fsource"></a>Context struct: <strong>struct yarrow_source</strong></dt>
<dd><p>Information about a single source.
</p></dd></dl>
<dl>
<dt><a name="index-YARROW256_005fSEED_005fFILE_005fSIZE"></a>Constant: <strong>YARROW256_SEED_FILE_SIZE</strong></dt>
<dd><p>Recommended size of the Yarrow-256 seed file.
</p></dd></dl>
<dl>
<dt><a name="index-yarrow256_005finit"></a>Function: <em>void</em> <strong>yarrow256_init</strong> <em>(struct yarrow256_ctx *<var>ctx</var>, unsigned <var>nsources</var>, struct yarrow_source *<var>sources</var>)</em></dt>
<dd><p>Initializes the yarrow context, and its <var>nsources</var> sources. It’s
possible to call it with <var>nsources</var>=0 and <var>sources</var>=NULL, if
you don’t need the update features.
</p></dd></dl>
<dl>
<dt><a name="index-yarrow256_005fseed"></a>Function: <em>void</em> <strong>yarrow256_seed</strong> <em>(struct yarrow256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>seed_file</var>)</em></dt>
<dd><p>Seeds Yarrow-256 from a previous seed file. <var>length</var> should be at least
<code>YARROW256_SEED_FILE_SIZE</code>, but it can be larger.
</p>
<p>The generator will trust you that the <var>seed_file</var> data really is
unguessable. After calling this function, you <em>must</em> overwrite the old
seed file with newly generated data from <code>yarrow256_random</code>. If it’s
possible for several processes to read the seed file at about the same
time, access must be coordinated using some locking mechanism.
</p></dd></dl>
<dl>
<dt><a name="index-yarrow256_005fupdate"></a>Function: <em>int</em> <strong>yarrow256_update</strong> <em>(struct yarrow256_ctx *<var>ctx</var>, unsigned <var>source</var>, unsigned <var>entropy</var>, size_t <var>length</var>, const uint8_t *<var>data</var>)</em></dt>
<dd><p>Updates the generator with data from source <var>SOURCE</var> (an index that
must be smaller than the number of sources). <var>entropy</var> is your
estimated lower bound for the entropy in the data, measured in bits.
Calling update with zero <var>entropy</var> is always safe, no matter if the
data is random or not.
</p>
<p>Returns 1 if a reseed happened, in which case an application using a
seed file may want to generate new seed data with
<code>yarrow256_random</code> and overwrite the seed file. Otherwise, the
function returns 0.
</p></dd></dl>
<dl>
<dt><a name="index-yarrow256_005frandom"></a>Function: <em>void</em> <strong>yarrow256_random</strong> <em>(struct yarrow256_ctx *<var>ctx</var>, size_t <var>length</var>, uint8_t *<var>dst</var>)</em></dt>
<dd><p>Generates <var>length</var> octets of output. The generator must be seeded
before you call this function.
</p>
<p>If you don’t need forward secrecy, e.g. if you need non-secret
randomness for initialization vectors or padding, you can gain some
efficiency by buffering, calling this function for reasonably large
blocks of data, say 100-1000 octets at a time.
</p></dd></dl>
<dl>
<dt><a name="index-yarrow256_005fis_005fseeded"></a>Function: <em>int</em> <strong>yarrow256_is_seeded</strong> <em>(struct yarrow256_ctx *<var>ctx</var>)</em></dt>
<dd><p>Returns 1 if the generator is seeded and ready to generate output,
otherwise 0.
</p></dd></dl>
<dl>
<dt><a name="index-yarrow256_005fneeded_005fsources"></a>Function: <em>unsigned</em> <strong>yarrow256_needed_sources</strong> <em>(struct yarrow256_ctx *<var>ctx</var>)</em></dt>
<dd><p>Returns the number of sources that must reach the threshold before a
slow reseed will happen. Useful primarily when the generator is unseeded.
</p></dd></dl>
<dl>
<dt><a name="index-yarrow256_005ffast_005freseed"></a>Function: <em>void</em> <strong>yarrow256_fast_reseed</strong> <em>(struct yarrow256_ctx *<var>ctx</var>)</em></dt>
<dt><a name="index-yarrow256_005fslow_005freseed"></a>Function: <em>void</em> <strong>yarrow256_slow_reseed</strong> <em>(struct yarrow256_ctx *<var>ctx</var>)</em></dt>
<dd><p>Causes a fast or slow reseed to take place immediately, regardless of the
current entropy estimates of the two pools. Use with care.
</p></dd></dl>
<p>Nettle includes an entropy estimator for one kind of input source: User
keyboard input.
</p>
<dl>
<dt><a name="index-struct-yarrow_005fkey_005fevent_005fctx"></a>Context struct: <strong>struct yarrow_key_event_ctx</strong></dt>
<dd><p>Information about recent key events.
</p></dd></dl>
<dl>
<dt><a name="index-yarrow_005fkey_005fevent_005finit"></a>Function: <em>void</em> <strong>yarrow_key_event_init</strong> <em>(struct yarrow_key_event_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initializes the context.
</p></dd></dl>
<dl>
<dt><a name="index-yarrow_005fkey_005fevent_005festimate"></a>Function: <em>unsigned</em> <strong>yarrow_key_event_estimate</strong> <em>(struct yarrow_key_event_ctx *<var>ctx</var>, unsigned <var>key</var>, unsigned <var>time</var>)</em></dt>
<dd><p><var>key</var> is the id of the key (ASCII value, hardware key code, X
keysym, …, it doesn’t matter), and <var>time</var> is the timestamp of
the event. The time must be given in units matching the resolution by
which you read the clock. If you read the clock with microsecond
precision, <var>time</var> should be provided in units of microseconds. But
if you use <code>gettimeofday</code> on a typical Unix system where the clock
ticks 10 or so microseconds at a time, <var>time</var> should be given in
units of 10 microseconds.
</p>
<p>Returns an entropy estimate, in bits, suitable for calling
<code>yarrow256_update</code>. Usually, 0, 1 or 2 bits.
</p></dd></dl>
<hr>
<a name="ASCII-encoding"></a>
<div class="header">
<p>
Next: <a href="#Miscellaneous-functions" accesskey="n" rel="next">Miscellaneous functions</a>, Previous: <a href="#Randomness" accesskey="p" rel="prev">Randomness</a>, Up: <a href="#Reference" accesskey="u" rel="up">Reference</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="ASCII-encoding-1"></a>
<h3 class="section">6.9 ASCII encoding</h3>
<p>Encryption will transform your data from text into binary format, and that
may be a problem if, for example, you want to send the data as if it was
plain text in an email, or store it along with descriptive text in a
file. You may then use an encoding from binary to text: each binary byte
is translated into a number of bytes of plain text.
</p>
<p>A base-N encoding of data is one representation of data that only uses N
different symbols (instead of the 256 possible values of a byte).
</p>
<p>The base64 encoding will always use alphanumeric (upper and lower case)
characters and the ’+’, ’/’ and ’=’ symbols to represent the data. Four
output characters are generated for each three bytes of input. In case
the length of the input is not a multiple of three, padding characters
are added at the end. There’s also a “URL safe” variant, which is
useful for encoding binary data into URLs and filenames. See <cite>RFC
4648</cite>.
</p>
<p>The base16 encoding, also known as “hexadecimal”, uses the decimal
digits and the letters from A to F. Two hexadecimal digits are generated
for each input byte.
</p>
<p>Nettle supports both base64 and base16 encoding and decoding.
</p>
<p>Encoding and decoding uses a context struct to maintain its state (with
the exception of base16 encoding, which doesn’t need any). To encode or
decode the data, first initialize the context, then call the update
function as many times as necessary, and complete the operation by
calling the final function.
</p>
<p>The following functions can be used to perform base64 encoding and decoding.
They are defined in <samp><nettle/base64.h></samp>.
</p>
<dl>
<dt><a name="index-struct-base64_005fencode_005fctx"></a>Context struct: <strong>struct base64_encode_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-base64_005fencode_005finit"></a>Function: <em>void</em> <strong>base64_encode_init</strong> <em>(struct base64_encode_ctx *<var>ctx</var>)</em></dt>
<dt><a name="index-base64url_005fencode_005finit"></a>Function: <em>void</em> <strong>base64url_encode_init</strong> <em>(struct base64_encode_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initializes a base64 context. This is necessary before starting an
encoding session. <code>base64_encode_init</code> selects the standard base64
alphabet, while <code>base64url_encode_init</code> selects the URL safe
alphabet.
</p></dd></dl>
<dl>
<dt><a name="index-base64_005fencode_005fsingle"></a>Function: <em>size_t</em> <strong>base64_encode_single</strong> <em>(struct base64_encode_ctx *<var>ctx</var>, uint8_t *<var>dst</var>, uint8_t <var>src</var>)</em></dt>
<dd><p>Encodes a single byte. Returns amount of output (always 1 or 2).
</p></dd></dl>
<dl>
<dt><a name="index-BASE64_005fENCODE_005fLENGTH"></a>Macro: <strong>BASE64_ENCODE_LENGTH</strong> <em>(<var>length</var>)</em></dt>
<dd><p>The maximum number of output bytes when passing <var>length</var> input bytes
to <code>base64_encode_update</code>.
</p></dd></dl>
<dl>
<dt><a name="index-base64_005fencode_005fupdate"></a>Function: <em>size_t</em> <strong>base64_encode_update</strong> <em>(struct base64_encode_ctx *<var>ctx</var>, uint8_t *<var>dst</var>, size_t <var>length</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>After <var>ctx</var> is initialized, this function may be called to encode <var>length</var>
bytes from <var>src</var>. The result will be placed in <var>dst</var>, and the return value
will be the number of bytes generated. Note that <var>dst</var> must be at least of size
BASE64_ENCODE_LENGTH(<var>length</var>).
</p></dd></dl>
<dl>
<dt><a name="index-BASE64_005fENCODE_005fFINAL_005fLENGTH"></a>Constant: <strong>BASE64_ENCODE_FINAL_LENGTH</strong></dt>
<dd><p>The maximum amount of output from <code>base64_encode_final</code>.
</p></dd></dl>
<dl>
<dt><a name="index-base64_005fencode_005ffinal"></a>Function: <em>size_t</em> <strong>base64_encode_final</strong> <em>(struct base64_encode_ctx *<var>ctx</var>, uint8_t *<var>dst</var>)</em></dt>
<dd><p>After calling base64_encode_update one or more times, this function
should be called to generate the final output bytes, including any
needed paddding. The return value is the number of output bytes
generated.
</p></dd></dl>
<dl>
<dt><a name="index-struct-base64_005fdecode_005fctx"></a>Context struct: <strong>struct base64_decode_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-base64_005fdecode_005finit"></a>Function: <em>void</em> <strong>base64_decode_init</strong> <em>(struct base64_decode_ctx *<var>ctx</var>)</em></dt>
<dt><a name="index-base64url_005fdecode_005finit"></a>Function: <em>void</em> <strong>base64url_decode_init</strong> <em>(struct base64_decode_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initializes a base64 decoding context. This is necessary before starting
a decoding session. <code>base64_decode_init</code> selects the standard
base64 alphabet, while <code>base64url_decode_init</code> selects the URL safe
alphabet.
</p></dd></dl>
<dl>
<dt><a name="index-base64_005fdecode_005fsingle"></a>Function: <em>int</em> <strong>base64_decode_single</strong> <em>(struct base64_decode_ctx *<var>ctx</var>, uint8_t *<var>dst</var>, uint8_t <var>src</var>)</em></dt>
<dd><p>Decodes a single byte (<var>src</var>) and stores the result in <var>dst</var>.
Returns amount of output (0 or 1), or -1 on errors.
</p></dd></dl>
<dl>
<dt><a name="index-BASE64_005fDECODE_005fLENGTH"></a>Macro: <strong>BASE64_DECODE_LENGTH</strong> <em>(<var>length</var>)</em></dt>
<dd><p>The maximum number of output bytes when passing <var>length</var> input bytes
to <code>base64_decode_update</code>.
</p></dd></dl>
<dl>
<dt><a name="index-base64_005fdecode_005fupdate"></a>Function: <em>void</em> <strong>base64_decode_update</strong> <em>(struct base64_decode_ctx *<var>ctx</var>, size_t *<var>dst_length</var>, uint8_t *<var>dst</var>, size_t <var>src_length</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>After <var>ctx</var> is initialized, this function may be called to decode
<var>src_length</var> bytes from <var>src</var>. <var>dst</var> should point to an area
of size at least BASE64_DECODE_LENGTH(<var>src_length</var>). The amount of data
generated is returned in *<var>dst_length</var>. Returns 1 on success
and 0 on error.
</p></dd></dl>
<dl>
<dt><a name="index-base64_005fdecode_005ffinal"></a>Function: <em>int</em> <strong>base64_decode_final</strong> <em>(struct base64_decode_ctx *<var>ctx</var>)</em></dt>
<dd><p>Check that final padding is correct. Returns 1 on success, and 0 on
error.
</p></dd></dl>
<p>Similarly to the base64 functions, the following functions perform base16 encoding,
and are defined in <samp><nettle/base16.h></samp>. Note that there is no encoding context
necessary for doing base16 encoding.
</p>
<dl>
<dt><a name="index-base16_005fencode_005fsingle"></a>Function: <em>void</em> <strong>base16_encode_single</strong> <em>(uint8_t *<var>dst</var>, uint8_t <var>src</var>)</em></dt>
<dd><p>Encodes a single byte. Always stores two digits in <var>dst</var>[0] and <var>dst</var>[1].
</p></dd></dl>
<dl>
<dt><a name="index-BASE16_005fENCODE_005fLENGTH"></a>Macro: <strong>BASE16_ENCODE_LENGTH</strong> <em>(<var>length</var>)</em></dt>
<dd><p>The number of output bytes when passing <var>length</var> input bytes to
<code>base16_encode_update</code>.
</p></dd></dl>
<dl>
<dt><a name="index-base16_005fencode_005fupdate"></a>Function: <em>void</em> <strong>base16_encode_update</strong> <em>(uint8_t *<var>dst</var>, size_t <var>length</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>Always stores BASE16_ENCODE_LENGTH(<var>length</var>) digits in <var>dst</var>.
</p></dd></dl>
<dl>
<dt><a name="index-struct-base16_005fdecode_005fctx"></a>Context struct: <strong>struct base16_decode_ctx</strong></dt>
</dl>
<dl>
<dt><a name="index-base16_005fdecode_005finit"></a>Function: <em>void</em> <strong>base16_decode_init</strong> <em>(struct base16_decode_ctx *<var>ctx</var>)</em></dt>
<dd><p>Initializes a base16 decoding context. This is necessary before starting a decoding
session.
</p></dd></dl>
<dl>
<dt><a name="index-base16_005fdecode_005fsingle"></a>Function: <em>int</em> <strong>base16_decode_single</strong> <em>(struct base16_decode_ctx *<var>ctx</var>, uint8_t *<var>dst</var>, uint8_t <var>src</var>)</em></dt>
<dd><p>Decodes a single byte from <var>src</var> into <var>dst</var>. Returns amount of output (0 or 1), or -1 on errors.
</p></dd></dl>
<dl>
<dt><a name="index-BASE16_005fDECODE_005fLENGTH"></a>Macro: <strong>BASE16_DECODE_LENGTH</strong> <em>(<var>length</var>)</em></dt>
<dd><p>The maximum number of output bytes when passing <var>length</var> input bytes
to <code>base16_decode_update</code>.
</p></dd></dl>
<dl>
<dt><a name="index-base16_005fdecode_005fupdate"></a>Function: <em>int</em> <strong>base16_decode_update</strong> <em>(struct base16_decode_ctx *<var>ctx</var>, size_t *<var>dst_length</var>, uint8_t *<var>dst</var>, size_t <var>src_length</var>, const uint8_t *<var>src</var>)</em></dt>
<dd><p>After <var>ctx</var> is initialized, this function may be called to decode
<var>src_length</var> bytes from <var>src</var>. <var>dst</var> should point to an area
of size at least BASE16_DECODE_LENGTH(<var>src_length</var>). The amount of data
generated is returned in *<var>dst_length</var>. Returns 1 on success
and 0 on error.
</p></dd></dl>
<dl>
<dt><a name="index-base16_005fdecode_005ffinal"></a>Function: <em>int</em> <strong>base16_decode_final</strong> <em>(struct base16_decode_ctx *<var>ctx</var>)</em></dt>
<dd><p>Checks that the end of data is correct (i.e., an even number of
hexadecimal digits have been seen). Returns 1 on success, and 0 on
error.
</p></dd></dl>
<hr>
<a name="Miscellaneous-functions"></a>
<div class="header">
<p>
Next: <a href="#Compatibility-functions" accesskey="n" rel="next">Compatibility functions</a>, Previous: <a href="#ASCII-encoding" accesskey="p" rel="prev">ASCII encoding</a>, Up: <a href="#Reference" accesskey="u" rel="up">Reference</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Miscellaneous-functions-1"></a>
<h3 class="section">6.10 Miscellaneous functions</h3>
<dl>
<dt><a name="index-memxor"></a>Function: <em>void *</em> <strong>memxor</strong> <em>(void *<var>dst</var>, const void *<var>src</var>, size_t <var>n</var>)</em></dt>
<dd><p>XORs the source area on top of the destination area. The interface
doesn’t follow the Nettle conventions, because it is intended to be
similar to the ANSI-C <code>memcpy</code> function.
</p></dd></dl>
<dl>
<dt><a name="index-memxor3"></a>Function: <em>void *</em> <strong>memxor3</strong> <em>(void *<var>dst</var>, const void *<var>a</var>, const void *<var>b</var>, size_t <var>n</var>)</em></dt>
<dd><p>Like <code>memxor</code>, but takes two source areas and separate
destination area.
</p></dd></dl>
<dl>
<dt><a name="index-memeql_005fsec"></a>Function: <em>int</em> <strong>memeql_sec</strong> <em>(const void *<var>a</var>, const void *<var>b</var>, size_t <var>n</var>)</em></dt>
<dd><p>Side-channel silent comparison of the <var>n</var> bytes at <var>a</var> and
<var>b</var>. I.e., instructions executed and memory accesses are identical
no matter where the areas differ, see <a href="#Side_002dchannel-silence">Side-channel silence</a>. Return
non-zero if the areas are equal, and zero if they differ.
</p></dd></dl>
<p>These functions are declared in <samp><nettle/memops.h></samp>. For
compatibility with earlier versions of Nettle, <code>memxor</code> and
<code>memxor3</code> are also declared in <samp><nettle/memxor.h></samp>.
</p>
<hr>
<a name="Compatibility-functions"></a>
<div class="header">
<p>
Previous: <a href="#Miscellaneous-functions" accesskey="p" rel="prev">Miscellaneous functions</a>, Up: <a href="#Reference" accesskey="u" rel="up">Reference</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Compatibility-functions-1"></a>
<h3 class="section">6.11 Compatibility functions</h3>
<p>For convenience, Nettle includes alternative interfaces to some
algorithms, for compatibility with some other popular crypto toolkits.
These are not fully documented here; refer to the source or to the
documentation for the original implementation.
</p>
<p>MD5 is defined in [RFC 1321], which includes a reference implementation.
Nettle defines a compatible interface to MD5 in
<samp><nettle/md5-compat.h></samp>. This file defines the typedef
<code>MD5_CTX</code>, and declares the functions <code>MD5Init</code>, <code>MD5Update</code> and
<code>MD5Final</code>.
</p>
<p>Eric Young’s “libdes” (also part of OpenSSL) is a quite popular DES
implementation. Nettle includes a subset if its interface in
<samp><nettle/des-compat.h></samp>. This file defines the typedefs
<code>des_key_schedule</code> and <code>des_cblock</code>, two constants
<code>DES_ENCRYPT</code> and <code>DES_DECRYPT</code>, and declares one global
variable <code>des_check_key</code>, and the functions <code>des_cbc_cksum</code>
<code>des_cbc_encrypt</code>, <code>des_ecb2_encrypt</code>,
<code>des_ecb3_encrypt</code>, <code>des_ecb_encrypt</code>,
<code>des_ede2_cbc_encrypt</code>, <code>des_ede3_cbc_encrypt</code>,
<code>des_is_weak_key</code>, <code>des_key_sched</code>, <code>des_ncbc_encrypt</code>
<code>des_set_key</code>, and <code>des_set_odd_parity</code>.
</p>
<hr>
<a name="Nettle-soup"></a>
<div class="header">
<p>
Next: <a href="#Installation" accesskey="n" rel="next">Installation</a>, Previous: <a href="#Reference" accesskey="p" rel="prev">Reference</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Traditional-Nettle-Soup"></a>
<h2 class="chapter">7 Traditional Nettle Soup</h2>
<p>For the serious nettle hacker, here is a recipe for nettle soup. 4 servings.
</p>
<ul class="no-bullet">
<li><!-- /@w --> 1 liter fresh nettles (urtica dioica)
</li><li><!-- /@w --> 2 tablespoons butter
</li><li><!-- /@w --> 3 tablespoons flour
</li><li><!-- /@w --> 1 liter stock (meat or vegetable)
</li><li><!-- /@w --> 1/2 teaspoon salt
</li><li><!-- /@w --> a tad white pepper
</li><li><!-- /@w --> some cream or milk
</li></ul>
<p>Gather 1 liter fresh nettles. Use gloves! Small, tender shoots are
preferable but the tops of larger nettles can also be used.
</p>
<p>Rinse the nettles very well. Boil them for 10 minutes in lightly salted
water. Strain the nettles and save the water. Hack the nettles. Melt the
butter and mix in the flour. Dilute with stock and the nettle-water you
saved earlier. Add the hacked nettles. If you wish you can add some milk
or cream at this stage. Bring to a boil and let boil for a few minutes.
Season with salt and pepper.
</p>
<p>Serve with boiled egg-halves.
</p>
<hr>
<a name="Installation"></a>
<div class="header">
<p>
Next: <a href="#Index" accesskey="n" rel="next">Index</a>, Previous: <a href="#Nettle-soup" accesskey="p" rel="prev">Nettle soup</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Installation-1"></a>
<h2 class="chapter">8 Installation</h2>
<p>Nettle uses <code>autoconf</code>. To build it, unpack the source and run
</p>
<div class="example">
<pre class="example">./configure
make
make check
make install
</pre></div>
<p>to install it under the default prefix, <samp>/usr/local</samp>. Using GNU
make is strongly recommended. By default, both static and shared
libraries are built and installed.
</p>
<p>To get a list of configure options, use <code>./configure --help</code>. Some
of the more interesting are:
</p>
<dl compact="compact">
<dt><samp>--enable-fat</samp></dt>
<dd><p>Include multiple versions of certain functions in the library, and
select the ones to use at run-time, depending on available processor
features. Supported for ARM and x86_64.
</p>
</dd>
<dt><samp>--enable-mini-gmp</samp></dt>
<dd><p>Use the smaller and slower “mini-gmp” implementation of the bignum
functions needed for public-key cryptography, instead of the real GNU
GMP library. This option is intended primarily for smaller embedded
systems. Note that builds using mini-gmp are <strong>not</strong> binary compatible
with regular builds of Nettle, and more likely to leak side-channel
information.
</p>
</dd>
<dt><samp>--disable-shared</samp></dt>
<dd><p>Omit building the shared libraries.
</p>
</dd>
<dt><samp>--disable-dependency-tracking</samp></dt>
<dd><p>Disable the automatic dependency tracking. You will likely need this
option to be able to build with BSD make.
</p>
</dd>
</dl>
<hr>
<a name="Index"></a>
<div class="header">
<p>
Previous: <a href="#Installation" accesskey="p" rel="prev">Installation</a>, Up: <a href="#Top" accesskey="u" rel="up">Top</a> [<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Function-and-Concept-Index"></a>
<h2 class="unnumbered">Function and Concept Index</h2>
<table><tr><th valign="top">Jump to: </th><td><a class="summary-letter" href="#Index_cp_letter-A"><b>A</b></a>
<a class="summary-letter" href="#Index_cp_letter-B"><b>B</b></a>
<a class="summary-letter" href="#Index_cp_letter-C"><b>C</b></a>
<a class="summary-letter" href="#Index_cp_letter-D"><b>D</b></a>
<a class="summary-letter" href="#Index_cp_letter-E"><b>E</b></a>
<a class="summary-letter" href="#Index_cp_letter-G"><b>G</b></a>
<a class="summary-letter" href="#Index_cp_letter-H"><b>H</b></a>
<a class="summary-letter" href="#Index_cp_letter-K"><b>K</b></a>
<a class="summary-letter" href="#Index_cp_letter-M"><b>M</b></a>
<a class="summary-letter" href="#Index_cp_letter-N"><b>N</b></a>
<a class="summary-letter" href="#Index_cp_letter-O"><b>O</b></a>
<a class="summary-letter" href="#Index_cp_letter-P"><b>P</b></a>
<a class="summary-letter" href="#Index_cp_letter-R"><b>R</b></a>
<a class="summary-letter" href="#Index_cp_letter-S"><b>S</b></a>
<a class="summary-letter" href="#Index_cp_letter-T"><b>T</b></a>
<a class="summary-letter" href="#Index_cp_letter-U"><b>U</b></a>
<a class="summary-letter" href="#Index_cp_letter-Y"><b>Y</b></a>
</td></tr></table>
<table class="index-cp" border="0">
<tr><td></td><th align="left">Index Entry</th><td> </td><th align="left"> Section</th></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-A">A</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-AEAD">AEAD</a>:</td><td> </td><td valign="top"><a href="#Authenticated-encryption">Authenticated encryption</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes128_005fdecrypt"><code>aes128_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes128_005fencrypt"><code>aes128_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes128_005finvert_005fkey"><code>aes128_invert_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes128_005fset_005fdecrypt_005fkey"><code>aes128_set_decrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes128_005fset_005fencrypt_005fkey"><code>aes128_set_encrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes192_005fdecrypt"><code>aes192_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes192_005fencrypt"><code>aes192_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes192_005finvert_005fkey"><code>aes192_invert_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes192_005fset_005fdecrypt_005fkey"><code>aes192_set_decrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes192_005fset_005fencrypt_005fkey"><code>aes192_set_encrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes256_005fdecrypt"><code>aes256_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes256_005fencrypt"><code>aes256_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes256_005finvert_005fkey"><code>aes256_invert_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes256_005fset_005fdecrypt_005fkey"><code>aes256_set_decrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes256_005fset_005fencrypt_005fkey"><code>aes256_set_encrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes_005fdecrypt"><code>aes_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes_005fencrypt"><code>aes_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes_005finvert_005fkey"><code>aes_invert_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes_005fset_005fdecrypt_005fkey"><code>aes_set_decrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-aes_005fset_005fencrypt_005fkey"><code>aes_set_encrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-arcfour_005fcrypt"><code>arcfour_crypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-arcfour_005fset_005fkey"><code>arcfour_set_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-arctwo_005fdecrypt"><code>arctwo_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-arctwo_005fencrypt"><code>arctwo_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-arctwo_005fset_005fkey"><code>arctwo_set_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-arctwo_005fset_005fkey_005fekb"><code>arctwo_set_key_ekb</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-arctwo_005fset_005fkey_005fgutmann"><code>arctwo_set_key_gutmann</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Authenticated-encryption">Authenticated encryption</a>:</td><td> </td><td valign="top"><a href="#Authenticated-encryption">Authenticated encryption</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-B">B</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-base16_005fdecode_005ffinal"><code>base16_decode_final</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base16_005fdecode_005finit"><code>base16_decode_init</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-BASE16_005fDECODE_005fLENGTH"><code>BASE16_DECODE_LENGTH</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base16_005fdecode_005fsingle"><code>base16_decode_single</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base16_005fdecode_005fupdate"><code>base16_decode_update</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-BASE16_005fENCODE_005fLENGTH"><code>BASE16_ENCODE_LENGTH</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base16_005fencode_005fsingle"><code>base16_encode_single</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base16_005fencode_005fupdate"><code>base16_encode_update</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base64url_005fdecode_005finit"><code>base64url_decode_init</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base64url_005fencode_005finit"><code>base64url_encode_init</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base64_005fdecode_005ffinal"><code>base64_decode_final</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base64_005fdecode_005finit"><code>base64_decode_init</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-BASE64_005fDECODE_005fLENGTH"><code>BASE64_DECODE_LENGTH</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base64_005fdecode_005fsingle"><code>base64_decode_single</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base64_005fdecode_005fupdate"><code>base64_decode_update</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base64_005fencode_005ffinal"><code>base64_encode_final</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base64_005fencode_005finit"><code>base64_encode_init</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-BASE64_005fENCODE_005fLENGTH"><code>BASE64_ENCODE_LENGTH</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base64_005fencode_005fsingle"><code>base64_encode_single</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-base64_005fencode_005fupdate"><code>base64_encode_update</code></a>:</td><td> </td><td valign="top"><a href="#ASCII-encoding">ASCII encoding</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Block-Cipher">Block Cipher</a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-blowfish_005fdecrypt"><code>blowfish_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-blowfish_005fencrypt"><code>blowfish_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-blowfish_005fset_005fkey"><code>blowfish_set_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-C">C</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia128_005fcrypt"><code>camellia128_crypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia128_005finvert_005fkey"><code>camellia128_invert_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia128_005fset_005fdecrypt_005fkey"><code>camellia128_set_decrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia128_005fset_005fencrypt_005fkey"><code>camellia128_set_encrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia192_005fcrypt"><code>camellia192_crypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia192_005finvert_005fkey"><code>camellia192_invert_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia192_005fset_005fdecrypt_005fkey"><code>camellia192_set_decrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia192_005fset_005fencrypt_005fkey"><code>camellia192_set_encrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia256_005fcrypt"><code>camellia256_crypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia256_005finvert_005fkey"><code>camellia256_invert_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia256_005fset_005fdecrypt_005fkey"><code>camellia256_set_decrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia256_005fset_005fencrypt_005fkey"><code>camellia256_set_encrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia_005fcrypt"><code>camellia_crypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia_005finvert_005fkey"><code>camellia_invert_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia_005fset_005fdecrypt_005fkey"><code>camellia_set_decrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-camellia_005fset_005fencrypt_005fkey"><code>camellia_set_encrypt_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cast128_005fdecrypt"><code>cast128_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cast128_005fencrypt"><code>cast128_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cast128_005fset_005fkey"><code>cast128_set_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CBC-Mode">CBC Mode</a>:</td><td> </td><td valign="top"><a href="#CBC">CBC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CBC_005fCTX"><code>CBC_CTX</code></a>:</td><td> </td><td valign="top"><a href="#CBC">CBC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cbc_005fdecrypt"><code>cbc_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#CBC">CBC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CBC_005fDECRYPT"><code>CBC_DECRYPT</code></a>:</td><td> </td><td valign="top"><a href="#CBC">CBC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-cbc_005fencrypt"><code>cbc_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#CBC">CBC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CBC_005fENCRYPT"><code>CBC_ENCRYPT</code></a>:</td><td> </td><td valign="top"><a href="#CBC">CBC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CBC_005fSET_005fIV"><code>CBC_SET_IV</code></a>:</td><td> </td><td valign="top"><a href="#CBC">CBC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CCM-Mode">CCM Mode</a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes128_005fdecrypt"><code>ccm_aes128_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes128_005fdecrypt_005fmessage"><code>ccm_aes128_decrypt_message</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes128_005fdigest"><code>ccm_aes128_digest</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes128_005fencrypt"><code>ccm_aes128_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes128_005fencrypt_005fmessage"><code>ccm_aes128_encrypt_message</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes128_005fset_005fkey"><code>ccm_aes128_set_key</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes128_005fset_005fnonce"><code>ccm_aes128_set_nonce</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes128_005fupdate"><code>ccm_aes128_update</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes192_005fdecrypt"><code>ccm_aes192_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes192_005fdecrypt_005fmessage"><code>ccm_aes192_decrypt_message</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes192_005fdecrypt_005fmessage-1"><code>ccm_aes192_decrypt_message</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes192_005fdigest"><code>ccm_aes192_digest</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes192_005fencrypt"><code>ccm_aes192_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes192_005fencrypt_005fmessage"><code>ccm_aes192_encrypt_message</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes192_005fset_005fkey"><code>ccm_aes192_set_key</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes192_005fset_005fnonce"><code>ccm_aes192_set_nonce</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes192_005fupdate"><code>ccm_aes192_update</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes256_005fdecrypt"><code>ccm_aes256_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes256_005fdigest"><code>ccm_aes256_digest</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes256_005fencrypt"><code>ccm_aes256_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes256_005fencrypt_005fmessage"><code>ccm_aes256_encrypt_message</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes256_005fset_005fkey"><code>ccm_aes256_set_key</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes256_005fset_005fnonce"><code>ccm_aes256_set_nonce</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005faes256_005fupdate"><code>ccm_aes256_update</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005fdecrypt"><code>ccm_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005fdecrypt_005fmessage"><code>ccm_decrypt_message</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005fdigest"><code>ccm_digest</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005fencrypt"><code>ccm_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005fencrypt_005fmessage"><code>ccm_encrypt_message</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CCM_005fMAX_005fMSG_005fSIZE"><code>CCM_MAX_MSG_SIZE</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005fset_005fnonce"><code>ccm_set_nonce</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ccm_005fupdate"><code>ccm_update</code></a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-chacha_005fcrypt"><code>chacha_crypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-chacha_005fpoly1305_005fdecrypt"><code>chacha_poly1305_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#ChaCha_002dPoly1305">ChaCha-Poly1305</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-chacha_005fpoly1305_005fdigest"><code>chacha_poly1305_digest</code></a>:</td><td> </td><td valign="top"><a href="#ChaCha_002dPoly1305">ChaCha-Poly1305</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-chacha_005fpoly1305_005fencrypt"><code>chacha_poly1305_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#ChaCha_002dPoly1305">ChaCha-Poly1305</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-chacha_005fpoly1305_005fset_005fkey"><code>chacha_poly1305_set_key</code></a>:</td><td> </td><td valign="top"><a href="#ChaCha_002dPoly1305">ChaCha-Poly1305</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-chacha_005fpoly1305_005fset_005fnonce"><code>chacha_poly1305_set_nonce</code></a>:</td><td> </td><td valign="top"><a href="#ChaCha_002dPoly1305">ChaCha-Poly1305</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-chacha_005fpoly1305_005fupdate"><code>chacha_poly1305_update</code></a>:</td><td> </td><td valign="top"><a href="#ChaCha_002dPoly1305">ChaCha-Poly1305</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-chacha_005fset_005fkey"><code>chacha_set_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-chacha_005fset_005fnonce"><code>chacha_set_nonce</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Cipher">Cipher</a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Cipher-Block-Chaining">Cipher Block Chaining</a>:</td><td> </td><td valign="top"><a href="#CBC">CBC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Collision_002dresistant">Collision-resistant</a>:</td><td> </td><td valign="top"><a href="#Hash-functions">Hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Conditional-entropy">Conditional entropy</a>:</td><td> </td><td valign="top"><a href="#Randomness">Randomness</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Counter-Mode">Counter Mode</a>:</td><td> </td><td valign="top"><a href="#CTR">CTR</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Counter-with-CBC_002dMAC-Mode">Counter with CBC-MAC Mode</a>:</td><td> </td><td valign="top"><a href="#CCM">CCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CTR-Mode">CTR Mode</a>:</td><td> </td><td valign="top"><a href="#CTR">CTR</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ctr_005fcrypt"><code>ctr_crypt</code></a>:</td><td> </td><td valign="top"><a href="#CTR">CTR</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CTR_005fCRYPT"><code>CTR_CRYPT</code></a>:</td><td> </td><td valign="top"><a href="#CTR">CTR</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CTR_005fCTX"><code>CTR_CTX</code></a>:</td><td> </td><td valign="top"><a href="#CTR">CTR</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-CTR_005fSET_005fCOUNTER"><code>CTR_SET_COUNTER</code></a>:</td><td> </td><td valign="top"><a href="#CTR">CTR</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Curve-25519">Curve 25519</a>:</td><td> </td><td valign="top"><a href="#Curve-25519">Curve 25519</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-curve25519_005fmul"><code>curve25519_mul</code></a>:</td><td> </td><td valign="top"><a href="#Curve-25519">Curve 25519</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-curve25519_005fmul_005fg"><code>curve25519_mul_g</code></a>:</td><td> </td><td valign="top"><a href="#Curve-25519">Curve 25519</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-D">D</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-des3_005fdecrypt"><code>des3_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-des3_005fencrypt"><code>des3_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-des3_005fset_005fkey"><code>des3_set_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-des_005fcheck_005fparity"><code>des_check_parity</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-des_005fdecrypt"><code>des_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-des_005fencrypt"><code>des_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-des_005ffix_005fparity"><code>des_fix_parity</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-des_005fset_005fkey"><code>des_set_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fcompat_005fgenerate_005fkeypair"><code>dsa_compat_generate_keypair</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fgenerate_005fkeypair"><code>dsa_generate_keypair</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fgenerate_005fparams"><code>dsa_generate_params</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fparams_005fclear"><code>dsa_params_clear</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fparams_005finit"><code>dsa_params_init</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fprivate_005fkey_005fclear"><code>dsa_private_key_clear</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fprivate_005fkey_005finit"><code>dsa_private_key_init</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fpublic_005fkey_005fclear"><code>dsa_public_key_clear</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fpublic_005fkey_005finit"><code>dsa_public_key_init</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fsha1_005fsign"><code>dsa_sha1_sign</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fsha1_005fsign_005fdigest"><code>dsa_sha1_sign_digest</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fsha1_005fverify"><code>dsa_sha1_verify</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fsha1_005fverify_005fdigest"><code>dsa_sha1_verify_digest</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fsha256_005fsign"><code>dsa_sha256_sign</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fsha256_005fsign_005fdigest"><code>dsa_sha256_sign_digest</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fsha256_005fverify"><code>dsa_sha256_verify</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fsha256_005fverify_005fdigest"><code>dsa_sha256_verify_digest</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fsign"><code>dsa_sign</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fsignature_005fclear"><code>dsa_signature_clear</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fsignature_005finit"><code>dsa_signature_init</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-dsa_005fverify"><code>dsa_verify</code></a>:</td><td> </td><td valign="top"><a href="#DSA">DSA</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-E">E</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-eax_005faes128_005fdecrypt"><code>eax_aes128_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eax_005faes128_005fdigest"><code>eax_aes128_digest</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eax_005faes128_005fencrypt"><code>eax_aes128_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eax_005faes128_005fset_005fkey"><code>eax_aes128_set_key</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eax_005faes128_005fset_005fnonce"><code>eax_aes128_set_nonce</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eax_005faes128_005fupdate"><code>eax_aes128_update</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-EAX_005fCTX"><code>EAX_CTX</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eax_005fdecrypt"><code>eax_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-EAX_005fDECRYPT"><code>EAX_DECRYPT</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eax_005fdigest"><code>eax_digest</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-EAX_005fDIGEST"><code>EAX_DIGEST</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eax_005fencrypt"><code>eax_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-EAX_005fENCRYPT"><code>EAX_ENCRYPT</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eax_005fset_005fkey"><code>eax_set_key</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-EAX_005fSET_005fKEY"><code>EAX_SET_KEY</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eax_005fset_005fnonce"><code>eax_set_nonce</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-EAX_005fSET_005fNONCE"><code>EAX_SET_NONCE</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eax_005fupdate"><code>eax_update</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-EAX_005fUPDATE"><code>EAX_UPDATE</code></a>:</td><td> </td><td valign="top"><a href="#EAX">EAX</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ecc_005fpoint_005fclear"><code>ecc_point_clear</code></a>:</td><td> </td><td valign="top"><a href="#ECDSA">ECDSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ecc_005fpoint_005fget"><code>ecc_point_get</code></a>:</td><td> </td><td valign="top"><a href="#ECDSA">ECDSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ecc_005fpoint_005finit"><code>ecc_point_init</code></a>:</td><td> </td><td valign="top"><a href="#ECDSA">ECDSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ecc_005fpoint_005fset"><code>ecc_point_set</code></a>:</td><td> </td><td valign="top"><a href="#ECDSA">ECDSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ecc_005fscalar_005fclear"><code>ecc_scalar_clear</code></a>:</td><td> </td><td valign="top"><a href="#ECDSA">ECDSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ecc_005fscalar_005fget"><code>ecc_scalar_get</code></a>:</td><td> </td><td valign="top"><a href="#ECDSA">ECDSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ecc_005fscalar_005finit"><code>ecc_scalar_init</code></a>:</td><td> </td><td valign="top"><a href="#ECDSA">ECDSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ecc_005fscalar_005fset"><code>ecc_scalar_set</code></a>:</td><td> </td><td valign="top"><a href="#ECDSA">ECDSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ecdsa_005fgenerate_005fkeypair"><code>ecdsa_generate_keypair</code></a>:</td><td> </td><td valign="top"><a href="#ECDSA">ECDSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ecdsa_005fsign"><code>ecdsa_sign</code></a>:</td><td> </td><td valign="top"><a href="#ECDSA">ECDSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ecdsa_005fverify"><code>ecdsa_verify</code></a>:</td><td> </td><td valign="top"><a href="#ECDSA">ECDSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ed25519_005fsha512_005fpublic_005fkey"><code>ed25519_sha512_public_key</code></a>:</td><td> </td><td valign="top"><a href="#Curve-25519">Curve 25519</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ed25519_005fsha512_005fsign"><code>ed25519_sha512_sign</code></a>:</td><td> </td><td valign="top"><a href="#Curve-25519">Curve 25519</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ed25519_005fsha512_005fverify"><code>ed25519_sha512_verify</code></a>:</td><td> </td><td valign="top"><a href="#Curve-25519">Curve 25519</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-eddsa">eddsa</a>:</td><td> </td><td valign="top"><a href="#Curve-25519">Curve 25519</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Entropy">Entropy</a>:</td><td> </td><td valign="top"><a href="#Randomness">Randomness</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-G">G</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Galois-Counter-Mode">Galois Counter Mode</a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GCM">GCM</a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes128_005fdecrypt"><code>gcm_aes128_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes128_005fdigest"><code>gcm_aes128_digest</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes128_005fencrypt"><code>gcm_aes128_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes128_005fset_005fiv"><code>gcm_aes128_set_iv</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes128_005fset_005fkey"><code>gcm_aes128_set_key</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes128_005fupdate"><code>gcm_aes128_update</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes192_005fdecrypt"><code>gcm_aes192_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes192_005fdigest"><code>gcm_aes192_digest</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes192_005fencrypt"><code>gcm_aes192_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes192_005fset_005fiv"><code>gcm_aes192_set_iv</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes192_005fset_005fkey"><code>gcm_aes192_set_key</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes192_005fupdate"><code>gcm_aes192_update</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes256_005fdecrypt"><code>gcm_aes256_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes256_005fdigest"><code>gcm_aes256_digest</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes256_005fencrypt"><code>gcm_aes256_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes256_005fset_005fiv"><code>gcm_aes256_set_iv</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes256_005fset_005fkey"><code>gcm_aes256_set_key</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes256_005fupdate"><code>gcm_aes256_update</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes_005fdecrypt"><code>gcm_aes_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes_005fdigest"><code>gcm_aes_digest</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes_005fencrypt"><code>gcm_aes_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes_005fset_005fiv"><code>gcm_aes_set_iv</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes_005fset_005fkey"><code>gcm_aes_set_key</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005faes_005fupdate"><code>gcm_aes_update</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fcamellia128_005fdecrypt"><code>gcm_camellia128_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fcamellia128_005fdigest"><code>gcm_camellia128_digest</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fcamellia128_005fencrypt"><code>gcm_camellia128_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fcamellia128_005fset_005fiv"><code>gcm_camellia128_set_iv</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fcamellia128_005fset_005fkey"><code>gcm_camellia128_set_key</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fcamellia128_005fupdate"><code>gcm_camellia128_update</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fcamellia192_005fdigest"><code>gcm_camellia192_digest</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fcamellia256_005fdecrypt"><code>gcm_camellia256_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fcamellia256_005fdigest"><code>gcm_camellia256_digest</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fcamellia256_005fencrypt"><code>gcm_camellia256_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fcamellia256_005fset_005fiv"><code>gcm_camellia256_set_iv</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fcamellia256_005fset_005fkey"><code>gcm_camellia256_set_key</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fcamellia256_005fupdate"><code>gcm_camellia256_update</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fcamellia_005fdigest"><code>gcm_camellia_digest</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GCM_005fCTX"><code>GCM_CTX</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fdecrypt"><code>gcm_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GCM_005fDECRYPT"><code>GCM_DECRYPT</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fdigest"><code>gcm_digest</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GCM_005fDIGEST"><code>GCM_DIGEST</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fencrypt"><code>gcm_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GCM_005fENCRYPT"><code>GCM_ENCRYPT</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fset_005fiv"><code>gcm_set_iv</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GCM_005fSET_005fIV"><code>GCM_SET_IV</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fset_005fkey"><code>gcm_set_key</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GCM_005fSET_005fKEY"><code>GCM_SET_KEY</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gcm_005fupdate"><code>gcm_update</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-GCM_005fUPDATE"><code>GCM_UPDATE</code></a>:</td><td> </td><td valign="top"><a href="#GCM">GCM</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gosthash94_005fdigest"><code>gosthash94_digest</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gosthash94_005finit"><code>gosthash94_init</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-gosthash94_005fupdate"><code>gosthash94_update</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-H">H</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Hash-function">Hash function</a>:</td><td> </td><td valign="top"><a href="#Hash-functions">Hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-HMAC">HMAC</a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-HMAC_005fCTX"><code>HMAC_CTX</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fdigest"><code>hmac_digest</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-HMAC_005fDIGEST"><code>HMAC_DIGEST</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fmd5_005fdigest"><code>hmac_md5_digest</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fmd5_005fset_005fkey"><code>hmac_md5_set_key</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fmd5_005fupdate"><code>hmac_md5_update</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fripemd160_005fdigest"><code>hmac_ripemd160_digest</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fripemd160_005fset_005fkey"><code>hmac_ripemd160_set_key</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fripemd160_005fupdate"><code>hmac_ripemd160_update</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fset_005fkey"><code>hmac_set_key</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-HMAC_005fSET_005fKEY"><code>HMAC_SET_KEY</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fsha1_005fdigest"><code>hmac_sha1_digest</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fsha1_005fset_005fkey"><code>hmac_sha1_set_key</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fsha1_005fupdate"><code>hmac_sha1_update</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fsha256_005fdigest"><code>hmac_sha256_digest</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fsha256_005fset_005fkey"><code>hmac_sha256_set_key</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fsha256_005fupdate"><code>hmac_sha256_update</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fsha512_005fdigest"><code>hmac_sha512_digest</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fsha512_005fset_005fkey"><code>hmac_sha512_set_key</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fsha512_005fupdate"><code>hmac_sha512_update</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-hmac_005fupdate"><code>hmac_update</code></a>:</td><td> </td><td valign="top"><a href="#HMAC">HMAC</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-K">K</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-KDF">KDF</a>:</td><td> </td><td valign="top"><a href="#Key-derivation-functions">Key derivation functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Key-Derivation-Function">Key Derivation Function</a>:</td><td> </td><td valign="top"><a href="#Key-derivation-functions">Key derivation functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Keyed-Hash-Function">Keyed Hash Function</a>:</td><td> </td><td valign="top"><a href="#Keyed-hash-functions">Keyed hash functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-M">M</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-MAC">MAC</a>:</td><td> </td><td valign="top"><a href="#Keyed-hash-functions">Keyed hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-md2_005fdigest"><code>md2_digest</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-md2_005finit"><code>md2_init</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-md2_005fupdate"><code>md2_update</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-md4_005fdigest"><code>md4_digest</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-md4_005finit"><code>md4_init</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-md4_005fupdate"><code>md4_update</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-md5_005fdigest"><code>md5_digest</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-md5_005finit"><code>md5_init</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-md5_005fupdate"><code>md5_update</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-memeql_005fsec"><code>memeql_sec</code></a>:</td><td> </td><td valign="top"><a href="#Miscellaneous-functions">Miscellaneous functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-memxor"><code>memxor</code></a>:</td><td> </td><td valign="top"><a href="#Miscellaneous-functions">Miscellaneous functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-memxor3"><code>memxor3</code></a>:</td><td> </td><td valign="top"><a href="#Miscellaneous-functions">Miscellaneous functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Message-Authentication-Code">Message Authentication Code</a>:</td><td> </td><td valign="top"><a href="#Keyed-hash-functions">Keyed hash functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-N">N</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-nettle_005faead">nettle_aead</a>:</td><td> </td><td valign="top"><a href="#nettle_005faead-abstraction">nettle_aead abstraction</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nettle_005faeads">nettle_aeads</a>:</td><td> </td><td valign="top"><a href="#nettle_005faead-abstraction">nettle_aead abstraction</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nettle_005fcipher">nettle_cipher</a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nettle_005fciphers">nettle_ciphers</a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nettle_005fhash">nettle_hash</a>:</td><td> </td><td valign="top"><a href="#nettle_005fhash-abstraction">nettle_hash abstraction</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-nettle_005fhashes">nettle_hashes</a>:</td><td> </td><td valign="top"><a href="#nettle_005fhash-abstraction">nettle_hash abstraction</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-O">O</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-One_002dway">One-way</a>:</td><td> </td><td valign="top"><a href="#Hash-functions">Hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-One_002dway-function">One-way function</a>:</td><td> </td><td valign="top"><a href="#Public_002dkey-algorithms">Public-key algorithms</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-P">P</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Password-Based-Key-Derivation-Function">Password Based Key Derivation Function</a>:</td><td> </td><td valign="top"><a href="#Key-derivation-functions">Key derivation functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-PBKDF">PBKDF</a>:</td><td> </td><td valign="top"><a href="#Key-derivation-functions">Key derivation functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pbkdf2"><code>pbkdf2</code></a>:</td><td> </td><td valign="top"><a href="#Key-derivation-functions">Key derivation functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-PBKDF2"><code>PBKDF2</code></a>:</td><td> </td><td valign="top"><a href="#Key-derivation-functions">Key derivation functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pbkdf2_005fhmac_005fsha1"><code>pbkdf2_hmac_sha1</code></a>:</td><td> </td><td valign="top"><a href="#Key-derivation-functions">Key derivation functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-pbkdf2_005fhmac_005fsha256"><code>pbkdf2_hmac_sha256</code></a>:</td><td> </td><td valign="top"><a href="#Key-derivation-functions">Key derivation functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-PKCS-_00235">PKCS #5</a>:</td><td> </td><td valign="top"><a href="#Key-derivation-functions">Key derivation functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-poly1305_005faes_005fdigest"><code>poly1305_aes_digest</code></a>:</td><td> </td><td valign="top"><a href="#Poly1305">Poly1305</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-poly1305_005faes_005fset_005fkey"><code>poly1305_aes_set_key</code></a>:</td><td> </td><td valign="top"><a href="#Poly1305">Poly1305</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-poly1305_005faes_005fset_005fnonce"><code>poly1305_aes_set_nonce</code></a>:</td><td> </td><td valign="top"><a href="#Poly1305">Poly1305</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-poly1305_005faes_005fupdate"><code>poly1305_aes_update</code></a>:</td><td> </td><td valign="top"><a href="#Poly1305">Poly1305</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Public-Key-Cryptography">Public Key Cryptography</a>:</td><td> </td><td valign="top"><a href="#Public_002dkey-algorithms">Public-key algorithms</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-R">R</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-Randomness">Randomness</a>:</td><td> </td><td valign="top"><a href="#Randomness">Randomness</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ripemd160_005fdigest"><code>ripemd160_digest</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ripemd160_005finit"><code>ripemd160_init</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-ripemd160_005fupdate"><code>ripemd160_update</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fcompute_005froot"><code>rsa_compute_root</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fcompute_005froot_005ftr_0028const"><code>rsa_compute_root_tr(const</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fdecrypt"><code>rsa_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fdecrypt_005ftr"><code>rsa_decrypt_tr</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fencrypt"><code>rsa_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fgenerate_005fkeypair"><code>rsa_generate_keypair</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fmd5_005fsign"><code>rsa_md5_sign</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fmd5_005fsign_005fdigest"><code>rsa_md5_sign_digest</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fmd5_005fsign_005fdigest_005ftr_0028const"><code>rsa_md5_sign_digest_tr(const</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fmd5_005fsign_005ftr_0028const"><code>rsa_md5_sign_tr(const</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fmd5_005fverify"><code>rsa_md5_verify</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fmd5_005fverify_005fdigest"><code>rsa_md5_verify_digest</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fpkcs1_005fsign_0028const"><code>rsa_pkcs1_sign(const</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fpkcs1_005fsign_005ftr_0028const"><code>rsa_pkcs1_sign_tr(const</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fpkcs1_005fverify_0028const"><code>rsa_pkcs1_verify(const</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fprivate_005fkey_005fclear"><code>rsa_private_key_clear</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fprivate_005fkey_005finit"><code>rsa_private_key_init</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fprivate_005fkey_005fprepare"><code>rsa_private_key_prepare</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fpublic_005fkey_005fclear"><code>rsa_public_key_clear</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fpublic_005fkey_005finit"><code>rsa_public_key_init</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fpublic_005fkey_005fprepare"><code>rsa_public_key_prepare</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha1_005fsign"><code>rsa_sha1_sign</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha1_005fsign_005fdigest"><code>rsa_sha1_sign_digest</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha1_005fsign_005fdigest_005ftr_0028const"><code>rsa_sha1_sign_digest_tr(const</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha1_005fsign_005ftr_0028const"><code>rsa_sha1_sign_tr(const</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha1_005fverify"><code>rsa_sha1_verify</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha1_005fverify_005fdigest"><code>rsa_sha1_verify_digest</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha256_005fsign"><code>rsa_sha256_sign</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha256_005fsign_005fdigest"><code>rsa_sha256_sign_digest</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha256_005fsign_005fdigest_005ftr_0028const"><code>rsa_sha256_sign_digest_tr(const</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha256_005fsign_005ftr_0028const"><code>rsa_sha256_sign_tr(const</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha256_005fverify"><code>rsa_sha256_verify</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha256_005fverify_005fdigest"><code>rsa_sha256_verify_digest</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha512_005fsign"><code>rsa_sha512_sign</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha512_005fsign_005fdigest"><code>rsa_sha512_sign_digest</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha512_005fsign_005fdigest_005ftr_0028const"><code>rsa_sha512_sign_digest_tr(const</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha512_005fsign_005ftr_0028const"><code>rsa_sha512_sign_tr(const</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha512_005fverify"><code>rsa_sha512_verify</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-rsa_005fsha512_005fverify_005fdigest"><code>rsa_sha512_verify_digest</code></a>:</td><td> </td><td valign="top"><a href="#RSA">RSA</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-S">S</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-salsa20r12_005fcrypt"><code>salsa20r12_crypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-salsa20_005f128_005fset_005fkey"><code>salsa20_128_set_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-salsa20_005f256_005fset_005fkey"><code>salsa20_256_set_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-salsa20_005fcrypt"><code>salsa20_crypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-salsa20_005fset_005fkey"><code>salsa20_set_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-salsa20_005fset_005fnonce"><code>salsa20_set_nonce</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-serpent_005fdecrypt"><code>serpent_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-serpent_005fencrypt"><code>serpent_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-serpent_005fset_005fkey"><code>serpent_set_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha1_005fdigest"><code>sha1_digest</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha1_005finit"><code>sha1_init</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha1_005fupdate"><code>sha1_update</code></a>:</td><td> </td><td valign="top"><a href="#Legacy-hash-functions">Legacy hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha224_005fdigest"><code>sha224_digest</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha224_005finit"><code>sha224_init</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha224_005fupdate"><code>sha224_update</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha256_005fdigest"><code>sha256_digest</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha256_005finit"><code>sha256_init</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha256_005fupdate"><code>sha256_update</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-SHA3">SHA3</a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha384_005fdigest"><code>sha384_digest</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha384_005finit"><code>sha384_init</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha384_005fupdate"><code>sha384_update</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha3_005f224_005fdigest"><code>sha3_224_digest</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha3_005f224_005finit"><code>sha3_224_init</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha3_005f224_005fupdate"><code>sha3_224_update</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha3_005f256_005fdigest"><code>sha3_256_digest</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha3_005f256_005finit"><code>sha3_256_init</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha3_005f256_005fupdate"><code>sha3_256_update</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha3_005f384_005fdigest"><code>sha3_384_digest</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha3_005f384_005finit"><code>sha3_384_init</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha3_005f384_005fupdate"><code>sha3_384_update</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha3_005f512_005fdigest"><code>sha3_512_digest</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha3_005f512_005finit"><code>sha3_512_init</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha3_005f512_005fupdate"><code>sha3_512_update</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha512_005f224_005fdigest"><code>sha512_224_digest</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha512_005f224_005finit"><code>sha512_224_init</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha512_005f224_005fupdate"><code>sha512_224_update</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha512_005f256_005fdigest"><code>sha512_256_digest</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha512_005f256_005finit"><code>sha512_256_init</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha512_005f256_005fupdate"><code>sha512_256_update</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha512_005fdigest"><code>sha512_digest</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha512_005finit"><code>sha512_init</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-sha512_005fupdate"><code>sha512_update</code></a>:</td><td> </td><td valign="top"><a href="#Recommended-hash-functions">Recommended hash functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Side_002dchannel-attack">Side-channel attack</a>:</td><td> </td><td valign="top"><a href="#Side_002dchannel-silence">Side-channel silence</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-Stream-Cipher">Stream Cipher</a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-T">T</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-twofish_005fdecrypt"><code>twofish_decrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-twofish_005fencrypt"><code>twofish_encrypt</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-twofish_005fset_005fkey"><code>twofish_set_key</code></a>:</td><td> </td><td valign="top"><a href="#Cipher-functions">Cipher functions</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-U">U</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-UMAC">UMAC</a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac128_005fdigest"><code>umac128_digest</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac128_005fset_005fkey"><code>umac128_set_key</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac128_005fset_005fnonce"><code>umac128_set_nonce</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac128_005fupdate"><code>umac128_update</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac32_005fdigest"><code>umac32_digest</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac32_005fset_005fkey"><code>umac32_set_key</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac32_005fset_005fnonce"><code>umac32_set_nonce</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac32_005fupdate"><code>umac32_update</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac64_005fdigest"><code>umac64_digest</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac64_005fset_005fkey"><code>umac64_set_key</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac64_005fset_005fnonce"><code>umac64_set_nonce</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac64_005fupdate"><code>umac64_update</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac96_005fdigest"><code>umac96_digest</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac96_005fset_005fkey"><code>umac96_set_key</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac96_005fset_005fnonce"><code>umac96_set_nonce</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-umac96_005fupdate"><code>umac96_update</code></a>:</td><td> </td><td valign="top"><a href="#UMAC">UMAC</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
<tr><th><a name="Index_cp_letter-Y">Y</a></th><td></td><td></td></tr>
<tr><td></td><td valign="top"><a href="#index-yarrow256_005ffast_005freseed"><code>yarrow256_fast_reseed</code></a>:</td><td> </td><td valign="top"><a href="#Randomness">Randomness</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-yarrow256_005finit"><code>yarrow256_init</code></a>:</td><td> </td><td valign="top"><a href="#Randomness">Randomness</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-yarrow256_005fis_005fseeded"><code>yarrow256_is_seeded</code></a>:</td><td> </td><td valign="top"><a href="#Randomness">Randomness</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-yarrow256_005fneeded_005fsources"><code>yarrow256_needed_sources</code></a>:</td><td> </td><td valign="top"><a href="#Randomness">Randomness</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-yarrow256_005frandom"><code>yarrow256_random</code></a>:</td><td> </td><td valign="top"><a href="#Randomness">Randomness</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-yarrow256_005fseed"><code>yarrow256_seed</code></a>:</td><td> </td><td valign="top"><a href="#Randomness">Randomness</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-yarrow256_005fslow_005freseed"><code>yarrow256_slow_reseed</code></a>:</td><td> </td><td valign="top"><a href="#Randomness">Randomness</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-yarrow256_005fupdate"><code>yarrow256_update</code></a>:</td><td> </td><td valign="top"><a href="#Randomness">Randomness</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-yarrow_005fkey_005fevent_005festimate"><code>yarrow_key_event_estimate</code></a>:</td><td> </td><td valign="top"><a href="#Randomness">Randomness</a></td></tr>
<tr><td></td><td valign="top"><a href="#index-yarrow_005fkey_005fevent_005finit"><code>yarrow_key_event_init</code></a>:</td><td> </td><td valign="top"><a href="#Randomness">Randomness</a></td></tr>
<tr><td colspan="4"> <hr></td></tr>
</table>
<table><tr><th valign="top">Jump to: </th><td><a class="summary-letter" href="#Index_cp_letter-A"><b>A</b></a>
<a class="summary-letter" href="#Index_cp_letter-B"><b>B</b></a>
<a class="summary-letter" href="#Index_cp_letter-C"><b>C</b></a>
<a class="summary-letter" href="#Index_cp_letter-D"><b>D</b></a>
<a class="summary-letter" href="#Index_cp_letter-E"><b>E</b></a>
<a class="summary-letter" href="#Index_cp_letter-G"><b>G</b></a>
<a class="summary-letter" href="#Index_cp_letter-H"><b>H</b></a>
<a class="summary-letter" href="#Index_cp_letter-K"><b>K</b></a>
<a class="summary-letter" href="#Index_cp_letter-M"><b>M</b></a>
<a class="summary-letter" href="#Index_cp_letter-N"><b>N</b></a>
<a class="summary-letter" href="#Index_cp_letter-O"><b>O</b></a>
<a class="summary-letter" href="#Index_cp_letter-P"><b>P</b></a>
<a class="summary-letter" href="#Index_cp_letter-R"><b>R</b></a>
<a class="summary-letter" href="#Index_cp_letter-S"><b>S</b></a>
<a class="summary-letter" href="#Index_cp_letter-T"><b>T</b></a>
<a class="summary-letter" href="#Index_cp_letter-U"><b>U</b></a>
<a class="summary-letter" href="#Index_cp_letter-Y"><b>Y</b></a>
</td></tr></table>
<hr>
<a name="SEC_Foot"></a>
<div class="header">
<p>
[<a href="#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="#Index" title="Index" rel="index">Index</a>]</p>
</div>
<h4 class="footnotes-heading">Footnotes</h4>
<h3><a name="FOOT1" href="#DOCF1">(1)</a></h3>
<p>Actually, the computation is not done like this, it is
done more efficiently using <code>p</code>, <code>q</code> and the Chinese remainder
theorem (<acronym>CRT</acronym>). But the result is the same.</p>
<hr>
</body>
</html>
|