/usr/include/nodejs/src/string_search.h is in nodejs-dev 4.8.2~dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 | // Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef SRC_STRING_SEARCH_H_
#define SRC_STRING_SEARCH_H_
#include "node.h"
#include <string.h>
namespace node {
namespace stringsearch {
// Returns the maximum of the two parameters.
template <typename T>
T Max(T a, T b) {
return a < b ? b : a;
}
static const uint32_t kMaxOneByteCharCodeU = 0xff;
static inline size_t NonOneByteStart(const uint16_t* chars, size_t length) {
const uint16_t* limit = chars + length;
const uint16_t* start = chars;
while (chars < limit) {
if (*chars > kMaxOneByteCharCodeU)
return static_cast<size_t>(chars - start);
++chars;
}
return static_cast<size_t>(chars - start);
}
static inline bool IsOneByte(const uint16_t* chars, size_t length) {
return NonOneByteStart(chars, length) >= length;
}
template <typename T>
class Vector {
public:
Vector(T* data, size_t length) : start_(data), length_(length) {
ASSERT(length > 0 && data != nullptr);
}
// Returns the length of the vector.
size_t length() const { return length_; }
T* start() const { return start_; }
// Access individual vector elements - checks bounds in debug mode.
T& operator[](size_t index) const {
ASSERT(index < length_);
return start_[index];
}
const T& at(size_t index) const { return operator[](index); }
bool operator==(const Vector<T>& other) const {
if (length_ != other.length_)
return false;
if (start_ == other.start_)
return true;
for (size_t i = 0; i < length_; ++i) {
if (start_[i] != other.start_[i]) {
return false;
}
}
return true;
}
private:
T* start_;
size_t length_;
};
//---------------------------------------------------------------------
// String Search object.
//---------------------------------------------------------------------
// Class holding constants and methods that apply to all string search variants,
// independently of subject and pattern char size.
class StringSearchBase {
protected:
// Cap on the maximal shift in the Boyer-Moore implementation. By setting a
// limit, we can fix the size of tables. For a needle longer than this limit,
// search will not be optimal, since we only build tables for a suffix
// of the string, but it is a safe approximation.
static const int kBMMaxShift = 250;
// Reduce alphabet to this size.
// One of the tables used by Boyer-Moore and Boyer-Moore-Horspool has size
// proportional to the input alphabet. We reduce the alphabet size by
// equating input characters modulo a smaller alphabet size. This gives
// a potentially less efficient searching, but is a safe approximation.
// For needles using only characters in the same Unicode 256-code point page,
// there is no search speed degradation.
static const int kLatin1AlphabetSize = 256;
static const int kUC16AlphabetSize = 256;
// Bad-char shift table stored in the state. It's length is the alphabet size.
// For patterns below this length, the skip length of Boyer-Moore is too short
// to compensate for the algorithmic overhead compared to simple brute force.
static const int kBMMinPatternLength = 8;
// Store for the BoyerMoore(Horspool) bad char shift table.
static int kBadCharShiftTable[kUC16AlphabetSize];
// Store for the BoyerMoore good suffix shift table.
static int kGoodSuffixShiftTable[kBMMaxShift + 1];
// Table used temporarily while building the BoyerMoore good suffix
// shift table.
static int kSuffixTable[kBMMaxShift + 1];
static inline bool IsOneByteString(Vector<const uint8_t> string) {
return true;
}
static inline bool IsOneByteString(Vector<const uint16_t> string) {
return IsOneByte(string.start(), string.length());
}
};
template <typename PatternChar, typename SubjectChar>
class StringSearch : private StringSearchBase {
public:
explicit StringSearch(Vector<const PatternChar> pattern)
: pattern_(pattern), start_(0) {
if (pattern.length() >= kBMMaxShift) {
start_ = pattern.length() - kBMMaxShift;
}
if (sizeof(PatternChar) > sizeof(SubjectChar)) {
if (!IsOneByteString(pattern_)) {
strategy_ = &FailSearch;
return;
}
}
size_t pattern_length = pattern_.length();
CHECK_GT(pattern_length, 0);
if (pattern_length < kBMMinPatternLength) {
if (pattern_length == 1) {
strategy_ = &SingleCharSearch;
return;
}
strategy_ = &LinearSearch;
return;
}
strategy_ = &InitialSearch;
}
size_t Search(Vector<const SubjectChar> subject, size_t index) {
return strategy_(this, subject, index);
}
static inline int AlphabetSize() {
if (sizeof(PatternChar) == 1) {
// Latin1 needle.
return kLatin1AlphabetSize;
} else {
// UC16 needle.
return kUC16AlphabetSize;
}
static_assert(sizeof(PatternChar) == sizeof(uint8_t) ||
sizeof(PatternChar) == sizeof(uint16_t),
"sizeof(PatternChar) == sizeof(uint16_t) || sizeof(uint8_t)");
}
private:
typedef size_t (*SearchFunction)(
StringSearch<PatternChar, SubjectChar>*,
Vector<const SubjectChar>,
size_t);
static size_t FailSearch(StringSearch<PatternChar, SubjectChar>*,
Vector<const SubjectChar> subject,
size_t) {
return subject.length();
}
static size_t SingleCharSearch(StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t start_index);
static size_t LinearSearch(StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t start_index);
static size_t InitialSearch(StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t start_index);
static size_t BoyerMooreHorspoolSearch(
StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t start_index);
static size_t BoyerMooreSearch(StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t start_index);
void PopulateBoyerMooreHorspoolTable();
void PopulateBoyerMooreTable();
static inline bool exceedsOneByte(uint8_t c) { return false; }
static inline bool exceedsOneByte(uint16_t c) {
return c > kMaxOneByteCharCodeU;
}
static inline int CharOccurrence(int* bad_char_occurrence,
SubjectChar char_code) {
if (sizeof(SubjectChar) == 1) {
return bad_char_occurrence[static_cast<int>(char_code)];
}
if (sizeof(PatternChar) == 1) {
if (exceedsOneByte(char_code)) {
return -1;
}
return bad_char_occurrence[static_cast<unsigned int>(char_code)];
}
// Both pattern and subject are UC16. Reduce character to equivalence class.
int equiv_class = char_code % kUC16AlphabetSize;
return bad_char_occurrence[equiv_class];
}
// Store for the BoyerMoore(Horspool) bad char shift table.
// Return a table covering the last kBMMaxShift+1 positions of
// pattern.
int* bad_char_table() { return kBadCharShiftTable; }
// Store for the BoyerMoore good suffix shift table.
int* good_suffix_shift_table() {
// Return biased pointer that maps the range [start_..pattern_.length()
// to the kGoodSuffixShiftTable array.
return kGoodSuffixShiftTable - start_;
}
// Table used temporarily while building the BoyerMoore good suffix
// shift table.
int* suffix_table() {
// Return biased pointer that maps the range [start_..pattern_.length()
// to the kSuffixTable array.
return kSuffixTable - start_;
}
// The pattern to search for.
Vector<const PatternChar> pattern_;
// Pointer to implementation of the search.
SearchFunction strategy_;
// Cache value of Max(0, pattern_length() - kBMMaxShift)
size_t start_;
};
template <typename T, typename U>
inline T AlignDown(T value, U alignment) {
return reinterpret_cast<T>(
(reinterpret_cast<uintptr_t>(value) & ~(alignment - 1)));
}
inline uint8_t GetHighestValueByte(uint16_t character) {
return Max(static_cast<uint8_t>(character & 0xFF),
static_cast<uint8_t>(character >> 8));
}
inline uint8_t GetHighestValueByte(uint8_t character) { return character; }
template <typename PatternChar, typename SubjectChar>
inline size_t FindFirstCharacter(Vector<const PatternChar> pattern,
Vector<const SubjectChar> subject,
size_t index) {
const PatternChar pattern_first_char = pattern[0];
const size_t max_n = (subject.length() - pattern.length() + 1);
const uint8_t search_byte = GetHighestValueByte(pattern_first_char);
const SubjectChar search_char = static_cast<SubjectChar>(pattern_first_char);
size_t pos = index;
do {
const SubjectChar* char_pos = reinterpret_cast<const SubjectChar*>(
memchr(subject.start() + pos, search_byte,
(max_n - pos) * sizeof(SubjectChar)));
if (char_pos == nullptr)
return subject.length();
char_pos = AlignDown(char_pos, sizeof(SubjectChar));
pos = static_cast<size_t>(char_pos - subject.start());
if (subject[pos] == search_char)
return pos;
} while (++pos < max_n);
return subject.length();
}
template <>
inline size_t FindFirstCharacter(Vector<const uint8_t> pattern,
Vector<const uint8_t> subject,
size_t index) {
const uint8_t pattern_first_char = pattern[0];
const size_t max_n = (subject.length() - pattern.length() + 1);
const uint8_t* char_pos = reinterpret_cast<const uint8_t*>(
memchr(subject.start() + index, pattern_first_char, max_n - index));
if (char_pos == nullptr)
return subject.length();
return static_cast<size_t>(char_pos - subject.start());
}
//---------------------------------------------------------------------
// Single Character Pattern Search Strategy
//---------------------------------------------------------------------
template <typename PatternChar, typename SubjectChar>
size_t StringSearch<PatternChar, SubjectChar>::SingleCharSearch(
StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t index) {
CHECK_EQ(1, search->pattern_.length());
PatternChar pattern_first_char = search->pattern_[0];
if (sizeof(SubjectChar) == 1 && sizeof(PatternChar) == 1) {
return FindFirstCharacter(search->pattern_, subject, index);
} else {
if (sizeof(PatternChar) > sizeof(SubjectChar)) {
if (exceedsOneByte(pattern_first_char)) {
return -1;
}
}
return FindFirstCharacter(search->pattern_, subject, index);
}
}
//---------------------------------------------------------------------
// Linear Search Strategy
//---------------------------------------------------------------------
template <typename PatternChar, typename SubjectChar>
inline bool CharCompare(const PatternChar* pattern,
const SubjectChar* subject,
size_t length) {
ASSERT_GT(length, 0);
size_t pos = 0;
do {
if (pattern[pos] != subject[pos]) {
return false;
}
pos++;
} while (pos < length);
return true;
}
// Simple linear search for short patterns. Never bails out.
template <typename PatternChar, typename SubjectChar>
size_t StringSearch<PatternChar, SubjectChar>::LinearSearch(
StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t index) {
Vector<const PatternChar> pattern = search->pattern_;
CHECK_GT(pattern.length(), 1);
const size_t pattern_length = pattern.length();
size_t i = index;
const size_t n = subject.length() - pattern_length;
while (i <= n) {
i = FindFirstCharacter(pattern, subject, i);
if (i == subject.length())
return subject.length();
ASSERT_LE(i, n);
i++;
// Loop extracted to separate function to allow using return to do
// a deeper break.
if (CharCompare(pattern.start() + 1, subject.start() + i,
pattern_length - 1)) {
return i - 1;
}
}
return subject.length();
}
//---------------------------------------------------------------------
// Boyer-Moore string search
//---------------------------------------------------------------------
template <typename PatternChar, typename SubjectChar>
size_t StringSearch<PatternChar, SubjectChar>::BoyerMooreSearch(
StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t start_index) {
Vector<const PatternChar> pattern = search->pattern_;
const size_t subject_length = subject.length();
const size_t pattern_length = pattern.length();
// Only preprocess at most kBMMaxShift last characters of pattern.
size_t start = search->start_;
int* bad_char_occurence = search->bad_char_table();
int* good_suffix_shift = search->good_suffix_shift_table();
PatternChar last_char = pattern[pattern_length - 1];
size_t index = start_index;
// Continue search from i.
while (index <= subject_length - pattern_length) {
size_t j = pattern_length - 1;
int c;
while (last_char != (c = subject[index + j])) {
int shift = j - CharOccurrence(bad_char_occurence, c);
index += shift;
if (index > subject_length - pattern_length) {
return subject.length();
}
}
while (pattern[j] == (c = subject[index + j])) {
if (j == 0) {
return index;
}
j--;
}
if (j < start) {
// we have matched more than our tables allow us to be smart about.
// Fall back on BMH shift.
index += pattern_length - 1 -
CharOccurrence(bad_char_occurence,
static_cast<SubjectChar>(last_char));
} else {
int gs_shift = good_suffix_shift[j + 1];
int bc_occ = CharOccurrence(bad_char_occurence, c);
int shift = j - bc_occ;
if (gs_shift > shift) {
shift = gs_shift;
}
index += shift;
}
}
return subject.length();
}
template <typename PatternChar, typename SubjectChar>
void StringSearch<PatternChar, SubjectChar>::PopulateBoyerMooreTable() {
const size_t pattern_length = pattern_.length();
const PatternChar* pattern = pattern_.start();
// Only look at the last kBMMaxShift characters of pattern (from start_
// to pattern_length).
const size_t start = start_;
const size_t length = pattern_length - start;
// Biased tables so that we can use pattern indices as table indices,
// even if we only cover the part of the pattern from offset start.
int* shift_table = good_suffix_shift_table();
int* suffix_table = this->suffix_table();
// Initialize table.
for (size_t i = start; i < pattern_length; i++) {
shift_table[i] = length;
}
shift_table[pattern_length] = 1;
suffix_table[pattern_length] = pattern_length + 1;
if (pattern_length <= start) {
return;
}
// Find suffixes.
PatternChar last_char = pattern[pattern_length - 1];
size_t suffix = pattern_length + 1;
{
size_t i = pattern_length;
while (i > start) {
PatternChar c = pattern[i - 1];
while (suffix <= pattern_length && c != pattern[suffix - 1]) {
if (static_cast<size_t>(shift_table[suffix]) == length) {
shift_table[suffix] = suffix - i;
}
suffix = suffix_table[suffix];
}
suffix_table[--i] = --suffix;
if (suffix == pattern_length) {
// No suffix to extend, so we check against last_char only.
while ((i > start) && (pattern[i - 1] != last_char)) {
if (static_cast<size_t>(shift_table[pattern_length]) == length) {
shift_table[pattern_length] = pattern_length - i;
}
suffix_table[--i] = pattern_length;
}
if (i > start) {
suffix_table[--i] = --suffix;
}
}
}
}
// Build shift table using suffixes.
if (suffix < pattern_length) {
for (size_t i = start; i <= pattern_length; i++) {
if (static_cast<size_t>(shift_table[i]) == length) {
shift_table[i] = suffix - start;
}
if (i == suffix) {
suffix = suffix_table[suffix];
}
}
}
}
//---------------------------------------------------------------------
// Boyer-Moore-Horspool string search.
//---------------------------------------------------------------------
template <typename PatternChar, typename SubjectChar>
size_t StringSearch<PatternChar, SubjectChar>::BoyerMooreHorspoolSearch(
StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t start_index) {
Vector<const PatternChar> pattern = search->pattern_;
const size_t subject_length = subject.length();
const size_t pattern_length = pattern.length();
int* char_occurrences = search->bad_char_table();
int64_t badness = -pattern_length;
// How bad we are doing without a good-suffix table.
PatternChar last_char = pattern[pattern_length - 1];
int last_char_shift =
pattern_length - 1 -
CharOccurrence(char_occurrences, static_cast<SubjectChar>(last_char));
// Perform search
size_t index = start_index; // No matches found prior to this index.
while (index <= subject_length - pattern_length) {
size_t j = pattern_length - 1;
int subject_char;
while (last_char != (subject_char = subject[index + j])) {
int bc_occ = CharOccurrence(char_occurrences, subject_char);
int shift = j - bc_occ;
index += shift;
badness += 1 - shift; // at most zero, so badness cannot increase.
if (index > subject_length - pattern_length) {
return subject_length;
}
}
j--;
while (pattern[j] == (subject[index + j])) {
if (j == 0) {
return index;
}
j--;
}
index += last_char_shift;
// Badness increases by the number of characters we have
// checked, and decreases by the number of characters we
// can skip by shifting. It's a measure of how we are doing
// compared to reading each character exactly once.
badness += (pattern_length - j) - last_char_shift;
if (badness > 0) {
search->PopulateBoyerMooreTable();
search->strategy_ = &BoyerMooreSearch;
return BoyerMooreSearch(search, subject, index);
}
}
return subject.length();
}
template <typename PatternChar, typename SubjectChar>
void StringSearch<PatternChar, SubjectChar>::PopulateBoyerMooreHorspoolTable() {
const size_t pattern_length = pattern_.length();
int* bad_char_occurrence = bad_char_table();
// Only preprocess at most kBMMaxShift last characters of pattern.
const size_t start = start_;
// Run forwards to populate bad_char_table, so that *last* instance
// of character equivalence class is the one registered.
// Notice: Doesn't include the last character.
const size_t table_size = AlphabetSize();
if (start == 0) {
// All patterns less than kBMMaxShift in length.
memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence));
} else {
for (size_t i = 0; i < table_size; i++) {
bad_char_occurrence[i] = start - 1;
}
}
for (size_t i = start; i < pattern_length - 1; i++) {
PatternChar c = pattern_[i];
int bucket = (sizeof(PatternChar) == 1) ? c : c % AlphabetSize();
bad_char_occurrence[bucket] = i;
}
}
//---------------------------------------------------------------------
// Linear string search with bailout to BMH.
//---------------------------------------------------------------------
// Simple linear search for short patterns, which bails out if the string
// isn't found very early in the subject. Upgrades to BoyerMooreHorspool.
template <typename PatternChar, typename SubjectChar>
size_t StringSearch<PatternChar, SubjectChar>::InitialSearch(
StringSearch<PatternChar, SubjectChar>* search,
Vector<const SubjectChar> subject,
size_t index) {
Vector<const PatternChar> pattern = search->pattern_;
const size_t pattern_length = pattern.length();
// Badness is a count of how much work we have done. When we have
// done enough work we decide it's probably worth switching to a better
// algorithm.
int64_t badness = -10 - (pattern_length << 2);
// We know our pattern is at least 2 characters, we cache the first so
// the common case of the first character not matching is faster.
for (size_t i = index, n = subject.length() - pattern_length; i <= n; i++) {
badness++;
if (badness <= 0) {
i = FindFirstCharacter(pattern, subject, i);
if (i == subject.length())
return subject.length();
ASSERT_LE(i, n);
size_t j = 1;
do {
if (pattern[j] != subject[i + j]) {
break;
}
j++;
} while (j < pattern_length);
if (j == pattern_length) {
return i;
}
badness += j;
} else {
search->PopulateBoyerMooreHorspoolTable();
search->strategy_ = &BoyerMooreHorspoolSearch;
return BoyerMooreHorspoolSearch(search, subject, i);
}
}
return subject.length();
}
// Perform a a single stand-alone search.
// If searching multiple times for the same pattern, a search
// object should be constructed once and the Search function then called
// for each search.
template <typename SubjectChar, typename PatternChar>
size_t SearchString(Vector<const SubjectChar> subject,
Vector<const PatternChar> pattern,
size_t start_index) {
StringSearch<PatternChar, SubjectChar> search(pattern);
return search.Search(subject, start_index);
}
} // namespace stringsearch
} // namespace node
namespace node {
using node::stringsearch::Vector;
template <typename SubjectChar, typename PatternChar>
size_t SearchString(const SubjectChar* haystack,
size_t haystack_length,
const PatternChar* needle,
size_t needle_length,
size_t start_index) {
return node::stringsearch::SearchString(
Vector<const SubjectChar>(haystack, haystack_length),
Vector<const PatternChar>(needle, needle_length),
start_index);
}
} // namespace node
#endif // SRC_STRING_SEARCH_H_
|