/usr/share/octave/packages/control-3.0.0/VLFamp.m is in octave-control 3.0.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 | ## Copyright (C) 2015 Thomas D. Dean
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {} VLFamp
## @deftypefnx{Function File} {@var{result} =} VLFamp (@var{verbose})
## Calculations on a two stage preamp for a multi-turn,
## air-core solenoid loop antenna for the reception of
## signals below 30kHz.
##
## The Octave Control Package functions are used extensively to
## approximate the behavior of operational amplifiers and passive
## electrical circuit elements.
##
## This example presents several 'screen' pages of documentation of the
## calculations and some reasoning about why. Plots of the results are
## presented in most cases.
##
## The process is to display a 'screen' page of text followed by the
## calculation and a 'Press return to continue' message. To proceed in
## the example, press return. ^C to exit.
##
## At one point in the calculations, the process may seem to hang, but,
## this is because of extensive calculations.
##
## The returned transfer function is more than 100 characters long so
## will wrap in screens that are narrow and appear jumbled.
## @end deftypefn
## Author: Thomas D. Dean <tomdean@wavecable.com>
## Created: June 2015
## Version: 0.1
function retval = VLFamp (verbose = false)
if (nargin > 1)
print_usage ();
endif
clc;
disp ("---- VLF Pre-Amplifier Design ----");
disp ("");
disp ("This example covers the design of a pre-amplifier for use in");
disp ("receiving radio frequencies below 30kHz.");
disp ("");
disp ("See http://www.vlf.it for details of Narural Radio Sources");
disp ("");
disp ("The Octave Control Package functions are used extensively to");
disp ("approximate the behavior of operational amplifiers and passive");
disp ("electrical circuit elements.");
disp ("");
disp ("This example presents several 'screen' pages of documentation of the");
disp ("calculations and some reasoning about why. Plots of the results are");
disp ("presented in most cases.");
disp ("");
disp ("Often, when multiple plots are displayed, they may be overlaid");
disp ("on the screen. You may use the mouse and move them for better viewing.");
disp ("");
disp ("The process is to display a 'screen' page of text followed by the");
disp ("calculation and a 'Press return to continue' message. To proceed in");
disp ("the example, press return. ^C to exit.");
disp ("");
disp ("At one point in the calculations, the process may seem to hang, but,");
disp ("this is because of extensive calculations.");
disp ("");
disp ("The returned transfer function is more than 100 characters long so");
disp ("will wrap in screens that are narrow and appear jumbled.");
disp ("");
##
input ("Press Return to continue:");
blanks ();
##
disp ("");
disp ("The amplifier consists of two AD797 op amps and a low pass filter.");
disp ("With biasing and blocking capacitors omitted, three blocks remain.");
disp ("");
disp ("");
disp (" Gain = 10");
disp (" +-------------+");
disp (" | | -- Low Pass Filter --");
disp (" ---+ p |");
disp (" Loop | Stage 1 +--+----R3--+--R4--+--R5--+---> To Stage 2");
disp (" | Amplifier | | | | |");
disp (" -+-+ n | | C1 C2 C3");
disp (" | | | | | | |");
disp (" | +-------------+ | Gnd Gnd Gnd");
disp (" | |");
disp (" +----+---R2--------+");
disp (" |");
disp (" R1");
disp (" |");
disp (" Gnd");
disp ("");
disp ("");
disp ("");
disp (" Gain = 10");
disp (" +-------------+");
disp (" | |");
disp (" Gnd--+ p |");
disp (" | Stage 2 +--+----R8--+----> Output");
disp (" | Amplifier | | |");
disp (" From >---+-+ n | | R9");
disp (" Filter | | | | |");
disp (" | +-------------+ | Gnd");
disp (" | |");
disp (" +----+---R6--------+");
disp (" |");
disp (" R7");
disp (" |");
disp (" Gnd");
disp ("");
disp ("");
disp ("R1 and R2 profide feedback to control the gain of Stage 1.");
disp ("R3 through R5 with C1 through C3 form a low pass filter to limit the");
disp (" bandwidth.");
disp ("R6 and R7 profide feedback to control the gain of Stage 2.");
disp ("R8 and R9 provide impedance matching to the cable and/or receiver,");
disp (" possibly a PC sound card.");
disp ("");
##
input ("Press Return to continue:");
blanks ();
##
disp ("");
disp ("");
disp ("The graphs in the ad797 datasheet reveal the following parameters:");
disp ("");
show ("a0 = 1e7; ## Open Loop Gain");
show ("p1 = 55; ## Pole (Hz)");
show ("p2 = 1e6; ## Pole (Hz)");
show ("z1 = 4.3e6; ## Zero (Hz)");
disp ("");
disp ("The open loop transfer function of an op amp with m zeros and n");
disp ("poles is expressed in the form:");
disp (" tf = open_loop_gain * zero_expressions / pole_expressions");
disp ("where ");
disp (" zero_expressions = (1+s/z1) * (1+s/z2) * ... * (1+s/zm) ");
disp (" pole_expressions = (1+s/p1) * (1+s/p2) * ... * (1+s/pn)");
disp (" z1 ... zm are the m zeros");
disp (" p1 ... pn are the n poles");
disp ("");
##
input ("Press Return to continue:");
blanks ();
##
disp ("");
disp ("The amplifier stages have 1 zero and 2 poles:");
disp ("");
show ("s = tf ('s')")
disp ("");
show ("TFopen = a0 * (1+s/z1) / (1+s/p1) / (1+s/p2)")
disp ("");
show ("TFopen_norm = minreal (TFopen)")
disp ("");
disp ("Note: The difference between the op amp expression and the usual");
disp ("Zero-Pole-Gain expression is in the modification of the gain");
disp ("parameter. The gain argument to zpk() is modified by the zeros");
disp ("and poles, so the derived transfer function matches actual");
disp ("measurements.");
disp ("");
show ("Azpk = zpk ([-z1], [-p1, -p2], 1e7*p1*p2/z1)")
##
input ("Press Return to continue:");
blanks ();
##
disp ("");
disp ("The bode plot of these two open loop transfer functions produce");
disp ("identical results. And, the plots show the same shape as the");
disp ("graphs in the datasheet.");
disp ("");
show ("figure 1");
show ("bode (TFopen)");
show ("subplot (2,1,1)");
show ("title ('Equation Bode Diagram')");
show ("figure 2");
show ("bode (Azpk)");
show ("subplot (2,1,1)");
show ("title ('ZPK Bode Diagram')");
disp ("");
disp ("Two Bode Diagrams should be visible, possibly overlaid.");
disp ("");
##
input ("Press Return to close the plots and continue:");
blanks ();
##
close all;
disp ("");
disp ("The normalized step response of the ad797 is:");
disp ("");
show ("TFnorm = TFopen/dcgain(TFopen)")
disp ("");
show ("step (TFnorm, 'b')");
show ("title ('AD797 Normalized Open-Loop Step Response')");
show ("ylabel ('Normalized Amplitude')");
disp ("");
##
input ("Press Return to close the plot and continue:");
blanks ();
##
close all;
disp ("");
disp ("--- Design Stage 1 of the VLFamp ---");
disp ("");
disp ("Resistors R1 and R2 form a feedback system to control the gain of ");
disp ("Stage 1. This feedback system returns a portion of the output to the");
disp ("negative input. This is normally expressed as:");
disp (" Vfb = Vout * R1 / (R1 + R2)");
disp ("So, the transfer function of the feedback network is:");
disp (" tf = Vfb / Vout = R1 / (R1 + R2)");
disp ("The effects of the AD797 gain on the input and the feedback may be ");
disp ("represented as TFstage1 = Vout/Vp = gain / (1 + dcgain * TFfeedback).");
disp ("If dcgain is sufficiently large, this reduces to");
disp (" TFstage1 = 1 / TFfeedback.");
disp ("The dcgain of the AD797 is >> 1, so, the feedback completely controls");
disp ("the output and variations in the dcgain will not effect the Stage gain.");
disp ("");
disp ("The feedback is added to the AD797 using the feedback function");
disp ("");
show ("Gfb = 10");
show ("b = 1 / Gfb");
show ("R1 = 10e3");
show ("R2 = R1 * (1/b - 1)")
disp ("");
show ("TFstage1 = feedback (TFopen, b)");
disp ("");
show ("bodemag (TFopen, 'r', TFstage1, 'b')");
show ("legend ('Open Loop Gain (TFopen)', 'Closed Loop Gain (TFstage1)')");
disp ("");
disp ("The use of negative feedback to reduce the low-frequency (LF) gain");
disp ("has led to a corresponding increase in the system bandwidth (defined");
disp ("as the frequency where the gain drops 3dB below its maximum value).");
disp ("");
disp ("With this feedback, we have a gain of 10, or 20db up to 10MHz,");
disp ("far more than the frequency range of interest.");
disp ("");
##
input ("Press Return to close the plot and continue:");
blanks ();
##
close all;
disp ("");
disp ("Since the gain is now dominated by the feedback network, a useful");
disp ("relationship to consider is the sensitivity of this gain to variation");
disp ("in the op amp's open-loop gain.");
disp ("");
disp ("Before deriving the system sensitivity, however, it is useful to");
disp ("define the loop gain, L(s)=a(s)b(s), which is the total gain a signal");
disp ("experiences traveling around the loop:");
disp ("");
disp ("Sensitivity = partial(TFstage1/TFopen)*TFopen/TFstage1");
disp ("or S(s) = 1 / (1 + TFopen(s) * TFstage1(s))");
disp ("or S(s) = 1 / (1 + L(s)), which has the same form as feedback");
disp ("So, use the feedback function to develop the sensitivity.");
disp ("");
show ("L = TFopen * b")
disp ("");
show ("Sens = feedback (1, L)")
disp ("");
show ("figure 1");
show ("bodemag (TFstage1, 'b', Sens, 'g')");
disp ("");
disp ("The very small low-frequency sensitivity (more than -100 dB) indicates");
disp ("a design whose closed-loop gain suffers minimally from open-loop gain");
disp ("variation. Such variation in a(s) is common due to manufacturing");
disp ("variability, temperature change, etc.");
disp ("");
##
input ("Press Return to close the plot and continue:");
blanks ();
##
disp ("");
disp ("You can check the step response of A(s) using the STEP command:");
disp ("");
show ("figure 2");
show ("step (TFstage1)");
disp ("");
disp ("The stability margin can be analyzed by plotting the loop gain, L(s)");
disp ("with the margin function.");
disp (" ");
disp ("This plot may display warning messages, you can safely ignore them.");
disp (" "); fflush(stdout);
show ("margin (L)");
disp (" "); fflush(stdout); fflush(stderr);
disp (" ");
disp ("Two plots are displayed, possibly overlaid.");
disp (" ");
##
input ("Press Return to close the plots and continue:");
blanks ();
##
disp ("");
disp ("The plot indicates a phase margin of less than 3 degrees. Stage 1");
disp ("needs to be compensated to increase this to an acceptible level,");
disp ("more than 45 degrees, if possible.");
disp ("");
disp ("Feedback Lead Compensation");
disp ("");
disp ("A commonly used method of compensation in this type of circuit is");
disp ("feedback lead compensation. This technique modifies b(s) by adding");
disp ("a capacitor, C, in parallel with the feedback resistor, R2.");
disp ("The capacitor value is chosen so as to introduce a phase lead to b(s)");
disp ("near the crossover frequency, thus increasing the amplifier's phase");
disp ("margin.");
disp ("The new feedback transfer function is shown below.");
disp ("You can approximate a value for C by placing the zero of b(s) at the");
disp ("0dB crossover frequency of L(s):");
disp ("");
show ("[Gm, Pm, Wcg, Wcp] = margin (L)");
show ("C = 1/(R2*Wcp)")
disp ("");
if (C < 1e-12)
disp ("The calculated value of C is very small.");
disp ("Now, look at a range of values.");
endif;
disp (" ");
disp ("The next plots take some time...");
disp (" ");
##
input ("Press Return to close the plot and continue:");
blanks ();
##
close all;
disp ("The next plots take some time...");
disp ("");
show ("K = R1/(R1+R2);");
show ("C = [10:10:200]*1e-12;");
show ("b_array = arrayfun (@(C) tf ([K*R2*C, K], [K*R2*C, 1]), C,'uniformoutput',false);");
show ("A_array = cellfun (@feedback, {TFopen}, b_array, 'uniformoutput', false);");
show ("L_array = cellfun (@mtimes, {TFopen}, b_array, 'uniformoutput', false);");
show ("S_array = cellfun (@feedback, {1}, L_array, 'uniformoutput', false);");
disp (" "); fflush(stdout);
show ("[Gm, Pm, Wcg, Wcp] = cellfun (@margin, L_array);");
disp (" ");
close all
show ("figure 1");
show ("step (TFstage1, 'r', A_array{:})");
show ("figure 2");
show ("bode (TFstage1, A_array{:})");
show ("figure 3");
show ("plot (C, Pm)");
show ("grid");
show ("xlabel ('Compensation Capacitor, C (pF)')");
show ("ylabel ('Phase Margin (deg)')");
show ("figure 4");
show ("step (A_array{C==50e-12}, 'r', A_array{C==100e-12}, 'b', A_array{C==200e-12}, 'g')");
show ("legend ('Compensated (50 pF)', 'Compensated (100 pF)', 'Compensated (200 pF)')");
disp (" ");
disp ("Four plots are displayed, possibly overlaid.");
disp (" ");
##
input ("Press Return to close the plots and continue:");
blanks ();
##
close all;
disp ("");
disp ("");
disp (" Gain = 10");
disp (" +-------------+");
disp (" | |");
disp (" ---+ p |");
disp (" Loop | Stage 1 +--+---->");
disp (" | Amplifier | |");
disp (" -+-+ n | |");
disp (" | | | |");
disp (" | +-------------+ |");
disp (" | |");
disp (" +----+------R2-----+");
disp (" | |");
disp (" +-----Ccomp---+");
disp (" |");
disp (" |");
disp (" R1");
disp (" |");
disp (" Gnd");
disp ("");
disp ("The selected compensation capacitor is 100pf.");
show ("TFcomp = A_array{C==100e-12}");
show ("bode (TFopen, 'b', TFstage1, 'g', TFcomp, 'r')");
show ("legend ('TFopen', 'TFstage1', 'TFcomp')");
disp ("");
##
input ("Press Return to close the plot and continue:");
blanks ();
##
close all;
disp ("");
disp ("--- Low Pass Filter Design ---");
disp ("");
disp ("The low pass filter is composed of three equal sections.");
disp ("Develop one section and put three in series.");
disp ("");
show ("C = 20e-9");
show ("R = 1000");
show ("TFsection = tf ([1], [C*R, 1])");
disp ("");
show ("TFfilter = TFsection * TFsection * TFsection;");
if (verbose)
TFfilter
endif;
disp ("");
disp ("---- Final Design ----");
disp ("");
disp ("The final configuration is: AD797 --> LP Filter --> AD797");
disp ("");
show ("TFpreamp = TFcomp * TFfilter * TFcomp;");
show ("figure 1");
show ("bode (TFpreamp, {1, 1e5})");
show ("figure 2");
show ("margin (TFpreamp)");
disp ("");
disp ("Two plots are displayed, possibly overlaid.");
disp ("");
##
input ("Press Return to close the plots and continue:");
blanks ();
##
disp ("");
disp ("As can be seen from the plots, the gain margin is almost 30db.");
disp ("The phase margin is 230 degrees.");
disp ("");
## disp ("Use 'close all' to close the plots.");
##
close all
blanks ();
disp ("The resultant transfer function is over 100 characters long");
disp ("and will appear jumbled on narrower screens.");
disp ("");
show ("TFpreamp")
##
if (nargout > 0)
retval = TFpreamp;
endif
endfunction
## support function to display a command and then
## execute it in the caller's environment.
function show (str)
disp ([">> ", str]);
evalin ("caller", str);
endfunction
## support function to insert blank lines in the display
function blanks (n = 5)
for idx = 1:n
disp ("");
endfor
endfunction
|