/usr/share/octave/packages/control-3.0.0/arx.m is in octave-control 3.0.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | ## Copyright (C) 2009-2015 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{sys}, @var{x0}] =} arx (@var{dat}, @var{n}, @dots{})
## @deftypefnx {Function File} {[@var{sys}, @var{x0}] =} arx (@var{dat}, @var{n}, @var{opt}, @dots{})
## @deftypefnx {Function File} {[@var{sys}, @var{x0}] =} arx (@var{dat}, @var{opt}, @dots{})
## @deftypefnx {Function File} {[@var{sys}, @var{x0}] =} arx (@var{dat}, @var{'na'}, @var{na}, @var{'nb'}, @var{nb})
## Estimate ARX model using QR factorization.
## @iftex
## @tex
## $$ A(q) \\, y(t) = B(q) \\, u(t) \\, + \\, e(t) $$
## @end tex
## @end iftex
## @ifnottex
##
## @example
## A(q) y(t) = B(q) u(t) + e(t)
## @end example
##
## @end ifnottex
##
## @strong{Inputs}
## @table @var
## @item dat
## iddata identification dataset containing the measurements, i.e. time-domain signals.
## @item n
## The desired order of the resulting model @var{sys}.
## @item @dots{}
## Optional pairs of keys and values. @code{'key1', value1, 'key2', value2}.
## @item opt
## Optional struct with keys as field names.
## Struct @var{opt} can be created directly or
## by function @command{options}. @code{opt.key1 = value1, opt.key2 = value2}.
## @end table
##
##
## @strong{Outputs}
## @table @var
## @item sys
## Discrete-time transfer function model.
## If the second output argument @var{x0} is returned,
## @var{sys} becomes a state-space model.
## @item x0
## Initial state vector. If @var{dat} is a multi-experiment dataset,
## @var{x0} becomes a cell vector containing an initial state vector
## for each experiment.
## @end table
##
##
## @strong{Option Keys and Values}
## @table @var
## @item 'na'
## Order of the polynomial A(q) and number of poles.
##
## @item 'nb'
## Order of the polynomial B(q)+1 and number of zeros+1.
## @var{nb} <= @var{na}.
##
## @item 'nk'
## Input-output delay specified as number of sampling instants.
## Scalar positive integer. This corresponds to a call to function
## @command{nkshift}, followed by padding the B polynomial with
## @var{nk} leading zeros.
## @end table
##
##
## @strong{Algorithm}@*
## Uses the formulae given in [1] on pages 318-319,
## 'Solving for the LS Estimate by QR Factorization'.
## For the initial conditions, SLICOT IB01CD is used by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
##
## @strong{References}@*
## [1] Ljung, L. (1999)
## @cite{System Identification: Theory for the User: Second Edition}.
## Prentice Hall, New Jersey, USA.
##
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: April 2012
## Version: 0.1
function [sys, varargout] = arx (dat, varargin)
## TODO: delays
if (nargin < 2)
print_usage ();
endif
if (! isa (dat, "iddata") || ! dat.timedomain)
error ("arx: first argument must be a time-domain iddata dataset");
endif
## p: outputs, m: inputs, ex: experiments
[~, p, m, ex] = size (dat); # dataset dimensions
if (is_real_scalar (varargin{1})) # arx (dat, n, ...)
varargin = horzcat (varargin(2:end), {"na"}, varargin(1), {"nb"}, varargin(1));
endif
if (isstruct (varargin{1})) # arx (dat, opt, ...), arx (dat, n, opt, ...)
varargin = horzcat (__opt2cell__ (varargin{1}), varargin(2:end));
endif
nkv = numel (varargin); # number of keys and values
if (rem (nkv, 2))
error ("arx: keys and values must come in pairs");
endif
## default arguments
na = [];
nb = [];
nk = 0;
## handle keys and values
for k = 1 : 2 : nkv
key = lower (varargin{k});
val = varargin{k+1};
switch (key)
case "na"
na = __check_n__ (val, "na");
case "nb"
nb = __check_n__ (val, "nb");
case "nk"
nk = __check_n__ (val, "nk");
if (! issample (val, 0))
error ("arx: channel-wise 'nk' matrices not supported yet");
endif
otherwise
warning ("arx: invalid property name '%s' ignored", key);
endswitch
endfor
if (any (nk(:) != 0))
dat = nkshift (dat, nk);
endif
## extract data
Y = dat.y;
U = dat.u;
tsam = dat.tsam;
## multi-experiment data requires equal sampling times
if (ex > 1 && ! isequal (tsam{:}))
error ("arx: require equally sampled experiments");
else
tsam = tsam{1};
endif
if (is_real_scalar (na, nb))
na = repmat (na, p, 1); # na(p-by-1)
nb = repmat (nb, p, m); # nb(p-by-m)
elseif (! (is_real_vector (na) && is_real_matrix (nb) ...
&& rows (na) == p && rows (nb) == p && columns (nb) == m))
error ("arx: require na(%dx1) instead of (%dx%d) and nb(%dx%d) instead of (%dx%d)", ...
p, rows (na), columns (na), p, m, rows (nb), columns (nb));
endif
max_nb = max (nb, [], 2); # one maximum for each row/output, max_nb(p-by-1)
n = max (na, max_nb); # n(p-by-1)
## create empty cells for numerator and denominator polynomials
num = cell (p, m+p);
den = cell (p, m+p);
## MIMO (p-by-m) models are identified as p MISO (1-by-m) models
## For multi-experiment data, minimize the trace of the error
for i = 1 : p # for every output
Phi = cell (ex, 1); # one regression matrix per experiment
for e = 1 : ex # for every experiment
## avoid warning: toeplitz: column wins anti-diagonal conflict
## therefore set first row element equal to y(1)
PhiY = toeplitz (Y{e}(1:end-1, i), [Y{e}(1, i); zeros(na(i)-1, 1)]);
## create MISO Phi for every experiment
PhiU = arrayfun (@(x) toeplitz (U{e}(1:end-1, x), [U{e}(1, x); zeros(nb(i,x)-1, 1)]), 1:m, "uniformoutput", false);
Phi{e} = (horzcat (-PhiY, PhiU{:}))(n(i):end, :);
endfor
## compute parameter vector Theta
Theta = __theta__ (Phi, Y, i, n);
## extract polynomial matrices A and B from Theta
## A is a scalar polynomial for output i, i=1:p
## B is polynomial row vector (1-by-m) for output i
A = [1; Theta(1:na(i))]; # a0 = 1, a1 = Theta(1), an = Theta(n)
ThetaB = Theta(na(i)+1:end); # all polynomials from B are in one column vector
B = mat2cell (ThetaB, nb(i,:)); # now separate the polynomials, one for each input
B = reshape (B, 1, []); # make B a row cell (1-by-m)
B = cellfun (@(B) [zeros(1+nk, 1); B], B, "uniformoutput", false); # b0 = 0 (leading zero required by filt)
## add error inputs
Be = repmat ({0}, 1, p); # there are as many error inputs as system outputs (p)
Be(i) = [zeros(1,nk), 1]; # inputs m+1:m+p are zero, except m+i which is one
num(i, :) = [B, Be]; # numerator polynomials for output i, individual for each input
den(i, :) = repmat ({A}, 1, m+p); # in a row (output i), all inputs have the same denominator polynomial
endfor
## A(q) y(t) = B(q) u(t) + e(t)
## there is only one A per row
## B(z) and A(z) are a Matrix Fraction Description (MFD)
## y = A^-1(q) B(q) u(t) + A^-1(q) e(t)
## since A(q) is a diagonal polynomial matrix, its inverse is trivial:
## the corresponding transfer function has common row denominators.
sys = filt (num, den, tsam); # filt creates a transfer function in z^-1
## compute initial state vector x0 if requested
## this makes only sense for state-space models, therefore convert TF to SS
if (nargout > 1)
sys = prescale (ss (sys(:,1:m)));
x0 = __sl_ib01cd__ (Y, U, sys.a, sys.b, sys.c, sys.d, 0.0);
## return x0 as vector for single-experiment data
## instead of a cell containing one vector
if (numel (x0) == 1)
x0 = x0{1};
endif
varargout{1} = x0;
endif
endfunction
function Theta = __theta__ (Phi, Y, i, n)
if (numel (Phi) == 1) # single-experiment dataset
## use "square-root algorithm"
A = horzcat (Phi{1}, Y{1}(n(i)+1:end, i)); # [Phi, Y]
R0 = triu (qr (A, 0)); # 0 for economy-size R (without zero rows)
R1 = R0(1:end-1, 1:end-1); # R1 is triangular - can we exploit this in R1\R2?
R2 = R0(1:end-1, end);
Theta = __ls_svd__ (R1, R2); # R1 \ R2
## Theta = Phi \ Y(n+1:end, :); # naive formula
## Theta = __ls_svd__ (Phi{1}, Y{1}(n(i)+1:end, i));
else # multi-experiment dataset
## TODO: find more sophisticated formula than
## Theta = (Phi1' Phi1 + Phi2' Phi2 + ...) \ (Phi1' Y1 + Phi2' Y2 + ...)
## covariance matrix C = (Phi1' Phi + Phi2' Phi2 + ...)
tmp = cellfun (@(Phi) Phi.' * Phi, Phi, "uniformoutput", false);
## rc = cellfun (@rcond, tmp); # also test C? QR or SVD?
C = plus (tmp{:});
## PhiTY = (Phi1' Y1 + Phi2' Y2 + ...)
tmp = cellfun (@(Phi, Y) Phi.' * Y(n(i)+1:end, i), Phi, Y, "uniformoutput", false);
PhiTY = plus (tmp{:});
## pseudoinverse Theta = C \ Phi'Y
Theta = __ls_svd__ (C, PhiTY);
endif
endfunction
function x = __ls_svd__ (A, b)
## solve the problem Ax=b
## x = A\b would also work,
## but this way we have better control and warnings
## solve linear least squares problem by pseudoinverse
## the pseudoinverse is computed by singular value decomposition
## M = U S V* ---> M+ = V S+ U*
## Th = Ph \ Y = Ph+ Y
## Th = V S+ U* Y, S+ = 1 ./ diag (S)
[U, S, V] = svd (A, 0); # 0 for "economy size" decomposition
S = diag (S); # extract main diagonal
r = sum (S > eps*S(1));
if (r < length (S))
warning ("arx: rank-deficient coefficient matrix");
warning ("sampling time too small");
warning ("persistence of excitation");
endif
V = V(:, 1:r);
S = S(1:r);
U = U(:, 1:r);
x = V * (S .\ (U' * b)); # U' is the conjugate transpose
endfunction
function val = __check_n__ (val, str = "n")
if (! is_real_matrix (val) || fix (val) != val)
error ("arx: argument '%s' must be a positive integer", str);
endif
endfunction
|