/usr/share/octave/packages/control-3.0.0/btaconred.m is in octave-control 3.0.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | ## Copyright (C) 2009-2015 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {[@var{Kr}, @var{info}] =} btaconred (@var{G}, @var{K}, @dots{})
## @deftypefnx{Function File} {[@var{Kr}, @var{info}] =} btaconred (@var{G}, @var{K}, @var{ncr}, @dots{})
## @deftypefnx{Function File} {[@var{Kr}, @var{info}] =} btaconred (@var{G}, @var{K}, @var{opt}, @dots{})
## @deftypefnx{Function File} {[@var{Kr}, @var{info}] =} btaconred (@var{G}, @var{K}, @var{ncr}, @var{opt}, @dots{})
##
## Controller reduction by frequency-weighted Balanced Truncation Approximation (BTA).
## Given a plant @var{G} and a stabilizing controller @var{K}, determine a reduced
## order controller @var{Kr} such that the closed-loop system is stable and closed-loop
## performance is retained.
##
## The algorithm tries to minimize the frequency-weighted error
## @iftex
## @tex
## $$ || V \\ (K - K_r) \\ W ||_{\\infty} = \\min $$
## @end tex
## @end iftex
## @ifnottex
## @example
## ||V (K-Kr) W|| = min
## inf
## @end example
## @end ifnottex
## where @var{V} and @var{W} denote output and input weightings.
##
##
## @strong{Inputs}
## @table @var
## @item G
## @acronym{LTI} model of the plant.
## It has m inputs, p outputs and n states.
## @item K
## @acronym{LTI} model of the controller.
## It has p inputs, m outputs and nc states.
## @item ncr
## The desired order of the resulting reduced order controller @var{Kr}.
## If not specified, @var{ncr} is chosen automatically according
## to the description of key @var{'order'}.
## @item @dots{}
## Optional pairs of keys and values. @code{"key1", value1, "key2", value2}.
## @item opt
## Optional struct with keys as field names.
## Struct @var{opt} can be created directly or
## by function @command{options}. @code{opt.key1 = value1, opt.key2 = value2}.
## @end table
##
## @strong{Outputs}
## @table @var
## @item Kr
## State-space model of reduced order controller.
## @item info
## Struct containing additional information.
## @table @var
## @item info.ncr
## The order of the obtained reduced order controller @var{Kr}.
## @item info.ncs
## The order of the alpha-stable part of original controller @var{K}.
## @item info.hsvc
## The Hankel singular values of the alpha-stable part of @var{K}.
## The @var{ncs} Hankel singular values are ordered decreasingly.
## @end table
## @end table
##
## @strong{Option Keys and Values}
## @table @var
## @item 'order', 'ncr'
## The desired order of the resulting reduced order controller @var{Kr}.
## If not specified, @var{ncr} is chosen automatically such that states with
## Hankel singular values @var{info.hsvc} > @var{tol1} are retained.
##
## @item 'method'
## Order reduction approach to be used as follows:
## @table @var
## @item 'sr', 'b'
## Use the square-root Balance & Truncate method.
## @item 'bfsr', 'f'
## Use the balancing-free square-root Balance & Truncate method. Default method.
## @end table
##
## @item 'weight'
## Specifies the type of frequency-weighting as follows:
## @table @var
## @item 'none'
## No weightings are used (V = I, W = I).
##
## @item 'left', 'output'
## Use stability enforcing left (output) weighting
## @iftex
## @tex
## $$ V = (I - G K)^{-1} G, \\qquad W = I $$
## @end tex
## @end iftex
## @ifnottex
## @example
## -1
## V = (I-G*K) *G , W = I
## @end example
## @end ifnottex
##
## @item 'right', 'input'
## Use stability enforcing right (input) weighting
## @iftex
## @tex
## $$ V = I, \\qquad W = (I - G K)^{-1} G $$
## @end tex
## @end iftex
## @ifnottex
## @example
## -1
## V = I , W = (I-G*K) *G
## @end example
## @end ifnottex
##
## @item 'both', 'performance'
## Use stability and performance enforcing weightings
## @iftex
## @tex
## $$ V = (I - G K)^{-1} G, \\qquad W = (I - G K)^{-1} $$
## @end tex
## @end iftex
## @ifnottex
## @example
## -1 -1
## V = (I-G*K) *G , W = (I-G*K)
## @end example
## @end ifnottex
## Default value.
## @end table
##
## @item 'feedback'
## Specifies whether @var{K} is a positive or negative feedback controller:
## @table @var
## @item '+'
## Use positive feedback controller. Default value.
## @item '-'
## Use negative feedback controller.
## @end table
##
## @item 'alpha'
## Specifies the ALPHA-stability boundary for the eigenvalues
## of the state dynamics matrix @var{K.A}. For a continuous-time
## controller, ALPHA <= 0 is the boundary value for
## the real parts of eigenvalues, while for a discrete-time
## controller, 0 <= ALPHA <= 1 represents the
## boundary value for the moduli of eigenvalues.
## The ALPHA-stability domain does not include the boundary.
## Default value is 0 for continuous-time controllers and
## 1 for discrete-time controllers.
##
## @item 'tol1'
## If @var{'order'} is not specified, @var{tol1} contains the tolerance for
## determining the order of the reduced controller.
## For model reduction, the recommended value of @var{tol1} is
## c*info.hsvc(1), where c lies in the interval [0.00001, 0.001].
## Default value is info.ncs*eps*info.hsvc(1).
## If @var{'order'} is specified, the value of @var{tol1} is ignored.
##
## @item 'tol2'
## The tolerance for determining the order of a minimal
## realization of the ALPHA-stable part of the given
## controller. TOL2 <= TOL1.
## If not specified, ncs*eps*info.hsvc(1) is chosen.
##
## @item 'gram-ctrb'
## Specifies the choice of frequency-weighted controllability
## Grammian as follows:
## @table @var
## @item 'standard'
## Choice corresponding to standard Enns' method [1]. Default method.
## @item 'enhanced'
## Choice corresponding to the stability enhanced
## modified Enns' method of [2].
## @end table
##
## @item 'gram-obsv'
## Specifies the choice of frequency-weighted observability
## Grammian as follows:
## @table @var
## @item 'standard'
## Choice corresponding to standard Enns' method [1]. Default method.
## @item 'enhanced'
## Choice corresponding to the stability enhanced
## modified Enns' method of [2].
## @end table
##
## @item 'equil', 'scale'
## Boolean indicating whether equilibration (scaling) should be
## performed on @var{G} and @var{K} prior to order reduction.
## Default value is false if both @code{G.scaled == true, K.scaled == true}
## and true otherwise.
## Note that for @acronym{MIMO} models, proper scaling of both inputs and outputs
## is of utmost importance. The input and output scaling can @strong{not}
## be done by the equilibration option or the @command{prescale} function
## because these functions perform state transformations only.
## Furthermore, signals should not be scaled simply to a certain range.
## For all inputs (or outputs), a certain change should be of the same
## importance for the model.
## @end table
##
## @strong{Algorithm}@*
## Uses SLICOT SB16AD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: December 2011
## Version: 0.1
function [Kr, info] = btaconred (varargin)
[Kr, info] = __conred_sb16ad__ ("bta", varargin{:});
endfunction
%!shared Mo, Me, Info, HSVCe
%! A = [ -1. 0. 4.
%! 0. 2. 0.
%! 0. 0. -3. ];
%!
%! B = [ 1.
%! 1.
%! 1. ];
%!
%! C = [ 1. 1. 1. ];
%!
%! D = [ 0. ];
%!
%! G = ss (A, B, C, D, "scaled", true);
%!
%! AC = [ -26.4000, 6.4023, 4.3868;
%! 32.0000, 0, 0;
%! 0, 8.0000, 0 ];
%!
%! BC = [ -16
%! 0
%! 0 ];
%!
%! CC = [ 9.2994 1.1624 0.1090 ];
%!
%! DC = [ 0 ];
%!
%! K = ss (AC, BC, CC, DC, "scaled", true);
%!
%! [Kr, Info] = btaconred (G, K, 2, "weight", "input", "feedback", "+");
%! [Ao, Bo, Co, Do] = ssdata (Kr);
%!
%! Ae = [ 9.1900 0.0000
%! 0.0000 -34.5297 ];
%!
%! Be = [ -11.9593
%! 86.3137 ];
%!
%! Ce = [ 2.8955 -1.3566 ];
%!
%! De = [ 0.0000 ];
%!
%! HSVCe = [ 3.8253 0.2005 ].';
%!
%! Mo = [Ao, Bo; Co, Do];
%! Me = [Ae, Be; Ce, De];
%!
%!assert (Mo, Me, 1e-4);
%!assert (Info.hsvc, HSVCe, 1e-4);
|