This file is indexed.

/usr/share/octave/packages/control-3.0.0/cfconred.m is in octave-control 3.0.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
## Copyright (C) 2009-2015   Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {[@var{Kr}, @var{info}] =} cfconred (@var{G}, @var{F}, @var{L}, @dots{})
## @deftypefnx{Function File} {[@var{Kr}, @var{info}] =} cfconred (@var{G}, @var{F}, @var{L}, @var{ncr}, @dots{})
## @deftypefnx{Function File} {[@var{Kr}, @var{info}] =} cfconred (@var{G}, @var{F}, @var{L}, @var{opt}, @dots{})
## @deftypefnx{Function File} {[@var{Kr}, @var{info}] =} cfconred (@var{G}, @var{F}, @var{L}, @var{ncr}, @var{opt}, @dots{})
##
## Reduction of state-feedback-observer based controller by coprime factorization (CF). 
## Given a plant @var{G}, state feedback gain @var{F} and full observer gain @var{L},
## determine a reduced order controller @var{Kr}.
##
## @strong{Inputs}
## @table @var
## @item G
## @acronym{LTI} model of the open-loop plant (A,B,C,D).
## It has m inputs, p outputs and n states.
## @item F
## Stabilizing state feedback matrix (m-by-n).
## @item L
## Stabilizing observer gain matrix (n-by-p).
## @item ncr
## The desired order of the resulting reduced order controller @var{Kr}.
## If not specified, @var{ncr} is chosen automatically according
## to the description of key @var{'order'}.
## @item @dots{}
## Optional pairs of keys and values.  @code{"key1", value1, "key2", value2}.
## @item opt
## Optional struct with keys as field names.
## Struct @var{opt} can be created directly or
## by function @command{options}.  @code{opt.key1 = value1, opt.key2 = value2}.
## @end table
##
## @strong{Outputs}
## @table @var
## @item Kr
## State-space model of reduced order controller.
## @item info
## Struct containing additional information.
## @table @var
## @item info.hsv
## The Hankel singular values of the extended system?!?.
## The @var{n} Hankel singular values are ordered decreasingly.
## @item info.ncr
## The order of the obtained reduced order controller @var{Kr}.
## @end table
## @end table
##
## @strong{Option Keys and Values}
## @table @var
## @item 'order', 'ncr'
## The desired order of the resulting reduced order controller @var{Kr}.
## If not specified, @var{ncr} is chosen automatically such that states with
## Hankel singular values @var{info.hsv} > @var{tol1} are retained.
##
## @item 'method'
## Order reduction approach to be used as follows:
## @table @var
## @item 'sr-bta', 'b'
## Use the square-root Balance & Truncate method.
## @item 'bfsr-bta', 'f'
## Use the balancing-free square-root Balance & Truncate method.  Default method.
## @item 'sr-spa', 's'
## Use the square-root Singular Perturbation Approximation method.
## @item 'bfsr-spa', 'p'
## Use the balancing-free square-root Singular Perturbation Approximation method.
## @end table
##
## @item 'cf'
## Specifies whether left or right coprime factorization is
## to be used as follows:
## @table @var
## @item 'left', 'l'
## Use left coprime factorization.  Default method.
## @item 'right', 'r'
## Use right coprime factorization.
## @end table
##
## @item 'feedback'
## Specifies whether @var{F} and @var{L} are fed back positively or negatively:
## @table @var
## @item '+'
## A+BK and A+LC are both Hurwitz matrices.
## @item '-'
## A-BK and A-LC are both Hurwitz matrices.  Default value.
## @end table
##
## @item 'tol1'
## If @var{'order'} is not specified, @var{tol1} contains the tolerance for
## determining the order of the reduced system.
## For model reduction, the recommended value of @var{tol1} is
## c*info.hsv(1), where c lies in the interval [0.00001, 0.001].
## Default value is n*eps*info.hsv(1).
## If @var{'order'} is specified, the value of @var{tol1} is ignored.
##
## @item 'tol2'
## The tolerance for determining the order of a minimal
## realization of the coprime factorization controller.
## TOL2 <= TOL1.
## If not specified, n*eps*info.hsv(1) is chosen.
##
## @item 'equil', 'scale'
## Boolean indicating whether equilibration (scaling) should be
## performed on system @var{G} prior to order reduction.
## Default value is true if @code{G.scaled == false} and
## false if @code{G.scaled == true}.
## Note that for @acronym{MIMO} models, proper scaling of both inputs and outputs
## is of utmost importance.  The input and output scaling can @strong{not}
## be done by the equilibration option or the @command{prescale} function
## because these functions perform state transformations only.
## Furthermore, signals should not be scaled simply to a certain range.
## For all inputs (or outputs), a certain change should be of the same
## importance for the model.
## @end table
##
## @strong{Algorithm}@*
## Uses SLICOT SB16BD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
## @end deftypefn

## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: December 2011
## Version: 0.1

function [Kr, info] = cfconred (G, F, L, varargin)

  if (nargin < 3)
    print_usage ();
  endif

  if (! isa (G, "lti"))
    error ("cfconred: first argument must be an LTI system");
  endif

  if (! is_real_matrix (F))
    error ("cfconred: second argument must be a real matrix");
  endif
  
  if (! is_real_matrix (L))
    error ("cfconred: third argument must be a real matrix");
  endif

  if (nargin > 3)                                  # cfconred (G, F, L, ...)
    if (is_real_scalar (varargin{1}))              # cfconred (G, F, L, nr)
      varargin = horzcat (varargin(2:end), {"order"}, varargin(1));
    endif
    if (isstruct (varargin{1}))                    # cfconred (G, F, L, opt, ...), cfconred (G, F, L, nr, opt, ...)
      varargin = horzcat (__opt2cell__ (varargin{1}), varargin(2:end));
    endif
    ## order placed at the end such that nr from cfconred (G, F, L, nr, ...)
    ## and cfconred (G, F, L, nr, opt, ...) overrides possible nr's from
    ## key/value-pairs and inside opt struct (later keys override former keys,
    ## nr > key/value > opt)
  endif

  nkv = numel (varargin);                          # number of keys and values

  if (rem (nkv, 2))
    error ("cfconred: keys and values must come in pairs");
  endif

  [a, b, c, d, tsam, scaled] = ssdata (G);
  [p, m] = size (G);
  n = rows (a);
  [mf, nf] = size (F);
  [nl, pl] = size (L);
  dt = isdt (G);
  jobd = any (d(:));

  if (mf != m || nf != n)
    error ("cfconred: dimensions of state-feedback matrix (%dx%d) and plant (%dx%d, %d states) don't match", ...
           mf, nf, p, m, n);
  endif

  if (nl != n || pl != p)
    error ("cfconred: dimensions of observer matrix (%dx%d) and plant (%dx%d, %d states) don't match", ...
           nl, pl, p, m, n);
  endif

  ## default arguments
  tol1 = 0.0;
  tol2 = 0.0;
  jobcf = 0;
  jobmr = 2;                                       # balancing-free BTA
  equil = scaled;                                  # equil: 0 means "S", 1 means "N"
  ordsel = 1;
  ncr = 0;
  negfb = true;                                    # A-BK, A-LC Hurwitz


  ## handle keys and values
  for k = 1 : 2 : nkv
    key = lower (varargin{k});
    val = varargin{k+1};
    switch (key)
      case {"order", "ncr", "nr"}
        [ncr, ordsel] = __modred_check_order__ (val, n);

      case "tol1"
        tol1 = __modred_check_tol__ (val, "tol1");

      case "tol2"
        tol2 = __modred_check_tol__ (val, "tol2");

      case "cf"
        switch (lower (val(1)))
          case "l"
            jobcf = 0;
          case "r"
            jobcf = 1;
          otherwise
            error ("cfconred: '%s' is an invalid coprime factorization", val);
        endswitch

      case "method"                                # approximation method
        switch (tolower (val))
          case {"sr-bta", "b"}                     # 'B':  use the square-root Balance & Truncate method
            jobmr = 0;
          case {"bfsr-bta", "f"}                   # 'F':  use the balancing-free square-root Balance & Truncate method
            jobmr = 1;
          case {"sr-spa", "s"}                     # 'S':  use the square-root Singular Perturbation Approximation method
            jobmr = 2;
          case {"bfsr-spa", "p"}                   # 'P':  use the balancing-free square-root Singular Perturbation Approximation method
            jobmr = 3; 
          otherwise
            error ("cfconred: '%s' is an invalid approach", val);
        endswitch
      
      case {"equil", "equilibrate", "equilibration", "scale", "scaling"}
        equil = __modred_check_equil__ (val);

      case "feedback"
        negfb = __conred_check_feedback_sign__ (val);

      otherwise
        warning ("cfconred: invalid property name '%s' ignored", key);
    endswitch
  endfor


  ## A - B*F --> A + B*F  ;    A - L*C --> A + L*C
  if (negfb)
    F = -F;
    L = -L;
  endif

  ## perform model order reduction
  [acr, bcr, ccr, dcr, ncr, hsv] = __sl_sb16bd__ (a, b, c, d, dt, equil, ncr, ordsel, jobd, jobmr, ...
                                                  F, L, jobcf, tol1, tol2);
  
  ## assemble reduced order controller
  Kr = ss (acr, bcr, ccr, dcr, tsam);

  ## assemble info struct  
  info = struct ("ncr", ncr, "hsv", hsv);

endfunction


%!shared Mo, Me, Info, HSVe
%! A =  [       0    1.0000         0         0         0         0         0        0
%!              0         0         0         0         0         0         0        0
%!              0         0   -0.0150    0.7650         0         0         0        0
%!              0         0   -0.7650   -0.0150         0         0         0        0
%!              0         0         0         0   -0.0280    1.4100         0        0
%!              0         0         0         0   -1.4100   -0.0280         0        0
%!              0         0         0         0         0         0   -0.0400    1.850
%!              0         0         0         0         0         0   -1.8500   -0.040 ];
%!
%! B =  [  0.0260
%!        -0.2510
%!         0.0330
%!        -0.8860
%!        -4.0170
%!         0.1450
%!         3.6040
%!         0.2800 ];
%!
%! C =  [  -.996 -.105 0.261 .009 -.001 -.043 0.002 -0.026 ];
%!
%! D =  [  0.0 ];
%!
%! G = ss (A, B, C, D);  % "scaled", false
%!
%! F =  [  4.4721e-002  6.6105e-001  4.6986e-003  3.6014e-001  1.0325e-001 -3.7541e-002 -4.2685e-002  3.2873e-002 ];
%!
%! L =  [  4.1089e-001
%!         8.6846e-002
%!         3.8523e-004
%!        -3.6194e-003
%!        -8.8037e-003
%!         8.4205e-003
%!         1.2349e-003
%!         4.2632e-003 ];
%!
%! [Kr, Info] = cfconred (G, F, L, 4, "method", "bfsr-bta", "cf", "left", "feedback", "+");
%! [Ao, Bo, Co, Do] = ssdata (Kr);
%!
%! Ae = [  0.5946  -0.7336   0.1914  -0.3368
%!         0.5960  -0.0184  -0.1088   0.0207
%!         1.2253   0.2043   0.1009  -1.4948
%!        -0.0330  -0.0243   1.3440   0.0035 ];
%!
%! Be = [  0.0015
%!        -0.0202
%!         0.0159
%!        -0.0544 ];
%!
%! Ce = [  0.3534   0.0274   0.0337  -0.0320 ];
%!
%! De = [  0.0000 ];
%!
%! HSVe = [  4.9078   4.8745   3.8455   3.7811   1.2289   1.1785   0.5176   0.1148 ].';
%!
%! Mo = [Ao, Bo; Co, Do];
%! Me = [Ae, Be; Ce, De];
%!
%!assert (Mo, Me, 1e-4);
%!assert (Info.hsv, HSVe, 1e-4);