This file is indexed.

/usr/share/octave/packages/control-3.0.0/dare.m is in octave-control 3.0.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
## Copyright (C) 2009-2015   Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{x}, @var{l}, @var{g}] =} dare (@var{a}, @var{b}, @var{q}, @var{r})
## @deftypefnx {Function File} {[@var{x}, @var{l}, @var{g}] =} dare (@var{a}, @var{b}, @var{q}, @var{r}, @var{s})
## @deftypefnx {Function File} {[@var{x}, @var{l}, @var{g}] =} dare (@var{a}, @var{b}, @var{q}, @var{r}, @var{[]}, @var{e})
## @deftypefnx {Function File} {[@var{x}, @var{l}, @var{g}] =} dare (@var{a}, @var{b}, @var{q}, @var{r}, @var{s}, @var{e})
## Solve discrete-time algebraic Riccati equation (ARE).
##
## @strong{Inputs}
## @table @var
## @item a
## Real matrix (n-by-n).
## @item b
## Real matrix (n-by-m).
## @item q
## Real matrix (n-by-n).
## @item r
## Real matrix (m-by-m).
## @item s
## Optional real matrix (n-by-m).  If @var{s} is not specified, a zero matrix is assumed.
## @item e
## Optional descriptor matrix (n-by-n).  If @var{e} is not specified, an identity matrix is assumed.
## @end table
##
## @strong{Outputs}
## @table @var
## @item x
## Unique stabilizing solution of the discrete-time Riccati equation (n-by-n).
## @item l
## Closed-loop poles (n-by-1).
## @item g
## Corresponding gain matrix (m-by-n).
## @end table
##
## @strong{Equations}
## @example
## @group
##                           -1
## A'XA - X - A'XB (B'XB + R)   B'XA + Q = 0
##
##                                 -1
## A'XA - X - (A'XB + S) (B'XB + R)   (B'XA + S') + Q = 0
##
##               -1
## G = (B'XB + R)   B'XA
##
##               -1
## G = (B'XB + R)   (B'XA + S')
##
## L = eig (A - B*G)
## @end group
## @end example
## @example
## @group
##                              -1
## A'XA - E'XE - A'XB (B'XB + R)   B'XA + Q = 0
##
##                                    -1
## A'XA - E'XE - (A'XB + S) (B'XB + R)   (B'XA + S') + Q = 0
##
##               -1
## G = (B'XB + R)   B'XA
##
##               -1
## G = (B'XB + R)   (B'XA + S')
##
## L = eig (A - B*G, E)
## @end group
## @end example
##
## @strong{Algorithm}@*
## Uses SLICOT SB02OD and SG02AD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
##
## @seealso{care, lqr, dlqr, kalman}
## @end deftypefn

## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: October 2009
## Version: 0.5.1

function [x, l, g] = dare (a, b, q, r, s = [], e = [])

  ## TODO: extract feedback matrix g from SB02OD (and SG02AD)

  if (nargin < 4 || nargin > 6)
    print_usage ();
  endif

  if (! is_real_square_matrix (a, q, r))
    ## error ("dare: a, q, r must be real and square");
    error ("dare: %s, %s, %s must be real and square", ...
            inputname (1), inputname (3), inputname (4));
  endif
  
  if (! is_real_matrix (b) || rows (a) != rows (b))
    ## error ("dare: a and b must have the same number of rows");
    error ("dare: %s and %s must have the same number of rows", ...
            inputname (1), inputname (2));
  endif
  
  if (columns (r) != columns (b))
    ## error ("dare: b and r must have the same number of columns");
    error ("dare: %s and %s must have the same number of columns", ...
            inputname (2), inputname (4));
  endif

  if (! is_real_matrix (s) && ! size_equal (s, b))
    ## error ("dare: s(%dx%d) must be real and identically dimensioned with b(%dx%d)",
    ##         rows (s), columns (s), rows (b), columns (b));
    error ("dare: %s(%dx%d) must be real and identically dimensioned with %s(%dx%d)", ...
            inputname (5), rows (s), columns (s), inputname (2), rows (b), columns (b));
  endif

  if (! isempty (e) && (! is_real_square_matrix (e) || ! size_equal (e, a)))
    ## error ("dare: a and e must have the same number of rows");
    error ("dare: %s and %s must have the same number of rows", ...
            inputname (1), inputname (6));
  endif

  ## check stabilizability
  if (! isstabilizable (a, b, e, [], 1))
    ## error ("dare: (a, b) not stabilizable");
    error ("dare: (%s, %s) not stabilizable", ...
            inputname (1), inputname (2));
  endif

  ## check positive semi-definiteness
  if (isempty (s))
    t = zeros (size (b));
  else
    t = s;
  endif

  m = [q, t; t.', r];

  if (isdefinite (m) < 0)
    ## error ("dare: require [q, s; s.', r] >= 0");
    error ("dare: require [%s, %s; %s.', %s] >= 0", ...
            inputname (3), inputname (5), inputname (5), inputname (4));
  endif

  ## solve the riccati equation
  if (isempty (e))
    if (isempty (s))
      [x, l] = __sl_sb02od__ (a, b, q, r, b, true, false);
      g = (r + b.'*x*b) \ (b.'*x*a);        # gain matrix
    else
      [x, l] = __sl_sb02od__ (a, b, q, r, s, true, true);
      g = (r + b.'*x*b) \ (b.'*x*a + s.');  # gain matrix
    endif
  else
    if (isempty (s))
      [x, l] = __sl_sg02ad__ (a, e, b, q, r, b, true, false);
      g = (r + b.'*x*b) \ (b.'*x*a);        # gain matrix
    else
      [x, l] = __sl_sg02ad__ (a, e, b, q, r, s, true, true);
      g = (r + b.'*x*b) \ (b.'*x*a + s.');  # gain matrix
    endif
  endif

endfunction


%!shared x, l, g, xe, le, ge
%! a = [ 0.4   1.7
%!       0.9   3.8];
%!
%! b = [ 0.8
%!       2.1];
%!
%! c = [ 1  -1];
%!
%! r = 3;
%!
%! [x, l, g] = dare (a, b, c.'*c, r);
%!
%! xe = [ 1.5354    1.2623
%!        1.2623   10.5596];
%!
%! le = [-0.0022
%!        0.2454];
%!
%! ge = [ 0.4092    1.7283];
%!
%!assert (x, xe, 1e-4);
%!assert (sort (l), sort (le), 1e-4);
%!assert (g, ge, 1e-4);

## TODO: add more tests (nonempty s and/or e)